
-

Efficient Processing of the Cube Operator
Martin Zirkel+ Volker Markl* Rudolf Bayer*+

Institut für Informatik+
Technische Universität München

Orleansstr.34, 81667 München, Germany

Bayerisches Forschungszentrum *
für Wissensbasierte Systeme

Orleansstr.34, 81667 München, Germany

{zirkel,bayer}@in.tum.de volker.markl@forwiss.de
http://mistral.informatik.tu-muenchen.de

1 Introduction
This paper presents a part of the doctoral work

with the theme: “The impact of sorted reading from
UB-trees on relational database systems”. Based
on [Mar99] this doctoral work deals with the
problems of the efficient implementation and
analysis of sorted reading (UB-Cache [Bay97b],
Tetris -Algorithm [MB98], [MZB99]) and its effect
on query-processing and query optimization in
relational databases and especially in the field of
data warehousing (DW) and data-mining.

In our days, the B-Tree [BM72] is a de facto
standard in relational database systems for one-
dimensional data. Based on the B-Tree a new data
structure for multidimensional data, the UB-Tree,
was invented by [Bay96]. This data structure
utilizes a space-filling curve to partition a
multidimensional universe into disjoint regions
while preserving multidimensional clustering. A
space-filling curve (e.g., Z-curve) maps a d-
dimensional universe to a one-dimensional
universe. Therefore algorithms for point queries,
insertion, and multidimensional range queries can
be efficiently handled by a normal B*-tree, which
is available in any commercial relational database
system. In our prototype implementation we use
the Z-curve. A Z-address Z(x) is the ordinal
number of a tuple x on the Z-curve which is used a
key for the B*-Tree [Mar99].

SELECT Years, Month4_Period,

Productgroup, Country, SUM(Sales) AS Sales
FROM fact
WHERE Years > 1996 AND
 Years < 1999 AND
 Month4_period >= 1 AND
 Month4_period <=2 AND
 Productgroup = ‘video’ AND
 Country = ‘Germany’
 GROUP BY Years, Month4_Period, Productgroup,
Country WITH CUBE

Figure 1-1: Cube statement

As sorted reading (Tetris -Algorithm) is a query
processing technique, which combines restrictions
and sorting, it is extremely useful for an efficient
implementation of the join operator as well as for
grouping and cubing with aggregation functions.
The Tetris -Algorithm uses a kind of sweep line
technique to read data in the sort order of any
attribute, while accessing each disk page of the
table only once. The Tetris -Algorithm uses the
partial sort order imposed by the UB-Tree in order
to process a relation in some to sort order.

The contribution of this doctoral work is to use
sorted reading for grouping and cubing queries
with range restrictions and aggregations. In DW an
enormous number of aggregates must be computed.
Therefore an efficient implementation of the
aggregate calculation is necessary. This creates the
demand for materializing and storing temporary
results. Due to the multidimensional nature of the
data, UB-Trees to utilize a multidimensional
clustering for intermediate result sets is very
beneficial in order to accelerate grouping and
aggregation calculation.

2 Usability in DW
DW applications normally use a

multidimensional model to represent their data.
The numeric data (measures) (e.g., sales, cost),
which is the focus of the analysis, is organized
along multiple dimensions. A dimension provides
categorical data (e.g., container size of the product)
that determines the context of the measures.
Therefore a measure can be seen as a cell value of a
data cube, which is identified by its coordinates. In
the relational world this model is mapped to a star
schema where the database consists of a single fact
table and a single table for each dimension. Each
tuple of the fact table contains a foreign key (that
acts as a pointer) to each of the dimensions. Figure
2a shows the snowflake schema of GfK. A
snowflake schema is a star schema where
dimensions are normalized. GfK stands for
“Gesellschaft für Konsumforschung”, which
loosely translated means “Consumer Product
Market Research Institute”.

-

[GCB+97] extends the SQL-query language by
the CUBE-operator that now is available in
commercial systems such as DB2 and SQL-Server
(cf. Figure 1-1). The CUBE-operator computes all
possible aggregations from the grouping attributes.
Figure 1 shows an example of the CUBE-operator
processed on the GfK-DW.

Figure 2-1: a) Star-schema of GfK;

Single table queries restrict, re-arrange or

aggregate the tuples of one relation [Ull88]. A
relation can be considered to be a d-dimensional
space; therefore queries, that restrict an attribute A i,

return a subspace of the universe. A large set of
these queries can be mapped to partial range
queries. Usually a multidimensional range
restriction on a cube or fact table is used to define a
sub-cube, which is used for grouping.

For DW applications, a multidimensional fact
table is the base relation on which the CUBE-
operator is computed. Normally people are only
interested in the sales of a special product group
(‘video’) in specific period of time in a certain
country (e.g., Germany); therefore a restriction is
made on each dimension of the fact table by the
WHERE-clause of the SQL-statement. Those
restrictions form a multidimensional restriction on
the fact table. Figure 1 is a typical example of a sub
cube defined by the multidimensional restriction on
the fact table.

In general a multidimensional index is used to
utilize multi-attribute restrictions. To reduce the
number of I/Os on the fact table the tuples should
be clustered spatially on secondary storage. As
grouping algorithms in conjunction with
aggregation functions needs sorting for efficiency,
a multidimensional index should provide an
operator to read the relation in any total sort order.
The Tetris -Algorithm on top of a UB-tree fulfils all
of these requirements.

3 How to Handle the Cube

Operator with UB-Trees
The research question is: How can a

multidimensional data-structure be used for
efficient calculation of data-cubes with restrictions.

3.1 Restrictions

To utilize a multidimensional restriction to
compute a sub cube from a fact table it should be
organizes as a UB-tree (e.g., Year, Month4,
Productgroup and Country). Our earlier papers
already have shown that multidimensional access
methods, such as the UB-Tree, are extremely
beneficial for storing and processing
multidimensional fact tables because only the
relevant data is retrieved from secondary storage
[MZB99, MRB99].

3.2 Aggregation network

A lot of research has already been done in the field
of efficient aggregation [HRU96]. [Leh98]
provides a good overview of aggregation
techniques. One important observation, is the fact
that some super-aggregates do not have to be
computed from the base table but can be derived
from sub-aggregates (e.g., the total sales for a year
can be derived from the sales of the four month
periods). The derivability of aggregation results
from sub-aggregates depends on the additivity of
the aggregation function (see [Leh98] for details).
An aggregation network, a directed graph, is a way
to derive high-level aggregates from low-level
aggregates. The lowest level, level 0, is the fact-
table. An aggregation network for the query (cf.
Figure 1) for the GfK-star-schema is shown in
Figure 2-1. Each node of the directed graph
represents one grouping, e.g. Year and Country in
the second level of network represent the grouping
according to year and country. For n grouping
attributes the complete graph consists of 2n

groupings. From Figure 3-1 it can be observed that
there are different paths to reach a node. The thick
arrows represent one example to reach each node
and therefore define the data flow to compute the
cube.

3.2.1 Conventional Approach

In general aggregation functions like count(),
sum(), max(), min() and average() for a relation e.g.
fact (cf. Figure 1) are computed in two steps: First
all tuples of the relation fact that have the same
values of the grouping attributes Years,
Month4_Period, Productgroup and Country are
collected into the same group which can be
interpreted as an equivalence class. Second, for
each group the aggregation functions are applied to
the aggregation-attributes, e.g. to compute the sum

Segment

All

Country

Region
M

icromarket
Outlet

Pro
duc

t

All

Sec
tor

Ca
teg

ory Pro
duc

tgro
up

Ite
m

Time

All

Year

Month4_Period

Month2_Period

Sales

Turnover
Price

-

of attribute Sales. The result set consists of one
tuple for each grouping of Years, Month4_Period,
Productgroup, Country and the accessory
aggregation values, e.g. sum(Sales).

For aggregation, conventional algorithms first
sort a relation according to the grouping
attribute(s). Due to sorting, the aggregation of the
equivalence classes can be computed very easily by
simply reading the tuple stream in sort order.

Usually, this aggregation network is computed
as follows: For each node the conventional

aggregation algorithm is performed. The result set
of a node of level i is the input for the node at level
i+1. For our further considerations we assume that
the size of the input at level 0 and 1 does not fit
into the main memory. Thus an external sorting is
necessary for these levels. For external sorting the
whole query box defined by the multidimensional
restriction must be read and written two-times each.
To compute all nodes of level 0 and level 1 of our
example four external sort operations are
necessary.

(Year, Month4, Productg .,Country)

()

(Year, Month4,Productg.) (Year,Country,Product) (Year, Productg.,Country) (Month4, Productg.,Country)

(Year,Month4) (Productg,Country.)(Country ,Month4)(Year,Productg.) (Year,Country) (Month4,Productg .)

(Year) (Month4) (Productg) (Country)

Tetris + agg + sort
Tetris + agg

Tetris
+agg

Te
tri

s
+a

gg

Te
tri

s +
ag

g

Tetris
+agg

Tetris +agg

ag
g

agg

agg

ag
g agg

agg agg

agg

Level 0

Level 1

Level 2

Level 3

Level 4

D
o

no
t f

it
 i

nt
o

th
e

m
ai

n
m

em
or

y
F

it
 i

nt
o

th
e

m
ai

n
m

em
or

y

(Year, Month4, Productg .,Country)

()

(Year, Month4,Productg.) (Year,Country,Product) (Year, Productg.,Country) (Month4, Productg.,Country)

(Year,Month4) (Productg,Country.)(Country ,Month4)(Year,Productg.) (Year,Country) (Month4,Productg .)

(Year) (Month4) (Productg) (Country)

Tetris + agg + sort
Tetris + agg

Tetris
+agg

Te
tri

s
+a

gg

Te
tri

s +
ag

g

Tetris
+agg

Tetris +agg

ag
g

agg

agg

ag
g agg

agg agg

agg

Level 0

Level 1

Level 2

Level 3

Level 4

D
o

no
t f

it
 i

nt
o

th
e

m
ai

n
m

em
or

y
F

it
 i

nt
o

th
e

m
ai

n
m

em
or

y

Figure 3-1: Aggregation Networks/ Aggregation Lattices

3.2.2 UB-Tree Approach

In our approach we organize the fact table as an
UB-Tree (denoted by a box around the grouping
attributes in Figure 3-1). To compute aggregates of
level 0 and level 1 the Tetris – Algorithm can be
used instead of external sorting. Although the
relations denoted by the nodes of level 0 and level
1 in Figure 2b do not fit into main memory, they
can be sorted in main memory with the Tetris –
Algorithm. This is possible, since Tetris divides the
query-box in sub queries-boxes of variable sizes,
which fit in the main memory and are retrieved in
sorted order [MZB99]. So the result set must only
once be read and written from the external storage.

As the result set of level 1 does not fit in the
main memory either, we will create a temporary
UB-Tree for Month4, Product and Country.
Efficient creation of a temporary UB-Tree requires

the result set to be sorted according the Z-Value of
the grouping attributes Month4, Product and
Country. The Z-Value is easily computed by bit
interleaving [Mar99].

To create the temporary UB-Tree the result set
must be read and written to disk two times.
Therefore to compute an aggregate from a grouping
and store the result set in an UB-tree three steps
have to be carried out. First, use the Tetris -
Algorithm for sorting, second, compute the
aggregation, and third, create a temporary UB-Tree
by external sorting. The is denoted by Tetris + agg
+ sort (cf. Figure 3-1).

4 Summary
We have described an efficient algorithm for

the computation of the cube operator. It is based on
the Tetris -algorithm, which uses a sweep line

-

technique to read data in the sort order of any
attribute in order to produce groupings on which
aggregations function are performed. To derive a
super-aggregate from a sub-aggregate we use the
method of dynamic programming. We use an
aggregation network where some sub-nodes are
materialized as a UB-Trees. The contribution of the
thesis to the problem “How can a multidimensional
data-structure be used for efficient calculation of
data-cubes with restrictions” is a new processing

technique for the cube operator that should be
faster than the conventional algorithms used in
commercial database systems. Therefore the
amount of pre-aggregates can be extremely reduced
because the time to compute cubes on the fly with
UB-Tree is fairly low.
Using the UB-tree for storing intermediate result
sets in order to efficiently calculate super-
aggregates in the next level is totally new.

References

[Bay96] R. Bayer. The universal B-Tree for multidimensional Indexing. Technical Report TUM-I9637,
Institut für Informatik, TU München, 1996.

[Bay97b] R. Bayer. UB-Trees and UB-Cache – A new Processing Paradigm for Database Systems.
Technical Report TUM-I9722, Institut für Informatik, TU München, 1997.

[BM72] R. Bayer and E. McCreight. Organization and Maintainance of large ordered Indexes. Acta
Informatica 1, 1972, pp. 173 – 189.

[GCB+97] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H.
Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab,
and Sub-Total. Data Mining and Knowledge Discovery 1(1), 1997

[HRU96] V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing Data Cubes Efficiently. Proc. of
SIGMOD, 1996.

[Leh98] W. Lehner. Aggregatverarbeitung in Multidimensionalen Datenbanksystemen. Dissertation,
Friedrich-Alexander Universität Erlangen, 1998

[Mar99] V. Markl. MISTRAL: Processing Relational Queries using a Multidimensional Access
Technique. Ph.D. Thesis, Technische Universität München, 1999.

[MR98] V. Markl and R. Bayer. The Tetris -Algorithm for Sorted Reading from UB-Trees. In
“Grundlagen von Datenbanken”, 10th GI Workshop, Konstanz, 1998.

[MRB99] V. Markl, F. Ramsak, and R. Bayer. Accelerating OLAP Queries by Multidimensional
Hierarchical Clustering. Proc. of IDEAS, Montreal, Canada, 1999.

[MZB99] V. Markl, M. Zirkel, and R. Bayer. Processing Operations with Restrictions in Relational
Database Management Systems without external Sorting. Proc. of ICDE, Sydney, Australia,
1999.

[Ull88] J.D. Ullman. Database and Knowledge Based Systems Volume I. Computer Science Press,
Rockville, MD, 1988.

