
Exploitation of Pre-sortedness for Sorting in Query Processing:

The TempTris-Algorithm for UB-Trees

Martin Zirkel+ Volker Markl* Rudolf Bayer+

Bayerisches Forschungszentrum +
für Wissensbasierte Systeme

Orleansstr.34, 81667 München, Germany

IBM Almaden Research Center*
K55/B1, 650 Harry Road, San Jose,

CA 95120-6099,USA

zirkel@forwiss.tu-muenchen.de, bayer@in.tum.de, marklv@us.ibm.com
http://mistral.informatik.tu-muenchen.de

Abstract

Bulk loading is used to efficiently build a table or access
structure, if a large data set is available at index
creation time, e.g., the spool process of a data
warehouse or the creation of intermediate results during
query processing. In this paper we introduce the
TempTris algorithm that creates a multidimensional
partitioning from a one-dimensionally sorted stream of
tuples. In order to achieve that, TempTris exploits the
fact that a one-dimensional order can be used as a
partial multidimensional order for the creation of a
multidimensional partitioning. In this way, TempTris
avoids external sorting for the creation of a
multidimensional index. In combination with the Tetris
sort algorithm, TempTris can be used to create
intermediate query processing results that can – without
external sorting - be re-used to generate various sort
orders. As example of this new processing technique we
propose an efficient algorithm for computing an
aggregation lattice. Thus, TempTris can also be used to
speed up the processing of CUBE operators that
frequently occur in OLAP applications.

1 Introduction

In query processing, operators often produce
intermediate results in a specific sort order, e.g., a
clustering index access or a sort-merge join. In practice
even spool files used for bulk loading in data warehouses

(DW) are often sorted with respect to one dimension, e.g.,
the time dimension. During further processing, the sort
order of the intermediate result or spool file can be used
to efficiently compute the result of further operators like
projection or joining. In this paper, the sort order of the
input is exploited for generating a multidimensional
partitioning.

A multidimensional organization of an input stream or
table has many useful applications in query processing,
e.g., when query processing requires answering a set of
sub-queries with multi-attribute restrictions or when
further processing the stream in different sort orders than
the original one.

So far there has been already some work on bulk
loading for multidimensional index structures, such as R-
Trees [8], Gridfiles [13] and quad trees [7]. These
algorithms have an I/O complexity of O(P·log P) for an
input size of P pages, which is usually due to the fact that
these approaches do not utilize a pre-sorted input and thus
require external sorting of the input data.

For B*-Trees and multidimensional access methods on
top of these, packing algorithms can be used with minor
modifications. The common method to create a space-
optimal B-Tree is to sort the data with merge-sort
according to the index key and write tuples in sort order
into disk pages, filling up each page to the desired degree
of page utilization.

Nowadays, the usual method for sorting in database
systems is the sort-merge algorithm [9], i.e. the input data
is written into initial sorted runs and then merged into
larger and larger runs until only one run – the sorted
output - is left.

The contribution of our paper is to introduce the
TempTris-Algorithm, a processing technique for the
creation of a multidimensional partitioning without
external sorting. TempTris generalizes the bulk-loading

Copyright 2001 IEEE. Published in the Proceedings of IDEAS 2001 in
Grenoble, France. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promo-
tional purposes or for creating new collective works for resale or
redistri-bution to servers or lists, or to reuse any copyrighted component
of this work in other works, must be obtained from the IEEE. Contact:
Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes
Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA.

algorithm for UB-trees [2] by utilizing the order of the
input stream. The basic idea of TempTris is to utilize the
linear ordering of a tuple stream for the creation of a
multidimensional space partitioning based on a new target
order. A sweep line - defined by the attribute the input
stream is sorted on – is used to separate the stable part of
the partitioning (which can safely be written to disk) from
the dynamic part (where insertions still may take place
and thus would require additional I/O, if this data was
already written to disk). Therefore the TempTris
algorithm is adaptive in the sense that it does less work as
the input stream has some degree of pre-sortedness.

The typical application of TempTris is creating
clustering indexes and tables in a bulk loading fashion. In
this way, TempTris is useful both for the creation of
permanent tables and for the on-the-fly creation of
intermediate results as they occur during query
processing.

In contrast to all previous work, our method utilizes
the fact that the input is one-dimensionally sorted for the
creation of the partitioning. We give a concise evaluation
by creating UB-Trees with the TempTris algorithm. We
compare our technique against the traditional sort-merge
techniques that are state-of-the-art for index bulk loading.
We also present an efficient processing technique for
computation of aggregation networks [12] that combines
Tetris and TempTris and apply it to the cube operator [4]
on a real data warehouse from “GfK”1.

TempTris is the inverse operation to Tetris (which cre-
ates a linearly ordered stream of tuples from a
multidimensional partitioning, see[14]). This allows for
carrying over to TempTris many of our analytical and
experimental results of the Tetris algorithm. In particular,
with sufficient, but modest cache memory, TempTris does
not require external sorting.

The rest of the paper is organized as follows: Section
2 introduces the TempTris algorithm. Section 3 gives an
example of the TempTris algorithm creating the Z-region
partitioning of UB-Trees. Section 4 analyzes the
performance of TempTris and compares it to the
performance of merge-sort, the usual technique for bulk
loading. In Section 5 we discuss a new efficient
processing technique for the cube operator based on a
combination of TempTris and Tetris. Section 6 presents
measurements results and Section 7 concludes our paper
and gives an outlook on future work.

2 The TempTris Algorithm

The basic idea of TempTris is to create a new target
order from a sorted stream of tuples (i.e, a source order).

1 GfK stands for “Gesellschaft für Konsumforschung”, the
largest German Market Research Company.

This target order can be used to organize a relation with a
multidimensional access method on secondary storage.

During a run of TempTris a sweep line technique [16]
is used to distinguish between dynamic data (that consists
of regions of a partitioning that must still be kept in
memory cache for processing) and stable data (that
consists of regions of a partitioning that can already be
written to disk and will not be touched again). The
direction of the sweep-line is determined by the sort order
of the input stream. Basically, TempTris iteratively
applies the following two steps:

• Insert a tuple according to the target order into a
dynamic region and split the region if necessary

• Make all dynamic regions stable, which do not
intersect the sweep line

2.1 Terminology

The following notations of relational database systems
and the formal concept of multidimensional regions will
serve as basic terminology for describing the TempTris
Algorithm:

Let R be a relation having d attributes A1,..., Ad of do-
mains Ω1,..., Ωd composed of tuples x = (x1,..., xd). Let
<dim (dim ∈ {1,…,d}) be a total order on Ωdim and mindim
resp. maxdim the minimum resp. maximum value of Ωdim .

Ω = Ω1 × ... × Ωd = [min1,max1] × ... × [mind, max d]

is the base space of the relation R. Each <dim defines a
partial order on Ω. R is a finite subset of Ω, i.e., R ⊆ Ω. R
is partitioned into a finite set of pages. Each page p stores
a limited number of tuples.

ρ 5

ρ 4

ρ 1

ρ 2

ρ 3

ρ
4

ρ 1

ρ 2

ρ 3

ρ 5

ρ 6

Θ S (stabl region C cluster

c=10 min 1 =0 min 1 =0 c=10

(a) (b)

[min 1 ,c]

t a t b

tuple

ρ 7
ρ

7

ρ 8 ρ
8

Figure 2-1: Terminology

A region ρi is a subspace of Ω, i.e. ρi ? Ω. A page p
corresponds to a region ρ (p ↔ ρ), if all tuples stored on p
are located in the region ρ, i.e.,

p ↔ ρ ⇔ (x ∈ p ⇔ x ∈ ρ ∩ p).

A (disjoint) region set Θ (cf. Figure 2-1a) of Ω is a
set o f regions {ρ1, ..., ρk} with

∀i=1,...,k ρi ∈ Ω and ∀j,i=1,...,k and j≠ i ρi ∩ ρj = ∅

For a 16x16 universe Ω with A1 as horizontal
dimension, A2 as vertical dimension and the origin (0,0) in
the upper left corner, Figure 2-1a shows the geometry of
7 regions {ρ1, ρ2, ρ3 ρ4, ρ5, ρ7, ρ8}, Figure 2-1b shows a
further region ρ6 that has been created from the region set
of Figure 2-1a by splitting ρ7 into ρ7 and ρ6. For the
regions ρ7 and ρ8, Figure 2-1 also shows the four (Figure
2-1a) respectively three (Figure 2-1b) tuples, that are
stored on the pages corresponding to these regions.

A cluster (cf. Figure 2-1b) is a sub-space of Ω, which
restricts one attribute Adim to a linear interval [adim, bdim]:

],[dimdim baC = [min1, max 1] × ... × [a, b] × ... × [mind, max d]

 Figure 2-1 also shows the cluster],[min 11 at
C for the

tuple ta1 = (ta1, ta1) = (10,12) with respect to attribute A1,
i.e., the cluster]10,0[C .

A sorted stream SR,< is an ordered set that contains
exactly the tuples of the relation R. The tuples of SR,< are
ordered ascending by <. The function removemin(SR,<)
removes the smallest tuple from the stream and returns it
a result.

During a run of the TempTris algorithm, we call a
page to be stable if the set of tuples stored on that page is
fixed (i.e., no further tuple will be removed or inserted
during further iterations); otherwise we call a page
dynamic. We also use the term stable region (dynamic
region) for the region corresponding to a stable (dynamic)
page.

2.2 The TempTris Algorithm

TempTris divides the base space Ω into two disjoint
region sets, the dynamic region set ΘD and the stable
region set ΘS. For the following explanation we consider
Adim to be the attribute according to which the input
stream is sorted. tdim is the position of the sweep line, i.e.,
the attribute value of Adim of the current tuple of the input
stream. The stable region set is the set of regions fully
contained in the cluster

]1,[min dimdim −t
C . The regions

{ρ1, ρ2, ρ3 ρ4, ρ5} in Figure 2-1a show the stable region
set and {ρ7, ρ8} is the dynamic region set for the sweep
line with position c = 10. The same holds for Figure
2-1b, which contains one further stable region ρ6 which
has been created by splitting ρ7 into ρ7 and ρ6.

During a run of TempTris, the stable page set
corresponding to the stable region set ΘS will be built on
disk. In order to achieve that, TempTris caches the
dynamic page set corresponding to the dynamic region set
ΘD in main memory.

Suppose we have a stream
dim,<RS that is sorted with

respect to attribute Adim. In the beginning, the dynamic
region set ΘD consists of one region that covers the whole

base space Ω. The stable region set ΘS is empty. Each
tuple t = removemin(

dim,<RS) of the stream
dim,<RS is

iteratively inserted into a region ρ of the dynamic region
set according to the target order. The value tdim of the sort
attribute of the current tuple t defines a sweepline that is
used to distinguish ΘD and ΘS.
TempTris(SR,<dim, dim, ΘS)
{
 tuple t;
 region ρ, ρ1,ρ2;
 region-set ΘD = {Ω};
 region-set ∆ = ∅;
 ΘS = ∅;
 while (SR,<dim ? ∅)
 {
 t = removemin(SR,<dim);
 /* find the (unique) dynamic region containing t */
 ρ = {ρ | ρ ∈ ΘD and t ∈ ρ }
 /* insert t into corresponding page */
 page(ρ1) = page(ρ1) ∪{t};
 if(|page(ρ1)| > max_number_of_elements)
 { /* region overflow caused by page overflow */
 /* split ρ into ρ1 and ρ2 as well as the */
 /* corresponding pages */
 split(ρ ,ρ1, ρ2);
 /* update dynamic region set */
 ΘD = ΘD \ {ρ } ∪ {ρ1 } ∪ {ρ2 }
 }

 ∆ = { ρ | ρ ∈ ΘD and ρ ∩
]1,[min dimdim −t

C = ρ }

 if(∆ ? ∅)
 {
 /* cache flushing: flush all new stable regions */
 /* to disk */
 /* write pages corresponding to ∆ to disk */
 ΘS = ΘS ∪∆
 /* remove pages corresponding to ∆ from */
 /*main memory */
 ΘD = ΘD \ ∆
 }
 }
 /* write pages corresponding to the remaining dynamic */
 /* regions to disk */
 ΘS = ΘS ∪ ΘD

}
Figure 2-2: TempTris Algorithm (pseudo code)

When consecutively inserting tuples, the sweepline

moves forward. ΘD grows when a region ρ is split into
two regions ρ1 and ρ2 due to an overflow of the
corresponding page. When a dynamic region is no longer
intersected by the sweepline, it becomes stable and is
removed from ΘD (cache flushing). When the last tuple t
of

dim,<RS has been processed, the remaining dynamic

region set ΘD becomes stable and is also written to disk.
At this point the multidimensional region partitioning has

been created. The TempTris algorithm is sketched in
Figure 2-2.

2.3 Correctness of TempTris

The correctness of the TempTris algorithm can be
proven easily. In the following we merely sketch the idea
of the proof.

The stable region set grows monotonically until all
tuples of the input stream have been processed. Since the
input stream is sorted, no tuples will be inserted into
stable regions that are “left of the sweepline”, i.e.,
intersecting the cluster]1,[min 11 −at

C . Thus each tuple is

stored in a page corresponding to a unique region and all
regions created by TempTris are disjoint. Summing up,
the regions generated by TempTris form a disjoint
multidimensional region partitioning. This proves the
correctness of TempTris.

2.4 Basic Performance Observations

TempTris writes each region only once. Thus for
generating a partitioning of P pages, TempTris needs to
perform P page write operations, resulting in an I/O-
complexity linear in the size of the input stream if
sufficient but modest memory is available.

The dynamic region set maintained by TempTris in
worst-case contains P regions, thus requiring to store the
entire stream in main memory to create the partitioning.
This extreme case happens, if all tuples have the same
value in the sort attribute. In this case, the sweep line does
not move and no regions can be made stable until the very
end of the algorithm. In this case the sort order is not
useful for creating the partitioning. If P does not fit in
main memory, TempTris should call merge-sort to
perform the sorting in this worst-case scenario. Note that
no unnecessary I/Os are caused by TempTris in this case:
The main memory cache of TempTris then can be used to
create the initial runs for merge-sort. If a part of the
region is written to disk the incremental loading algorithm
presented in [2] can be applied.

For query optimization that means, one can call
TempTris each time one would call merge-sort for
creating a partitioning of a sorted stream. If TempTris
cannot exploit the sort order efficiently, it – without
having caused unnecessary I/Os - can dynamically switch
to merge-sort instead.

However, if the sort order is useful, one can expect the
region and page cache to contain about P/|Adim| entries
with |Adim| being the distinct number of values in the
sorting dimension contained in the input stream. A
detailed analysis of the cache for uniformly distributed
data is given in Section 4.4.

2.5 Possible Optimizations of TempTris

Page utilization of the stable region set created by
TempTris is a critical performance issue: First, with a
better page utilization fewer disk pages will be needed to
store the multidimensional partitioning. Second, with a
smaller amount of overall disk pages, queries on the
partitioning will be faster, since then fewer disk pages are
accessed.

TempTris as described in the previous section
immediately splits disk pages when they overflow and
thus may only guarantee a worst-case page utilization of
50%. However, the average page utilization with this
strategy will also not be much better. Applying improved
splitting algorithms as described in [10] for B-Trees, the
average storage utilization can be increased to up to 81%.

A further improvement is to use a different page
concept for the dynamic regions stored in main memory
cache. In this case, it is not necessary to have a fixed page
capacity, but instead fill up the pages with tuples until the
cache overflows (i.e., dynamic page size). The split into
pages of fixed size then takes place when the cache is
flushed. This allows for creating large sets of pages with a
utilization of 100%. Then pages can be bulk written to
disk in sequential order, which may also be exploited by
sequential reads in further processing.

An algorithmic improvement of TempTris is to avoid
calculating the stable candidates of the dynamic region
set, i.e., the set ∆ in Figure 2-2, only after a region split or
movement of the sweep line, thus avoiding unnecessary
calculations and checks, reducing the overall CPU time
required for TempTris.

3 The TempTris-Algorithm for UB-Trees

In the following we give an example of TempTris
creating the Z-region partitioning of UB-Trees (i.e., a d-
dimensional UB-Tree). To be able to exploit the order on
attribute Adim for the Z-region creation, Adim must be one
of the index attributes of the UB-Tree.

3.1 UB-Tree, Z-ordering

The UB-Tree [1],[17] uses a space-filling curve to cre-
ate a partitioning of a multidimensional universe while
preserving multidimensional clustering. Using the Lebes-
gue-curve (Z-Curve,Figure 3-1.a) it is a variant of the
zkd-B-Tree [15] partitioning the universe into Z-regions.

To define the UB-Tree partitioning scheme, we need
the notion of Z-addresses and Z-intervals. We assume that
each attribute value xj of attribute Aj of a d-dimensional
tuple x = (x1,...,xd) consists of s bits2

 and we denote the

2 Our implementation uses different lengths for the binary
representation of attribute values. We just use identical
lengths for an easy illustration.

binary representation of attribute value xj by xj,s-1xj,s-2...xj,0.
A Z-address α = Z(x) is the ordinal number of a tuple x on
the Z-Curve and is calculated by interleaving the bits of
the attribute values:

∑∑
−

= =

−+⋅⋅=
1

0 1

1
, 2)Z(

s

i

d

j

jdi
ijxx

For an 8×8 universe, i.e., s = 3 and d = 2, Figure 3-1.b
shows the corresponding Z-addresses.

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

32 33

34 35

36 37

38 39

40 41

42 43

44 45

46 47

48 49

50 51

52 53

54 55

56 57

58 59

60 61

62 63

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

32 33

34 35

36 37

38 39

40 41

42 43

44 45

46 47

48 49

50 51

52 53

54 55

56 57

58 59

60 61

62 63

dimension 1

dimension 1

dimension 1

di
m

en
si

on
 2

di
m

en
si

on
 2

di
m

en
si

on
 2

(a) Z-curve/ 3nd level (b) data

(c) Z-region Partitioning (d) Z-interval, Data

region Z-interval data

 1 [0:7] {0,4}
 2 [8:15] {9}
 3 [16:20] {20}
 4 [21:27] {21,26}
 5 [28:35] {31,32}
 6 [36:43] {39,40}
 7 [44:59] {47,51}
 8 [60:63] {63}

Figure 3-1: Z-Curve, Z-addresses, Z-regions

A Z-region [α : β] is the space covered by an interval

on the Z-Curve and is defined by two Z-addresses α and
β. Figure 3-1c shows a partitioning with eight Z-regions.

3.2 Example: Creating a Z-Region Partitioning

with TempTris

The following example illustrates TempTris by
creating a two-dimensional Z-region set ΘS. Figure 3-2
shows some steps of TempTris for a two-dimensional
space with A1 as horizontal dimension, A2 as vertical
dimension and the origin (0,0) in the upper left corner.
For our example we assume a page capacity of 2 tuples.

In the beginning, the dynamic region set consists of
only one region ΘD = {Ω} = {ρ1}, ΘS is the empty set.
We denote the position of the sweep line in the sort
dimension by c. In Figure 3-2a TempTris has not started
reading any tuples and therefore only region Ω ∈ ΘD is
intersecting the sweep line at c = 0.

Figure 3-2b shows three dynamic regions created by
TempTris having read 5 tuples from the input stream, i.e,
ΘD = { ρ1, ρ2,ρ3}. t5 = (1,3) was the last tuple inserted.
Thus the current position of the sweepline is c= 1.

A1

A
2

ρ1

ρ1

ρ2

ρ3

ρ1

ρ1

ρ2

ρ3

ρ2

ρ3

ρ4

ρ5

ρ6

ρ7

c = 0 c = 1

c = 2 c = 6

t5

(a) (b)

(c) (d)

t6

Figure 3-2: TempTris Algorithm for UB-Trees

In Figure 3-2c, t6 is inserted and moves the sweepline

to c = 2. Now the dynamic region denoted by ρ3 does not
intersect the cluster C[2,7] anymore. As a consequence, no
more tuples may be inserted into ρ3. Thus this region is
made stable, i.e., the page corresponding to that region is
removed from main memory and written to disk. The
stable region set now consists of ΘS = {ρ3}, the dynamic
region set is ΘD = { ρ1, ρ2}.

In Figure 3-2d the stable region set consists already of
5 regions, ΘS = { ρ2, ρ3, ρ4,ρ5, ρ6}. If the last tuple t is
processed, the remaining dynamic region set ΘD =
{ρ1, ρ7}is made stable and the UB-tree is completed.

3.3 Maintenance of the Cache

The dynamic regions are organized according to Z-
order and Tetris-order. For each ordering we provide an
index structure for efficient access. With the Z-index a
new tuple can be inserted in the corresponding page like a
point query. The task of the tetris-order is to handle the
sweep line that can be mapped to a range-query.

In [14] the Tetris-order is introduced that creates a
total order with respect to Ai from Z-addresses. The
Tetris-address extracts an attribute from a Z-address and
concatenates it with the reduced Z-address. Formally the
Tetris-address is defined as follows:

Tj(x) = xj ° Z(x1,...,xj-1,xj+1, …, xd)

Figure 3-3 presents the Tetris-order for the two
dimensional case.

10 32 54 76

1
0

4

2

5

3

7
6

A
2

A
1

0

63

10 32 54 76

1
0

4

2

5

3

7
6

A
2

A
1

0

63

1
0

4

2

5

3

7
6

10 32 54 76 A
2

A1

10 32 54 76

1
0

4

2

5

3

7
6

A
2

A
1

0

63

10 32 54 7610 32 54 76

1
0

4

2

5

3

7
6

1
0

4

2

5

3

7
6

A
2

A
1

0

63

10 32 54 76

1
0

4

2

5

3

7
6

A
2

A
1

0

63

10 32 54 7610 32 54 76

1
0

4

2

5

3

7
6

1
0

4

2

5

3

7
6

A
2

A
1

0

63

1
0

4

2

5

3

7
6

1
0

4

2

5

3

7
6

10 32 54 76 A
2

A1

10 32 54 7610 32 54 76 A
2

A1

Figure 3-3: Two Tetris Orderings for the two dimensional
case

If we use the Tetris-order defined by the sorting

dimension all tuple x located in stable regions ΘS have a
smaller Tetris-value Tj(x) than the smallest Tetris value
of the sweep-line c.

{Tj(x) | x ∈ ρ and ρ ∈ ΘS} < min{Tj(x)|xj = c}

Therefore, for each dynamic region ρ is indexed
according to the maximum Z-value and Tetris-value.
Figure 3-4 depicts the Z-value and Tetris-value of the
region [12,35]. The maximum Z-value is 35 and the
maximum Tetris-value has the ordinal 31.

 Z-address

 Z-address

T-address

Figure 3-4: Z-address and Tetris-address

The computation of the maximum Tetris value can be
done in linear time by bit-operations and is therefore of
O(n) whereas n is the number of bits that represent Z(t).

SELECT region FROM T-Index
WHERE T(region) < T(sweep-line)

Figure 3-5: Determination of the ∆ set

With this property the ∆ set, i.e. the region which
becomes stable, can be very efficiently determined by a
range query (cf. .Figure 3-5).

4 Performance Analysis

For the creation of a Z-region partitioning from a
sorted stream S<,dim we define cost functions for
processing times and intermediate temporary storage. Our
analysis considers the TempTris algorithm and external
sorting according to Z-values [2].

4.1 The Cost Model

In accordance with [6] we use a cost model that takes
random pages accesses and page transfers into account.
Let tπ be the (average case or worst case) positioning time
and tτ be the transfer time of a hard disk. We assume that
the prefetching or write caching strategy of the file system
reads or writes a physical cluster of L consecutive pages
from disk with one random access. This takes time tπ +
tτ⋅L. Reading or writing k pages in consecutive order
therefore takes

cscan(k) = k/L ⋅ tπ + max(k, L)⋅ tτ

4.2 Cost Functions

Using the cost model of Section 4.1 we calculate the
cost of sorting a relation of P pages using a main memory
of M pages and a merge degree of m for the merge-sort
algorithm. The bulk loading mechanism using merge-sort
[2] divides the load process into a retrieval phase (which
retrieves the data to create initial runs for the merge-sort)
and a sort phase (which actually performs the merge-sort).

Pt
L

tPcPc writeread ⋅

 +== τπ

1
)()(

We sometimes do not distinguish between read and write
operations and then use cr/w(P) for the cost of reading or

writing P pages.

+=

nutilizatiopage
PcPcPc writereadTempTris _

)()(

⋅⋅+⋅

<⋅+⋅

=
otherwise,log)(2)(2

 if,)(2)(2

phaseSort

/

phase initial

/

phaseSort

/

phase initial

/

44 344 2143421

4342143421

M
PPcPc

m
M
PPcPc

c
mwrwr

wrwr

ms

Figure 4-1: Cost functions

Using a full table scan for the retrieval phase to create
the initial runs (cread + cwrite) in conjunction with merge-
sort algorithm results in the formula for cms. Using a full
table scan for retrieval the phase in conjunction with
TempTris results in the formula for cTempTris. If M >P
sorting takes place in main memory. Then the merge sort

factor of cms is reduced to zero. If m
M
P

< then the

sorting can be done with one run and the merge-sort
algorithm results in the formula:

)(4 / Pcc writereadms ⋅=

To reduce the I/O cost of the merge sort algorithm the
merge degree should be set to maximum size with respect
to the main memory and therefore the merge degree is set
to

m =
M
P

For a main memory of size M the maximum table size
that can be computed in linear time is

L
Mtablesize

2

max_ =

4.3 Processing Time

Current operating systems usually fetch L = 8 pages
physical disk pages with one random access. Four our
cost analysis to create a multidimensional partitioning as
target sorting from a one-dimensional source sorting we
assume tπ = 10 ms and tτ = 1 ms, a main memory cache of
32 MB and a merge degree of m = 2047 (best case).
Therefore the sort merge algorithm can sort 64 Gbyte in
linear time. We set the constant page_utilization of
cTempTris to 81% (see Section 2.5).

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 100 200 300 400 500 600 700 800 900 1000

table size [1000 pages]

co
st

 (w
ei

g
h

te
d

 a
cc

es
 ti

m
e)

 s

merge-sort
TempTris

TempTris

Figure 4-2: Sorted writing with Merge -Sort and TempTris

Figure 4-2 shows the cost of creating a
multidimensional partitioning of a sorted input stream
with a page size varied up to 1 million disk pages. As the
figure shows, according to our cost model TempTris is
roughly two times faster than a competing merge-sort
algorithm.

4.4 Cache of the TempTris algorithm

TempTris requires less temporary memory than sort-
merge. As sort-merge accesses and writes the entire input
stream at least once for each run, the intermediate storage
for sort-merge is P pages. If the data is uniformly
distributed, TempTris requires a main memory of

d d

d
PTempTris P

P
dPcache 1

log2

2

),(−==

pages to create a d-dimensional UB-Tree . That can be
computed by the size of the table P divided by the number
of splits in attribute Adim (i.e. P/2recusive_splits). Figure 4-3
shows the size of the temporary storage to create the UB-
Tree required by merge-sort and TempTris. The table size
varies from 10K to 1G pages. For a page size of 2kB,
creating a four dimensional space partitioning with
TempTris for a 2GB input stream requires 64 MB
temporary space. For a 2 dimensional partitioning of that
size, only 2MB of cache memory are necessary.

0

10

20

30

40

50

0 200 400 600 800 1000

T
h

o
u

s
a

n
d

s

Thousands

table size in pages

in
te

rm
ed

ia
te

 s
to

ra
ge

 in
 p

ag
es

merge sort
Temptris 2d
Temptris 3d
TempTris 4d

Figure 4-3: Intermediate storage sizes of Merge -Sort and

TempTris

4.5 Result Table Sizes

As already mentioned before TempTris with
optimizations can be expected to achieved a storage
utilization somewhere between 80% and 100%.

1

6

11

16

1

3 5 7 9 11 1
3 1
5 1
7 19

0,50
0,55

0,60
0,65

0,70

0,75

0,80

0,85

0,90

0,95

1,00

st
o

ra
g

e
u

ti
liz

at
io

n

page capacity

scaling factor

0,95-1,00
0,90-0,95
0,85-0,90
0,80-0,85
0,75-0,80
0,70-0,75
0,65-0,70
0,60-0,65
0,55-0,60
0,50-0,55

Figure 4-4:Storage utilization

This optimization technique based on sharing. As the
TempTris algorithm maintains the dynamic region in the
memory we generalize this technique and define the
memory page v as follows:

 puv ⋅=

u denotes the scale factor of the memory page. Figure
4-4 presents the worst case storage utilization for different
scale factors u and page capacities k. Using the
optimization technique any storage utilization can be
achieved. With a scale factor of 5 we get a storage
utilization at least of 85%.

This of course is worse than bulk-loading with merge-
sort, which always guarantees a storage utilization of
100%. Thus TempTris is useful, if
• a page utilization of 100% is not desired. This is true

in many OLTP databases, where in anticipation of
further insertions a certain percentage of each page in
the database is intentionally left free, e.g. by setting
the parameter PCTFREE in Oracle.

• The multidimensional partitioning is used for a small
set of queries and then is dropped again. Then the
benefits of TempTris for creating the partitioning
several times faster outweigh the query response
time, which can be expected to be up to 20% worse
than the response time of a 100% storage utilization
as created by sort-merge.

5 Processing an Aggregation Lattice

We now show a new technique for computing
aggregation lattices by combining TempTris and Tetris.
Aggregation lattices are often used to compute a set of
aggregations efficienty [5]. [12] provides a good overview
of aggregation techniques.

The main optimization for computing an aggregation
lattice comes from the fact that some aggregates do not
have to be computed from the base table, but can be
derived from other already computed aggregates (e.g., the
total sales for a year can derived from the sales of the 12
month periods).

SELECT Month2_Period, Outlet, Item,
SUM(Sales) AS Sales
FROM fact
WHERE Years > 1996 AND
 Years < 1999 AND
 Country = ‘Germany’
 GROUP BY Month2_Period, Outlet, Item
WITH CUBE

Figure 5-1: A CUBE statement

A common application for this processing technique is

the CUBE-Operator [4] frequently used in data
warehousing applications. The CUBE-Operator computes
2d aggregates of a set of d attributes. Figure 5-1 shows an

example of a CUBE statement performed on a real DW
for a schema provided by the market research company
GfK.

For aggregation, conventional algorithms first sort or
hash the relation according to the grouping attribute(s).
After sorting, the aggregation can be computed very
easily by simply reading the tuple stream in sort order.
However, sorting is a bottleneck if the result set does not
fit in the main memory and external sorting is necessary.

In order to compute the above three dimensional cube,
8 groupings have to be computed. The result of CUBE is
then a union of these groupings. The corresponding
aggregation lattice together with the size of each sub-
aggregate in pages is shown in Figure 5-2. Each node of
the network represents one grouping of the cube.

Usually, this aggregation network is processed as
follows: For each node the conventional aggregation
algorithm is performed. With level 0 being the base fact
table, the result set of a node of level i is the input for the
node at level i+1.

5.1 Cube Calculation by Sorting

In the following we calculate the I/O-cost for
processing the aggregation network, assuming that no
I/Os are necessary if an intermediate result fits into main
memory. For our further considerations we assume a main
memory cache of 16000 pages.

Item,Month2Period,Outlet

Item, Month2Period

Item Month2Period Outlet

Item, Outlet Month2Period, Outlet

ALL1

1,803 1 477

24,953473,488138,033

1,929,735

Level 3

Level 2

Level 1

Level 0

fits into m
ain m

em
ory

D
oes notfit

into m
ain m

em
ory

sort

sort

sort

Fact Table

sequential
read

sequential
read

sequential
read

composite B-Tree
Item,Month2Period,Outlet

Item, Month2Period

Item Month2Period Outlet

Item, Outlet Month2Period, Outlet

ALL1

1,803 1 477

24,953473,488138,033

1,929,735

Level 3

Level 2

Level 1

Level 0

fits into m
ain m

em
ory

D
oes notfit

into m
ain m

em
ory

sort

sort

sort

Fact Table

sequential
read

sequential
read

sequential
read

composite B-Tree

Figure 5-2: Aggregation Lattice; External sorting

We selected the calculation paths through the

aggregation lattice by the heuristic “Re-use existing sort
orders and use the smallest sub-aggregate for calculating
an upper node of the aggregation lattice”, which has
proven to be a reasonable heuristics in many practical
applications.

The nodes of the aggregation lattice have the
following size:

Aggregate Size in pages label
Item, Month2Period,
Outlet

1929735 P1

Outlet
Item, Month2Period 138033 P2
Item, Outlet 473488 P3
Month2Period, Outlet 24953 P4

Item 1803 P5
Month2Period 1 P6

Outlet 477 P7
We assume two passes over the data for sorting and

the cost of reading and writing a page to be identical, i.e.,
sorting P pages has a cost of

csort(P) = 4⋅cread/write (P)

We also assume to have created a composite
clustering B-Tree on Item, Month2Period, Outlet in this
lexicographic order on the base fact table. Therefore,
computing the aggregates <Item, Month2Period> requires
a sequential read of the B-Tree consisting of P1 pages and
a sequential write of the result, i.e., P2 pages:

)()(212, PcPcc writereadPeriodMonthItem +=

The calculation of <Item> re-uses the aggregation
result <Item, Month2Period> and accordingly requires
sequential reading and writing:

)()(52 PcPcc writereadItem +=

To compute the node 〈Item, Outlet〉 the fact table must
be sorted requiring to read P1 pages for the creation of the
initial runs. Then those runs are written to disk again
resulting in writing P1 pages. Merging and aggregating
the runs again requires P1 read operations. Finally writing
the aggregation result is another P3 page write operations:

)()()(2 311, PcPcPcc writewritereadOutletItem ++⋅=

To compute 〈Month2Period, Outlet〉 sorting is
necessary with the cost

)()(

)(2

41

1,2

PcPc

Pcc

writewrite

readOutletPeriodMonth

+

+⋅=

Deriving <Month2Period> from this sub-aggregate
requires only sequential read and write operations:

)()(642 PcPcc writereadPeriodMonth +=

Finally, the node 〈Month2Period, Outlet〉 can also be
used to calculate outlet, this time requiring a sort
operation:

)()()(2 744 PcPcPcc writewritereadOutlet ++⋅=

Thus the total cost for aggregation using sorting is:

)()()(

)(5)(

)(2)(7

7/6/5/

4/3/

2/1/
/

PcPcPc

PcPc

PcPcc

writereadwritereadwriteread

writereadwriteread

writereadwriteread
sortaggregate

cube

+++

+⋅+

+⋅+⋅=

5.2 Cube Calculation by Combining TempTris

and Tetris

Now we present our new approach that combines
TempTris with Tetris. We organize the fact table of the
”GfK”-schema as a UB-Tree. The Tetris algorithm [14] is
used for sorted reading from the fact table, which is
organized as a UB-Tree, as well as from the temporary
UB-Tree created by TempTris storing the aggregation
result of <Month2Period, Outlet>. Tetris does not require
external sorting, if the main memory cache is sufficient:

According to [14], Tetris requires a main memory

cache of at most 16000155013 2
1 <=P pages for

processing the 3 dimensional cube statement without
external sorting. The same maximum number of cache
pages is required by TempTris as shown in Section 4.4.

In contrast to the aggregation lattice in Figure 5-2, the
organization of the fact table as UB-Tree allows for using
Tetris to create the aggregation results of <Item,
Month2Period> and <Item, Outlet> without external
sorting.

Item,Month2Period,Outlet

Item, Month2Period

Item Month2Period Outlet

Item, Outlet Month2Period, Outlet

ALL1

1,803 1 477

31,192473,488138,033

1,929,375

Level 3

Level 2

Level 1

Level 0

fits into m
ain m

em
ory

D
oes notfitinto m

ain m
em

ory

TempTris

Tetris

Tetris

Fact Table

Tetris

sequential
read

Tetris

UB-Tree
Item,Month2Period,Outlet

Item, Month2Period

Item Month2Period Outlet

Item, Outlet Month2Period, Outlet

ALL1

1,803 1 477

31,192473,488138,033

1,929,375

Level 3

Level 2

Level 1

Level 0

fits into m
ain m

em
ory

D
oes notfitinto m

ain m
em

ory

TempTris

Tetris

Tetris

Fact Table

Tetris

sequential
read

Tetris

UB-Tree

Figure 5-3: Aggregation Lattices; Temptris

In addition, Tetris produces a sorted stream on

Month2Period or Outlet which is used by TempTris to
create a temporary UB-Tree on <Month2Period, Outlet>.
As TempTris usually does not achieve a 100% page
utilization, the size of this UB-Tree is larger then the
result obtained by merge-sort. Assuming a page
utilization of 81% as described in Section 2.5, the UB-

Tree created by TempTris contains 31,192 pages in
contrast to the composite clustering B-Tree created by
merge-sort, which contains 24,953 pages. The temporary
UB-Tree is necessary to apply Tetris again for the
creation of the <Month2Period> and <Outlet>
aggregations. This strategy avoids external sorting for
calculating the cube.

With TempTris and Tetris the I/O-cost for calculating
the cube is as follows:

)()(

)()(

)()(

)()(

)()(

)()(

74

642

41,2

31,

52

212,

PcPcc

PcPcc

PcPcc

PcPcc

PcPcc

PcPcc

writereadOutlet

writereadPeriodMonth

writereadOutletPeriodMonth

writereadOutletItem

writereadItem

writereadPeriodMonthItem

+=

+=

+=

+=

+=

+=

Therefore total cost for our new approach is:

)()()(

)(3)(

)(2)(3

7/6/5/

4/3/

2/1/
/

PcPcPc

PcPc

PcPcc

writereadwritereadwriteread

writereadwriteread

writereadwriteread
tetristemptris

cube

+++

+⋅++

⋅+⋅=

For our example this means that the approach for
aggregation by sorting accesses 14,384,745 disk pages,
roughly twice the number of pages that Tetris and
TempTris access (6,615,899 disk pages). This
improvement is due to two factors: First, Tetris saves 4
times reading the base table. Second, creating the
intermediate result for <Month2Period, Outlet> by
TempTris allows for also applying Tetris here, saving two
times reading this intermediate result.

If the cube consists of more than 3 dimensions, the
combination of Tetris and TempTris will benefit even
more. In this case, there are more opportunities for
applying TempTris and Tetris resulting in further savings
of disk accesses.

6 Performance Evaluation

The measurements presented here have been made
with the prototype implementation of the UB-Tree. It is
realized as middleware between a database management
system and a database application. We have implemented
the TempTris Algorithm for Transbase UB-Tree
middleware. An Intel Pentium III 500 CPU with 512 MB
RAM has been used for these measurements. The
databases were created on 9 GB hard disk with an average
position time of 7,9 ms and a transfer rate of 0,6 ms per
page. The machine runs under SuSE Linux 6.2, kernel

version 2.2.10 SMP. To get no unpredictable cache
effects we disable all systems caches .

Set 01 02 03 04 05 06
size 32 MB 64MB 128MB 256MB 512MB 1024MB

Tuple 335544 655360 1310720 2621440 5242880 10485760

Table 6-1:Size of the data sets

To show the performance gain of the TempTris

algorithm we create 6 three dimensional data cubes with
uniformly distributed data. Each cube is created from a
different data set. The size of a tuple was 100 bytes and
the page size was set to 2 kB. The size of each set is
depicted in Table 6-1.

0

2000

4000

6000

8000

10000

12000

14000

0 2000000 4000000 6000000 8000000 10000000 12000000

Number of tuples

T
im

e
(s

ec
)

TempTris
Merge Sort

Figure 6-1:Loading performance

Each cube is created by the TempTris algorithm and

external sorting. The implementation of the external
sorting does not use replacement selection [3], that based
on a heap to create runs that are larger than memory. With
replacement selection the expected number of runs is
about half as many runs as created by quicksort [9].
However, the advantage of having fewer runs must be
balanced with the different I/O pattern and the
disadvantage of more complex memory management [3].

0,0

0,4

0,8

1,2

1,6

2,0

2,4

2,8

3,2

3,6

4,0

0 2000000 4000000 6000000 8000000 10000000 12000000

Number of Tuple

R
at

io

Merge Sort / TempTris

Figure 6-2:Ratio merge -sort and TempTris

In [11] it is shown that it is possible to create 1.8 times

larger runs than the workspace. But this has no influence

on the measurement. As we set the available cache M
used by the merge sort and TempTris algorithm at most
half of the size of the measured sets and smaller than

mM ⋅ , external sorting is required and is done in linear
time. To cerate a storage utilization at least of 95 % we
use a scaling factor for TempTris algorithm with u = 10.

Figure 6-1 shows the measured times for the creation
of 6 UB-trees from the different sets. One time with the
TempTris algorithm and one time with the external sort
algorithm. The TempTris algorithm is superior to merge
sort algorithm. Both algorithms create the
multidimensional index in linear time as predicted with
our theoretical model (cf. Figure 4-1).

Figure 6-2 shows the performance ratio between the
external sorting and TempTris. With the TempTris
algorithm we gain an average speedup factor of 2. As we
use a page scaling factor u = 10 the page utilization is
about 95% (cf.Figure 6-3).

90

91

92

93

94

95

96

97

98

99

100

0 2000000 4000000 6000000 8000000 10000000 12000000

number of tuples

st
o

ra
g

e
u

ti
liz

at
io

n

TempTris

Figure 6-3: Storage utalization

As we said in paragraph 4.4 the creation of a
multidimensional partitioning of a UB-tree with the
TempTris algorithm requires for uniformly distributed

data only d dP 1− temporary main memory pages. d
denotes the number of dimensions.

Figure 6-4: Cache size

Figure 6-4 shows the measured and the theoretical
cache size. For sets smaller than 1 M the cache size is
above the predict cache size. The reason for this is the
freedom of the split address. For larger sets the cache size
is above of the predicted one and even grows essential
slower.

In order to evaluate our algorithms with real world
data we have loaded a data warehouse from a leading
German consumer-market analysts institute. They store
data pre-aggregated to two month periods. The data was
stored in a cube with the three dimensions Product,
Segment and Period.

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

8,00%

0 2 4 6 8 10 12 14 16

Figure 6-5:Data Distribution of DW

The data warehouse used for our measurements
consists of 43 million fact tuples belonging to fifteen two-
month periods. Figure 6-5 depicts the data distribution in
percent according to the periods. The size of a tuple was
56 bytes. In our measurements we have only considered
the fact table, since this is the biggest table and new data
contributes mainly to this table.

13751

28248

0

5000

10000

15000

20000

25000

30000

TempTris Merge Sort

T
im

e
in

 s TempTris
Merge Sort

Figure 6-6: Loading Performance of DW

The page size was 2kB but to the overhead of the page
management only 31 tuples fit on one page. As we use a
scaling factor u = 4 the page utilization is about 87%.

 Figure 6-6 shows the measured times for loading the
fact table of the DW with the TempTris algorithm and
external sorting. As predicted in out theoretical model the
TempTris algorithm is superior to merge sort Algorithm.
Both algorithms create the multidimensional index in

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1000000 2000000 3000000 4000000 5000000 6000000

Number of tuples stored in DB

N
um

be
r

of
 p

ag
es

 m
ai

nt
ai

ne
d

in
 t

he
 c

ac
he

theoretical
TempTris

linear time but the TempTris Algorithm shows a speedup
of about a factor 2 compared to external sorting.

7 Conclusion and Future Work

We have presented the TempTris algorithm as an
efficient way for creating a multidimensional partitioning
from a sorted stream of tuples. This allows for bulk
loading a multidimensional index faster than the usual
merge-sort algorithm. The main advantage of TempTris is
that a multidimensional partitioning can be created
without external sorting, if sufficient, but modest cache
memory is presented.

We described the general algorithm and illustrated
TempTris by an example creating the multidimensional
Z-region partitioning of UB-Trees. We also gave a
performance analysis, which showed a performance
improvement of TempTris over a competing sort merge
algorithm by a factor of two. In addition, TempTris
requires only a root function of the input data set size as
cache, whereas merge-sort requires temporary storage in
the size of the input set.

We have presented performance measurements that
proved our predicted speed up factor of TempTris
algorithm of 2.

In combination with Tetris, the TempTris algorithm
can be used to efficiently compute the CUBE operator, as
we have also illustrated in this paper by giving the cost
for computing a data cube from a three-dimensional real-
world schema of GfK. In this example, TempTris
calculated an aggregation lattice with two times less page
accesses than the competing method using sort/hash-
grouping.

TempTris is a general approach: it can be used to
create the regular tiling of Grid-Files, the rectangular
partitioning of R-Trees or more complex partitioning
patterns like the Z-regions of the UB-Tree. The main
application of TempTris are bulk loading of a
multidimensional index, especially the computation of the
cube operator with aggregation lattices.

TempTris is the inverse function of Tetris. Thus, many
of the result on Tetris presented in [14] can be taken over
to TempTris, especially the cost-functions of the cache
size and the guarantees for processing an input stream
with one sweep.

Acknowledgements

We thank our project partners Microsoft Research,
Teijin Systems Technology, and the European Union for
funding this research work. We also thank Sebastian Hick
for doing the prototype implementation.

References

[1] R. Bayer, “The universal B-Tree for
multidimensional Indexing,” Institut für
Informatik, TU München, München TUM-I9637,
1996.

[2] R. Fenk, A. Kawakami, V. Markl, R. Bayer, and S.
Osaki, “Bulk loading a Data Warehouse built upon
a UB-Tree,” presented at IDEAS, Yokohama,
Japan, 2000.

[3] G. Graefe, “Query Evaluation Techniques for
Large Databases,” ACM Computing Surveys, vol.
25, pp. 73-170, 1993.

[4] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and H.
Pirahesh, “Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and
Sub-Total,” Data Mining and Knowledge
Discovery, vol. 1, pp. 29-53, 1997.

[5] V. Harinarayan, A. Rajaraman, and J. D. Ullman,
“Implementing Data Cubes Efficiently,” presented
at SIGMOD, Montreal, Canada, 1996.

[6] E. P. Harris and K. Ramamohanarao, “Join
algorithm costs revisited,” VLDB Journal, vol. 5,
1996.

[7] G. R. Hjaltason, H. Samet, and Y. Sussmann.,
“Speeding up Bulk-Loading of Quadtrees,”
presented at ACM International Workshop on
Advances in Geographic Information Systems,
1997.

[8] I. Kamel and C. Faloutsos, “On Packing R-trees,”
presented at CIKM, 1993.

[9] D. E. Knuth, Sorting and Searching. Reading
Massachusetts: Addison-Wesley, 1998.

[10] K. Küspert., “Storage utilization in B*-trees with a
generalized over ow technique.,” Acta
Informatica,, vol. 19, pp. 35-55, 1983.

[11] P. Larson and G. Graefe, “Memory Management
During Run Generation in External Sorting,”
presented at SIGMOD,International Conference on
Management of Data, Seattle, Washington, USA,
1998.

[12] W. Lehner, “Aggregatverarbeitung in
Multidimensionalen Datenbanksystemen.,” .
Erlangen: Friedrich-Alexander Universität, 1998.

[13] S. T. Leutenegger and D. M. Nicol, “Efficient
Bulk-Loading of Gridfiles.,” IEEE Transactions
on Knowledge and Data Engineering,, vol. 9, pp.
410-420, 1997.

[14] V. Markl, M. Zirkel, and R. Bayer, “Processing
Operations with Restrictions in Relational
Database Management Systems without external
Sorting,” presented at ICDE, Sydney, Australia,
1999.

[15] J. A. Orenstein and T. H. Merret, “A Class of Data
Structures for Associate Searching,” presented at

Proc. of ACM SIGMOD-PODS Conf, Portland,
Oregon, 1984.

[16] F. P. Preparata and M. I. Shamos, Computational
Geometry: An Introduction. New York: Springer-
Verlag, 1985.

[17] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K.
Elhardt, and R. Bayer, “Integration the UB-
Tree into a Database System Kernel,”
presented at the 26 International Conference
on Very Large Databases, Cairo, Egypt, 2000.

