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Abstract 

Bulk loading is used to efficiently build a table or access 
structure, if a large data set is available at index 
creation time, e.g., the spool process of a data 
warehouse or the creation of intermediate results during 
query processing. In this paper we introduce the 
TempTris algorithm that creates a multidimensional 
partitioning from a one-dimensionally sorted stream of 
tuples. In order to achieve that, TempTris exploits the 
fact that a one-dimensional order can be used as a 
partial multidimensional order for the creation of a 
multidimensional partitioning. In this way, TempTris 
avoids external sorting for the creation of a 
multidimensional index. In combination with the Tetris 
sort algorithm, TempTris can be used to create 
intermediate query processing results that can – without 
external sorting - be re-used to generate various sort 
orders. As example of this new processing technique we 
propose an efficient algorithm for computing an 
aggregation lattice. Thus, TempTris can also be used to 
speed up the processing of CUBE operators that 
frequently occur in OLAP applications. 

1 Introduction 

In query processing, operators often produce 
intermediate results in a specific sort order, e.g., a 
clustering index access or a sort-merge join. In practice 
even spool files used for bulk loading in data warehouses 

(DW) are often sorted with respect to one dimension, e.g., 
the time dimension. During further processing, the sort 
order of the intermediate result or spool file can be used 
to efficiently compute the result of further operators like 
projection or joining. In this paper, the sort order of the 
input is exploited for generating a multidimensional 
partitioning. 

A multidimensional organization of an input stream or 
table has many useful applications in query processing, 
e.g., when query processing requires answering a set of 
sub-queries with multi-attribute restrictions or when 
further processing the stream in different sort orders than 
the original one.  

So far there has been already some work on bulk 
loading for multidimensional index structures, such as R-
Trees [8], Gridfiles [13] and quad trees [7]. These 
algorithms have an I/O complexity of O(P·log P) for an 
input size of P pages, which is usually due to the fact that 
these approaches do not utilize a pre-sorted input and thus 
require external sorting of the input data.  

For B*-Trees and multidimensional access methods on 
top of these, packing algorithms can be used with minor 
modifications. The common method to create a space-
optimal B-Tree is to sort the data with merge-sort 
according to the index key and write tuples in sort order 
into disk pages, filling up each page to the desired degree 
of page utilization.  

Nowadays, the usual method for sorting in database 
systems is the sort-merge algorithm [9], i.e. the input data 
is written into initial sorted runs and then merged into 
larger and larger runs until only one run – the sorted 
output - is left.  

The contribution of our paper is to introduce the 
TempTris-Algorithm, a processing technique for the 
creation of a multidimensional partitioning without 
external sorting. TempTris generalizes the bulk-loading 
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algorithm for UB-trees [2] by utilizing the order of the 
input stream. The basic idea of TempTris is to utilize the 
linear ordering of a tuple stream for the creation of a 
multidimensional space partitioning based on a new target 
order. A sweep line - defined by the attribute the input 
stream is sorted on – is used to separate the stable part of 
the partitioning (which can safely be written to disk) from 
the dynamic part (where insertions still may take place 
and thus would require additional I/O, if this data was 
already written to disk). Therefore the TempTris 
algorithm is adaptive in the sense that it does less work as 
the input stream has some degree of pre-sortedness.  

The typical application of TempTris is creating 
clustering indexes and tables in a bulk loading fashion. In 
this way, TempTris is useful both for the creation of 
permanent tables and for the on-the-fly creation of 
intermediate results as they occur during query 
processing. 

In contrast to all previous work, our method utilizes 
the fact that the input is one-dimensionally sorted for the 
creation of the partitioning. We give a concise evaluation 
by creating UB-Trees with the TempTris algorithm. We 
compare our technique against the traditional sort-merge 
techniques that are state-of-the-art for index bulk loading. 
We also present an efficient processing technique for 
computation of aggregation networks [12] that combines 
Tetris and TempTris and apply it to the cube operator [4] 
on a real data warehouse from “GfK”1.  

TempTris is the inverse operation to Tetris (which cre-
ates a linearly ordered stream of tuples from a 
multidimensional partitioning, see[14]). This allows for 
carrying over to TempTris many of our analytical and 
experimental results of the Tetris algorithm. In particular, 
with sufficient, but modest cache memory, TempTris does 
not require external sorting.  

The rest of the paper is organized as follows:  Section 
2 introduces the TempTris algorithm. Section 3 gives an 
example of the TempTris algorithm creating the Z-region 
partitioning of UB-Trees. Section 4 analyzes the 
performance of TempTris and compares it to the 
performance of merge-sort, the usual technique for bulk 
loading. In Section 5 we discuss a new efficient 
processing technique for the cube operator based on a 
combination of TempTris and Tetris. Section 6 presents  
measurements results and Section 7 concludes our paper 
and gives an outlook on future work.   

2 The TempTris Algorithm 

The basic idea of TempTris is to create a new target 
order from a sorted stream of tuples (i.e, a source order). 

                                                 
1 GfK stands for “Gesellschaft für Konsumforschung”, the 
largest German Market Research Company. 

This target order can be used to organize a relation with a 
multidimensional access method on secondary storage.  

During a run of TempTris a sweep line technique [16] 
is used to distinguish between dynamic data (that consists 
of regions of a partitioning that must still be kept in 
memory cache for processing) and stable data (that 
consists of regions of a partitioning that can already be 
written to disk and will not be touched again). The 
direction of the sweep-line is determined by the sort order 
of the input stream. Basically, TempTris iteratively 
applies the following two steps:  

• Insert a tuple according to the target order into a 
dynamic region and split the region if necessary  

• Make all dynamic regions stable, which do not 
intersect the sweep line 

2.1 Terminology 

The following notations of relational database systems 
and the formal concept of multidimensional regions will 
serve as basic terminology for describing the TempTris 
Algorithm: 

Let R be a relation having d attributes A1,..., Ad of do-
mains Ω1,..., Ωd composed of tuples x = (x1,..., xd). Let 
<dim  (dim ∈ {1,…,d}) be a total order on Ωdim  and mindim 
resp. maxdim  the minimum resp. maximum value of Ωdim . 

Ω = Ω1 × ... × Ωd = [min1,max1] × ... × [mind, max d] 

is the base space of the relation R. Each <dim  defines a 
partial order on Ω. R is a finite subset of Ω, i.e., R ⊆ Ω. R 
is partitioned into a finite set of pages. Each page p stores 
a limited number of tuples. 
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Figure 2-1: Terminology 

 

A region ρi is a subspace of Ω, i.e. ρi ?  Ω. A page p 
corresponds to a region ρ (p ↔ ρ), if all tuples stored on p 
are located in the region ρ, i.e., 

p ↔ ρ ⇔ (x ∈ p ⇔ x ∈ ρ ∩ p). 

A (disjoint) region set Θ (cf.  Figure 2-1a) of Ω is a 
set o f regions {ρ1, ..., ρk} with 

∀i=1,...,k ρi ∈ Ω and ∀j,i=1,...,k and j≠ i ρi ∩ ρj = ∅ 
 



For a 16x16 universe Ω with A1 as horizontal 
dimension, A2 as vertical dimension and the origin (0,0) in 
the upper left corner,  Figure 2-1a shows the geometry of 
7 regions {ρ1, ρ2, ρ3 ρ4, ρ5, ρ7, ρ8},  Figure 2-1b shows a 
further region ρ6 that has been created from the region set 
of  Figure 2-1a by splitting ρ7 into ρ7 and ρ6. For the 
regions ρ7 and ρ8,  Figure 2-1 also shows the four ( Figure 
2-1a) respectively three ( Figure 2-1b) tuples, that are 
stored on the pages corresponding to these regions. 

A cluster (cf.  Figure 2-1b) is a sub-space of Ω, which 
restricts one attribute Adim  to a linear interval [adim, bdim ]:  

],[ dimdim baC = [min1, max 1] × ... × [a, b] × ... × [mind, max d] 

 Figure 2-1 also shows the cluster ],[min 11 at
C  for the 

tuple ta1 = (ta1, ta1) = (10,12) with respect to attribute A1, 
i.e., the cluster ]10,0[C . 

A sorted stream SR,< is an ordered set that contains 
exactly the tuples of the relation R. The tuples of SR,< are 
ordered ascending by <. The function removemin(SR,<) 
removes the smallest tuple from the stream and returns it 
a result.  

During a run of the TempTris algorithm, we call a 
page to be stable if the set of tuples stored on that page is 
fixed (i.e., no further tuple will be removed or inserted 
during further iterations); otherwise we call a page 
dynamic. We also use the term stable region (dynamic 
region) for the region corresponding to a stable (dynamic) 
page. 

2.2 The TempTris Algorithm 

TempTris divides the base space Ω into two disjoint 
region sets, the dynamic region set ΘD and the stable 
region set ΘS. For the following explanation we consider 
Adim to be the attribute according to which the input 
stream is sorted. tdim is the position of the sweep line, i.e., 
the attribute value of Adim of the current tuple of the input 
stream. The stable region set is the set of regions fully 
contained in the cluster 

]1,[min dimdim −t
C . The regions 

{ρ1, ρ2, ρ3 ρ4, ρ5} in  Figure 2-1a show the stable region 
set and {ρ7, ρ8} is the dynamic region set for the sweep 
line with position c = 10. The same holds for  Figure 
2-1b, which contains one further stable region ρ6 which 
has been created by splitting ρ7 into ρ7 and ρ6. 

During a run of TempTris, the stable page set 
corresponding to the stable region set ΘS will be built on 
disk. In order to achieve that, TempTris caches the 
dynamic page set corresponding to the dynamic region set 
ΘD in  main memory.  

Suppose we have a stream 
dim,<RS  that is sorted with 

respect to attribute Adim. In the beginning, the dynamic 
region set ΘD consists of one region that covers the whole 

base space  Ω. The stable region set ΘS is empty. Each 
tuple t = removemin(

dim,<RS ) of the stream 
dim,<RS is 

iteratively inserted into a region ρ of the  dynamic region 
set according to the target order. The value tdim  of the sort 
attribute of the current tuple t defines a sweepline that is 
used to distinguish ΘD and ΘS. 
TempTris(SR,<dim, dim, ΘS) 
{ 
 tuple t; 
 region ρ, ρ1,ρ2; 
 region-set ΘD = {Ω}; 
 region-set ∆ = ∅; 
 ΘS = ∅; 
 while (SR,<dim ? ∅) 
 { 
  t =  removemin(SR,<dim);  
  /* find the (unique) dynamic region containing t */ 
  ρ    = {ρ | ρ ∈  ΘD  and t ∈ ρ } 
   /* insert t into corresponding page */ 
  page(ρ1) =  page(ρ1) ∪{t};  
   if(|page(ρ1)| > max_number_of_elements) 
  {   /* region overflow caused by page overflow */ 
   /* split ρ into ρ1 and ρ2 as well as  the  */ 
   /*  corresponding pages */ 
   split(ρ   ,ρ1, ρ2);                     
   /* update dynamic region set */ 
   ΘD = ΘD \ {ρ } ∪ {ρ1 } ∪ {ρ2 }        
  } 

  ∆ = { ρ | ρ ∈ ΘD and  ρ ∩ 
]1,[min dimdim −t

C  = ρ } 

  if(∆ ? ∅)  
  { 
   /* cache flushing: flush all new stable regions */ 
   /* to disk  */ 
   /* write pages corresponding to ∆ to disk  */ 
   ΘS = ΘS ∪∆  
   /* remove pages corresponding to ∆ from */ 
   /*main memory */ 
   ΘD = ΘD \ ∆  
  } 
 } 
 /* write pages corresponding to the remaining dynamic */ 
 /* regions to disk  */ 
 ΘS = ΘS ∪ ΘD                 

} 
Figure 2-2: TempTris Algorithm (pseudo code) 

 
When consecutively inserting tuples, the sweepline 

moves forward. ΘD grows when a region ρ is split into 
two regions ρ1 and ρ2 due to an overflow of the 
corresponding page. When a dynamic region is no longer 
intersected by the sweepline, it becomes stable and is 
removed from ΘD (cache flushing). When the last tuple t 
of 

dim,<RS  has been processed, the remaining dynamic 

region set ΘD becomes stable and is also written to disk. 
At this point the multidimensional region partitioning has 



been created. The TempTris algorithm is sketched in 
Figure 2-2. 

2.3 Correctness of TempTris 

The correctness of the TempTris algorithm can be 
proven easily. In the following we merely sketch the idea 
of the proof.  

The stable region set grows monotonically until all 
tuples of the input stream have been processed. Since the 
input stream is sorted, no tuples will be inserted into 
stable regions that are “left of the sweepline”, i.e., 
intersecting the cluster ]1,[min 11 −at

C . Thus each tuple is 

stored in a page corresponding to a unique region and all 
regions created by TempTris are disjoint. Summing up, 
the regions generated by TempTris form a disjoint 
multidimensional region partitioning. This proves the 
correctness of TempTris. 

2.4 Basic Performance Observations 

TempTris writes each region only once. Thus for 
generating a partitioning of P pages, TempTris needs to 
perform P page write operations, resulting in an I/O-
complexity linear in the size of the input stream if 
sufficient but modest memory is available. 

The dynamic region set maintained by TempTris in 
worst-case contains P regions, thus requiring to store the 
entire stream in main memory to create the partitioning. 
This extreme case happens, if all tuples have the same 
value in the sort attribute. In this case, the sweep line does 
not move and no regions can be made stable until the very 
end of the algorithm. In this case the sort order is not 
useful for creating the partitioning. If P does not fit in 
main memory, TempTris should call merge-sort to 
perform the sorting in this worst-case scenario. Note that 
no unnecessary I/Os are caused by TempTris in this case: 
The main memory cache of TempTris then can be used to 
create the initial runs for merge-sort. If a part of the 
region is written to disk the incremental loading algorithm 
presented in [2] can be applied.  

For query optimization that means, one can call 
TempTris each time one would call merge-sort for 
creating a partitioning of a sorted stream. If TempTris 
cannot exploit the sort order efficiently, it – without 
having caused unnecessary I/Os - can dynamically switch 
to merge-sort instead. 

However, if the sort order is useful, one can expect the 
region and page cache to contain about P/|Adim| entries 
with |Adim| being the distinct number of values in the 
sorting dimension contained in the input stream. A 
detailed analysis of the cache for uniformly distributed 
data is given in Section 4.4. 

2.5 Possible Optimizations of TempTris 

Page utilization of the stable region set created by 
TempTris is a critical performance issue: First, with a 
better page utilization fewer disk pages will be needed to 
store the multidimensional partitioning. Second, with a 
smaller amount of overall disk pages, queries on the 
partitioning will be faster, since then fewer disk pages are 
accessed. 

TempTris as described in the previous section 
immediately splits disk pages when they overflow and 
thus may only guarantee a worst-case page utilization of 
50%. However, the average page utilization with this 
strategy will also not be much better. Applying improved 
splitting algorithms as described in [10] for B-Trees, the 
average storage utilization can be increased to up to 81%.  

A further improvement is to use a different page 
concept for the dynamic regions stored in main memory 
cache. In this case, it is not necessary to have a fixed page 
capacity, but instead fill up the pages with tuples until the 
cache overflows (i.e., dynamic page size). The split into 
pages of fixed size then takes place when the cache is 
flushed. This allows for creating large sets of pages with a 
utilization of 100%. Then pages can be bulk written to 
disk in sequential order, which may also be exploited by 
sequential reads in further processing. 

An algorithmic improvement of TempTris is to avoid 
calculating the stable candidates of the dynamic region 
set, i.e., the set ∆ in Figure 2-2, only after a region split or 
movement of the sweep line, thus avoiding unnecessary 
calculations and checks, reducing the overall CPU time 
required for TempTris. 

3 The TempTris-Algorithm for UB-Trees 

In the following we give an example of TempTris 
creating the Z-region partitioning of UB-Trees (i.e., a d-
dimensional UB-Tree). To be able to exploit the order on 
attribute Adim for the Z-region creation, Adim must be one 
of the index attributes of the UB-Tree.  

3.1 UB-Tree, Z-ordering 

The UB-Tree [1],[17] uses a space-filling curve to cre-
ate a partitioning of a multidimensional universe while 
preserving multidimensional clustering. Using the Lebes-
gue-curve (Z-Curve,Figure 3-1.a) it is a variant of the 
zkd-B-Tree [15] partitioning the universe into Z-regions.  

To define the UB-Tree partitioning scheme, we need 
the notion of Z-addresses and Z-intervals. We assume that 
each attribute value xj of attribute Aj of a d-dimensional 
tuple x = (x1,...,xd) consists of s bits2

 and we denote the 

                                                 
2 Our implementation uses different lengths for the binary 
representation of attribute values. We just use identical 
lengths for an easy illustration. 



binary representation of attribute value xj by xj,s-1xj,s-2...xj,0. 
A Z-address α = Z(x) is the ordinal number of a tuple x on 
the Z-Curve and is calculated by interleaving the bits of 
the attribute values: 

∑∑
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For an 8×8 universe, i.e., s = 3 and d = 2, Figure 3-1.b 
shows the corresponding Z-addresses. 
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Figure 3-1: Z-Curve, Z-addresses, Z-regions  

 
A Z-region [α : β] is the space covered by an interval 

on the Z-Curve and is defined by two Z-addresses α and 
β.  Figure 3-1c shows a partitioning with eight Z-regions. 

3.2 Example: Creating a Z-Region Partitioning 

with TempTris 

The following example illustrates TempTris by 
creating a two-dimensional Z-region set ΘS. Figure 3-2 
shows some steps of TempTris for a two-dimensional 
space with A1 as horizontal dimension, A2 as vertical 
dimension and the origin (0,0) in the upper left corner. 
For our example we assume a page capacity of 2 tuples. 

In the beginning, the dynamic region set  consists of 
only one region ΘD  = {Ω} = {ρ1}, ΘS is the empty set. 
We denote the position of the sweep line in the sort 
dimension by c. In Figure 3-2a TempTris has not started 
reading any tuples and therefore only region Ω ∈ ΘD is 
intersecting the sweep line at c = 0. 

Figure 3-2b shows three dynamic regions created by 
TempTris having read 5 tuples from the input stream, i.e, 
ΘD  = { ρ1, ρ2,ρ3}. t5 = (1,3) was the last tuple inserted. 
Thus the current position of the sweepline is c= 1.  
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Figure 3-2: TempTris Algorithm for UB-Trees 
 
In Figure 3-2c, t6 is inserted and moves the sweepline 

to c  = 2. Now the dynamic region denoted by ρ3 does not 
intersect the cluster C[2,7] anymore. As a consequence, no 
more tuples may be inserted into ρ3. Thus this region is 
made stable, i.e., the page corresponding to that region is 
removed from main memory and written to disk. The 
stable region set now consists of ΘS  = {ρ3}, the dynamic 
region set is ΘD  = { ρ1, ρ2}. 

In Figure 3-2d the stable region set consists already of 
5 regions, ΘS  = { ρ2, ρ3, ρ4,ρ5, ρ6}. If the last tuple t is 
processed, the remaining dynamic region set ΘD = 
{ρ1, ρ7}is made stable and the UB-tree is completed.  

3.3 Maintenance of the Cache 

The dynamic regions are organized according to Z-
order and  Tetris-order. For each ordering we provide an 
index structure for efficient access. With the Z-index a 
new tuple can be inserted in the corresponding page like a  
point query. The task of the tetris-order is to handle the 
sweep line that can be mapped to a range-query. 

In [14] the Tetris-order is introduced that creates a 
total order with respect to Ai from Z-addresses. The 
Tetris-address extracts an attribute from a Z-address and 
concatenates it with the reduced Z-address. Formally the 
Tetris-address is defined as follows: 



Tj(x) = xj ° Z(x1,...,xj-1,xj+1, …, xd) 

Figure 3-3 presents the Tetris-order for the two 
dimensional case.  
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Figure 3-3: Two Tetris Orderings for the two dimensional 
case 

    
If we use the Tetris-order defined by the sorting 

dimension all tuple x located in stable regions ΘS  have a 
smaller Tetris-value Tj(x)   than the smallest Tetris value 
of the sweep-line c.  

{Tj(x) | x ∈ ρ  and  ρ ∈ ΘS} < min{Tj(x)|xj = c} 

Therefore, for each dynamic region ρ is indexed 
according to the maximum Z-value and Tetris-value. 
Figure 3-4 depicts the Z-value and Tetris-value of the 
region [12,35]. The maximum Z-value is 35 and the 
maximum Tetris-value has the ordinal 31.   

 
   Z-address  

  

  Z-address 

T-address 

 
 

Figure 3-4: Z-address and Tetris-address 
 

The computation of the maximum Tetris value can be 
done in linear time by bit-operations and is therefore of 
O(n) whereas n is the number of bits that represent Z(t).  

 
SELECT region FROM T-Index 
WHERE T(region) < T(sweep-line) 
 

Figure 3-5: Determination of the ∆ set 
 

With this property the ∆ set, i.e. the region which 
becomes stable, can be very efficiently determined by a 
range query (cf. .Figure 3-5). 

4 Performance Analysis 

For the creation of a Z-region partitioning from a 
sorted stream S<,dim we define cost functions for 
processing times and intermediate temporary storage. Our 
analysis considers the TempTris algorithm and external 
sorting according to Z-values [2].  

4.1 The Cost Model 

In accordance with [6] we use a cost model that takes 
random pages accesses and page transfers into account. 
Let tπ be the (average case or worst case) positioning time 
and tτ be the transfer time of a hard disk. We assume that 
the prefetching or write caching strategy of the file system 
reads or writes a physical cluster of L consecutive pages 
from disk with one random access. This takes time tπ + 
tτ⋅L. Reading or writing k pages in consecutive  order 
therefore takes 

cscan(k) = k/L ⋅ tπ + max(k, L)⋅ tτ  

4.2 Cost Functions 

Using the cost model of Section 4.1 we calculate the 
cost of sorting a relation of P pages using a main memory 
of M pages and a merge degree of m for the merge-sort 
algorithm. The bulk loading mechanism using merge-sort 
[2] divides the load process into a retrieval phase (which 
retrieves the data to create initial runs for the merge-sort) 
and a sort phase (which actually performs the merge-sort).  

Pt
L

tPcPc writeread ⋅




 +== τπ

1
)()(  

We sometimes do not distinguish between read and write 
operations and then use cr/w(P) for the cost of reading or 

writing P pages. 
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Figure 4-1: Cost functions 

Using a full table scan for the retrieval phase to create 
the initial runs (cread + cwrite) in conjunction with merge-
sort algorithm results in the formula for cms. Using a full 
table scan for retrieval the phase in conjunction with 
TempTris results in the formula for cTempTris. If M >P 
sorting takes place in main memory. Then the merge sort 



factor of cms is reduced to zero. If m
M
P

<  then the 

sorting can be done with one run and the merge-sort 
algorithm results in the formula: 

)(4 / Pcc writereadms ⋅=  

To reduce the I/O cost of the merge sort algorithm the 
merge degree should be set to maximum size with respect 
to the main memory and therefore the merge degree is set 
to  

m = 
M
P

 

For a main memory of size M the maximum table size 
that can be computed in linear time is 

L
Mtablesize

2

max_ =  

4.3 Processing Time 

Current operating systems usually fetch L  = 8 pages 
physical disk pages with one random access. Four our 
cost analysis to create a multidimensional partitioning as 
target sorting from a one-dimensional source sorting we 
assume tπ = 10 ms and tτ = 1 ms, a main memory cache of 
32 MB and a merge degree of m = 2047 (best case). 
Therefore the sort merge algorithm can sort 64 Gbyte in 
linear time. We set the constant page_utilization of 
cTempTris to 81% (see Section 2.5). 
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Figure 4-2: Sorted writing with Merge -Sort and TempTris 
 

Figure 4-2 shows the cost of creating a 
multidimensional partitioning of a sorted input stream 
with a page size varied up to 1 million disk pages. As the 
figure shows, according to our cost model TempTris is 
roughly two times faster than a competing merge-sort 
algorithm. 

4.4 Cache of the TempTris algorithm 

TempTris requires less temporary memory than sort-
merge. As sort-merge accesses and writes the entire input 
stream at least once for each run, the intermediate storage 
for sort-merge is P pages. If the data is uniformly 
distributed, TempTris requires a main memory of  

d d

d
PTempTris P

P
dPcache 1

log2

2

),( −==  

pages to create a d-dimensional UB-Tree . That can be 
computed by the size of the table P divided by the number 
of splits in attribute Adim  (i.e. P/2recusive_splits). Figure 4-3 
shows the size of the temporary storage to create the UB-
Tree required by merge-sort and TempTris. The table size 
varies from 10K to 1G pages. For a page size of 2kB, 
creating a four dimensional space partitioning with 
TempTris for a 2GB input stream requires 64 MB 
temporary space. For a 2 dimensional partitioning of that 
size, only 2MB of cache memory are necessary. 
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Figure 4-3: Intermediate storage sizes of Merge -Sort and 

TempTris 

4.5 Result Table Sizes 

As already mentioned before TempTris with 
optimizations can be expected to achieved a storage 
utilization somewhere between 80% and 100%.   
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Figure 4-4:Storage utilization 



This optimization technique based on sharing. As the 
TempTris algorithm maintains the dynamic region in the 
memory we generalize this technique and define the 
memory page v  as follows:  

 puv ⋅=  

u denotes the scale factor of the memory page. Figure 
4-4 presents the worst case storage utilization for different 
scale factors u and page capacities k. Using the 
optimization technique any storage utilization can be 
achieved. With a scale factor of 5 we get a storage 
utilization at least of 85%. 

This of course is worse than bulk-loading with merge-
sort, which always guarantees a storage utilization of 
100%. Thus TempTris is useful, if  
• a page utilization of 100% is not desired. This is true 

in many OLTP databases, where in anticipation of 
further insertions a certain percentage of each page in 
the database is intentionally left free, e.g. by setting 
the parameter PCTFREE in Oracle.  

• The multidimensional partitioning is used for a small 
set of queries and  then is dropped again. Then the 
benefits of TempTris for creating the partitioning 
several times faster outweigh the query response 
time, which can be expected to be up to 20% worse 
than the response time of a 100% storage utilization 
as created by sort-merge. 

5 Processing an Aggregation Lattice 

We now show a new technique for computing 
aggregation lattices by combining TempTris and Tetris. 
Aggregation lattices are often used to compute a set of 
aggregations efficienty [5]. [12] provides a good overview 
of aggregation techniques. 

The main optimization for computing an aggregation 
lattice comes from the fact that some aggregates do not 
have to be computed from the base table, but can be 
derived from other already computed aggregates (e.g., the 
total sales for a year can derived from the sales of the 12 
month periods). 

 
SELECT Month2_Period, Outlet, Item, 
SUM(Sales) AS Sales 
FROM fact 
WHERE Years > 1996 AND 
  Years < 1999 AND 
 Country = ‘Germany’ 
 GROUP BY Month2_Period, Outlet, Item 
WITH CUBE 

Figure 5-1: A CUBE statement 
 
A common application for this processing technique is 

the CUBE-Operator [4] frequently used in data 
warehousing applications. The CUBE-Operator computes 
2d aggregates of a set of d attributes. Figure 5-1 shows an 

example of a CUBE statement performed on a real DW 
for a schema provided by the market research company 
GfK. 

For aggregation, conventional algorithms first sort or 
hash the relation according to the grouping attribute(s). 
After sorting, the aggregation can be computed very 
easily by simply reading the tuple stream in sort order. 
However, sorting is a bottleneck if the result set does not 
fit in the main memory and external sorting is necessary.  

In order to compute the above three dimensional cube, 
8 groupings have to be computed. The result of CUBE is 
then a union of these groupings. The corresponding 
aggregation lattice together with the size of each sub-
aggregate in pages is shown in Figure 5-2. Each node of 
the network represents one grouping of the cube.  

Usually, this aggregation network is processed as 
follows: For each node the conventional aggregation 
algorithm is performed. With level 0 being the base fact 
table, the result set of a node of level i is the input for the 
node at level i+1. 

5.1 Cube Calculation by Sorting 

In the following we calculate the I/O-cost for 
processing the aggregation network, assuming that no 
I/Os are necessary if an intermediate result fits into main 
memory. For our further considerations we assume a main 
memory cache of 16000 pages.  
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Figure 5-2: Aggregation Lattice; External sorting 
 
We selected the calculation paths through the 

aggregation lattice by the heuristic “Re-use existing sort 
orders and use the smallest sub-aggregate for calculating 
an upper node of the aggregation lattice”, which has 
proven to be a reasonable heuristics in many practical 
applications.  

The nodes of the aggregation lattice have the 
following size: 

Aggregate Size in pages label 
Item, Month2Period, 
Outlet 

1929735 P1 



Outlet 
Item, Month2Period 138033 P2 
Item, Outlet 473488 P3 
Month2Period, Outlet 24953 P4 

Item 1803 P5 
Month2Period 1 P6 

Outlet 477 P7 
We assume two passes over the data for sorting and 

the cost of reading and writing a page to be identical, i.e., 
sorting P pages has a cost of  

csort(P) = 4⋅cread/write (P) 

We also assume to have created a composite 
clustering B-Tree on Item, Month2Period, Outlet in this 
lexicographic order on the base fact table. Therefore, 
computing the aggregates <Item, Month2Period> requires 
a sequential read of the B-Tree consisting of P1 pages and 
a sequential write of the result, i.e., P2 pages: 

)()( 212, PcPcc writereadPeriodMonthItem +=  

The calculation of <Item> re-uses the aggregation 
result <Item, Month2Period> and accordingly requires 
sequential reading and writing: 

)()( 52 PcPcc writereadItem +=  

To compute the node 〈Item, Outlet〉 the fact table must 
be sorted requiring to read P1 pages for the creation of the 
initial runs. Then those runs are written to disk again 
resulting in writing P1 pages. Merging and aggregating 
the runs again requires P1 read operations. Finally writing 
the aggregation result is another P3 page write operations: 

)()()(2 311, PcPcPcc writewritereadOutletItem ++⋅=  

To compute 〈Month2Period, Outlet〉 sorting is 
necessary with the cost  
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Deriving <Month2Period> from this sub-aggregate 
requires only sequential read and write operations: 

)()( 642 PcPcc writereadPeriodMonth +=  

Finally, the node 〈Month2Period, Outlet〉 can also be 
used to calculate outlet, this time requiring a sort 
operation: 

)()()(2 744 PcPcPcc writewritereadOutlet ++⋅=  

Thus the total cost for aggregation using sorting is: 
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5.2 Cube Calculation by Combining TempTris 

and Tetris 

Now we present our new approach that combines 
TempTris with Tetris. We organize the fact table of the 
”GfK”-schema as a UB-Tree. The Tetris algorithm [14] is 
used for sorted reading from the fact table, which is 
organized as a UB-Tree, as well as from the temporary 
UB-Tree created by TempTris storing the aggregation 
result of <Month2Period, Outlet>. Tetris does not require 
external sorting, if the main memory cache is sufficient: 

According to [14], Tetris requires a main memory 

cache of at most 16000155013 2
1 <=P  pages for 

processing the 3 dimensional cube statement without 
external sorting. The same maximum number of cache 
pages is required by TempTris as shown in Section 4.4. 

In contrast to the aggregation lattice in Figure 5-2, the 
organization of the fact table as UB-Tree allows for using 
Tetris to create the aggregation results of <Item, 
Month2Period> and <Item, Outlet> without external 
sorting.  
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Figure 5-3: Aggregation Lattices; Temptris 

 
In addition, Tetris produces a sorted stream on 

Month2Period or Outlet which is used by TempTris to 
create a temporary UB-Tree on <Month2Period, Outlet>. 
As TempTris usually does not achieve a 100% page 
utilization, the size of this UB-Tree is larger then the 
result obtained by merge-sort. Assuming a page 
utilization of 81% as described in Section 2.5, the UB-



Tree created by TempTris contains 31,192 pages in 
contrast to the composite clustering B-Tree created by 
merge-sort, which contains 24,953 pages. The temporary 
UB-Tree is necessary to apply Tetris again for the 
creation of the <Month2Period> and <Outlet> 
aggregations. This strategy avoids external sorting for 
calculating the cube. 

With TempTris and Tetris the I/O-cost for calculating 
the cube is as follows: 
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Therefore total cost for our new approach is: 
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For our example this means that the approach for 
aggregation by sorting accesses 14,384,745 disk pages, 
roughly twice the number of pages that Tetris and 
TempTris access ( 6,615,899 disk pages). This 
improvement is due to two factors: First, Tetris saves 4 
times reading the base table. Second, creating the 
intermediate result for <Month2Period, Outlet> by 
TempTris allows for also applying Tetris here, saving two 
times reading this intermediate result. 

If the cube consists of more than 3 dimensions, the 
combination of Tetris and TempTris will benefit even 
more. In this case, there are more opportunities for 
applying TempTris and Tetris resulting in further savings 
of disk accesses. 

6 Performance Evaluation 

The measurements presented here have been made 
with the prototype implementation of the UB-Tree. It is 
realized as middleware between a database management 
system and a database application. We have implemented 
the TempTris Algorithm for Transbase UB-Tree 
middleware.  An Intel Pentium III 500  CPU with 512 MB 
RAM has been used for these measurements.  The 
databases were created on 9 GB hard disk with an average 
position time of 7,9 ms and a transfer rate of 0,6 ms per 
page. The machine runs under SuSE Linux 6.2, kernel 

version 2.2.10 SMP. To get no unpredictable cache 
effects we disable all systems caches . 

 
Set 01 02 03 04 05 06 
size  32 MB 64MB 128MB 256MB 512MB 1024MB 

Tuple 335544 655360 1310720 2621440 5242880 10485760 

Table 6-1:Size of the data sets  
 
To show the performance gain of the TempTris 

algorithm we create 6 three dimensional data cubes with 
uniformly distributed data. Each cube is created from a 
different data set. The size of a tuple was 100 bytes and 
the page size was set to 2 kB. The size of each set is 
depicted in Table 6-1.  
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Figure  6-1:Loading performance 

 
Each cube is created by the TempTris algorithm and 

external sorting. The implementation of the external 
sorting does not use replacement selection [3], that based 
on a heap to create runs that are larger than memory. With 
replacement selection the expected number of runs is 
about half as many runs as created by quicksort [9]. 
However, the advantage of having fewer runs must be 
balanced with the different I/O pattern and the 
disadvantage of more complex memory management [3].  
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Figure 6-2:Ratio merge -sort and TempTris 

 
In [11] it is shown that it is possible to create 1.8 times 

larger runs than the workspace. But this has no influence 



on the measurement. As we set the available cache M 
used by the merge sort and TempTris algorithm at most 
half of the size of the measured sets and smaller than 

mM ⋅ , external sorting is required and is done in linear 
time. To cerate a storage utilization at least of 95 % we 
use a scaling factor for TempTris algorithm with u = 10.   

Figure 6-1 shows the measured times for the creation 
of 6 UB-trees from the different sets. One time with the 
TempTris algorithm and one time with the external sort 
algorithm. The TempTris algorithm is superior to merge 
sort algorithm. Both algorithms create the 
multidimensional index in linear time as predicted with 
our theoretical model (cf. Figure 4-1).  

Figure 6-2 shows the performance ratio between the 
external sorting and TempTris. With the TempTris 
algorithm we gain an average speedup factor of 2. As we 
use a page scaling factor u = 10 the page utilization is 
about 95% (cf.Figure 6-3). 
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Figure 6-3: Storage utalization 
 

As we said in paragraph 4.4 the creation of a   
multidimensional partitioning of a UB-tree with the 
TempTris algorithm requires for uniformly distributed 

data only  d dP 1− temporary main memory pages. d 
denotes the number of dimensions.  

Figure 6-4: Cache size  
 

Figure 6-4 shows the measured and the theoretical 
cache size. For sets smaller than 1 M the cache size is 
above the predict cache size. The reason for this is the 
freedom of the split address. For larger sets the cache size 
is above of the predicted one and even grows essential 
slower.   

In order to evaluate our algorithms with real world 
data we have loaded a data warehouse from a leading 
German consumer-market analysts institute. They store 
data pre-aggregated to two month periods. The data was 
stored in a cube with the three dimensions Product, 
Segment and Period.  
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Figure 6-5:Data Distribution of DW 

The data warehouse used for our measurements 
consists of 43 million fact tuples belonging to fifteen two-
month periods. Figure 6-5 depicts the data distribution in 
percent according to the periods. The size of a tuple was 
56 bytes. In our measurements we have only considered 
the fact table, since this is the biggest table and new data 
contributes mainly to this table.  
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Figure 6-6: Loading Performance of DW 

The page size was 2kB but to the overhead of the page 
management only 31 tuples fit on one page. As we use a 
scaling factor u = 4 the page utilization is about 87%. 

 Figure 6-6 shows the measured times for loading the 
fact table of the DW with the TempTris algorithm and 
external sorting. As predicted in out theoretical model the 
TempTris algorithm is superior to merge sort Algorithm. 
Both algorithms create the multidimensional index in 
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linear time but the TempTris Algorithm shows a speedup 
of about a factor 2 compared to external sorting. 

7 Conclusion and Future Work 

We have presented the TempTris algorithm as an 
efficient way for creating a multidimensional partitioning 
from a sorted stream of tuples. This allows for bulk 
loading a multidimensional index faster than the usual 
merge-sort algorithm. The main advantage of TempTris is 
that a multidimensional partitioning can be created 
without external sorting, if sufficient, but modest cache 
memory is presented. 

We described the general algorithm and illustrated 
TempTris by an example creating the multidimensional 
Z-region partitioning of UB-Trees. We also gave a 
performance analysis, which showed a performance 
improvement of TempTris over a competing sort merge 
algorithm by a factor of two. In addition, TempTris 
requires only a root function of the input data set size as 
cache, whereas merge-sort requires temporary storage in 
the size of the input set.  

We have presented performance measurements that 
proved our predicted speed up factor of TempTris 
algorithm of 2.  

In combination with Tetris, the TempTris algorithm 
can be used to efficiently compute the CUBE operator, as 
we have also illustrated in this paper by giving the cost 
for computing a data cube from a three-dimensional real-
world schema of GfK. In this example, TempTris 
calculated an aggregation lattice with two times less page 
accesses than the competing method using sort/hash-
grouping. 

TempTris is a general approach: it can be used to 
create the regular tiling of Grid-Files, the rectangular 
partitioning of R-Trees or more complex partitioning 
patterns like the Z-regions of the UB-Tree. The main 
application of TempTris are bulk loading of a 
multidimensional index, especially the computation of the 
cube operator with aggregation lattices.  

TempTris is the inverse function of Tetris. Thus, many 
of the result on Tetris presented in [14] can be taken over 
to TempTris, especially the cost-functions of the cache 
size and the guarantees for processing an input stream 
with one sweep.  
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