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Abstract

Online Analytical Processing (OLAP) requires query
response times within the range of a few seconds in order
to allow for interactive drilling, slicing, or dicing through
an OLAP cube. While small OLAP applications use mul-
tidimensional database systems, large OLAP applications
like the SAP BW rely on relational (ROLAP) databases
for efficient data storage and retrieval. ROLAP databases
use specialized data models like star or snowflake sche-
mata for data storage and create a large set of indexes or
materialized views in order to answer queries efficiently.
In our case study, we show the performance benefits of
TransBase HyperCube, a commercial RDBMS, whose
kernel fully integrates the UB-Tree, a multi-dimensional
extension of the B-Tree. With this newly developed access
structure, TransBase HyperCube enables interactive
OLAP without the need of storing a large set of material-
ized views or creating a large set of indexes. We compare
not only the query performance, but also consider index
size and maintenance costs. For the case study we use a
42 million record ROLAP database of GfK, the largest
German market research company.

1 Introduction

Online Analytical Processing (OLAP) applications use
interactive drill-down operations as well as slicing and
dicing according to several dimensions. To a large extent,
relational DBMS are used for data warehousing applica-
tions, resulting in relational OLAP (ROLAP) systems. On
the conceptual level a multidimensional (MD) view is
generally accepted as the standard data model for OLAP

applications. In this MD model the numeric (quantitative)
data (measures) (e.g., sales, cost), which is the focus of
the analysis, is organized along multiple dimensions. The
dimensions provide categorical (qualitative) data (e.g.,
container size of a product), which determines the context
of the measures. Therefore measures can be seen as val-
ues in a MD space - one often refers to this model as a
multidimensional cube.
A very important concept of OLAP is the notion of di-
mension hierarchies. Hierarchies are used to provide
structure to the otherwise flat dimensions. Often the data
in the dimensions can be categorized/classified according
to some additional characteristics (e.g., shops could be
classified according to their location). Usually OLAP
users are not interested in the single measures but in some
form of summarized data (e.g., sales in a certain area).
Hierarchies provide an appropriate method of describing
the level of aggregation for a dimension. Typical OLAP
operations are Drill-down, Roll-up and Slice-and-Dice
[Kim96] and usually multiple dimensions are restricted at
the same time. In general one can state that these opera-
tions in a MD model lead to range restrictions on the
lowest hierarchy level of each dimension [Sar97]. Pre-
computation, indexing, and clustering are common tech-
niques to speed up query processing. Precomputation
results in the best query response time at the expense of
load performance and secondary storage space. For data
warehouse (DW) applications, precomputation is mostly
discussed for aggregation operations [CD97]. However,
one requirement of DW is to efficiently deal with ad-hoc
queries. Then, deciding which queries to precompute
becomes extremely difficult. Precomputation also leads to
a view maintenance problem. Indexing is used to effi-
ciently process a query if the result set defined by the
query restrictions is fairly small. Most OLTP (online
transactional processing) applications use B-Trees as their
standard indexing scheme. Favoring retrieval response
time over update response time allows for building sev-
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eral indexes on one table or data cube of a DW. Bitmap
indexes are widely discussed as an improvement over B-
Trees for DW applications, since they efficiently evaluate
queries with multi-attribute restrictions. However, the
overall result set still must be relatively small. This is a
major drawback of bitmap indexes, since usually a rela-
tively large part of a cube must be accessed in order to
calculate aggregated measures.
The goal of our case study is to show the feasibility of
interactive OLAP by using a multidimensional access
method for indexing and clustering the fact table of a
ROLAP star schema. As interpreting the results of an
OLAP analysis requires longer ‘think time’ of the user,
response times below one minute can be regarded as in-
teractive. We use the UB-Tree [Bay96, Mar99, RMF+00]
for the organization of the fact table of the GfK data
warehouse, a warehouse storing 42 million records (4
GB) of market research panel data. Utilizing the space-
filling Z-curve to linearize the multidimensional space,
the UB-Tree achieves symmetrical multidimensional
clustering with respect to all indexed dimensions. For
OLAP queries, this multidimensional clustering places
data that is likely to be accessed together physically close
to each other. The goal of this clustering is to limit the
number of disk accesses required to process a query by
increasing the likelihood that query results have already
been cached.
We present the results of various reports and ad-hoc que-
ries on the GfK warehouse showing that in contrast to
composite B-Trees a much better query processing per-
formance is possible with UB-Trees. This allows for a
much higher degree of interactivity while enabling to
reduce storage and maintenance cost for materialized
aggregate views. The paper is organized as follows: Sec-
tion 2 briefly surveys related work. In Section 3 the basic
concepts behind the UB-Tree are presented. Section 4 in
detail describes the GfK data warehouse and in Section 5
the major drill operations on the GfK warehouse are de-
scribed. Section 6 investigates the data distributions of
our warehouse in order to understand the effects of our
performance study. Section 7 presents the performance
results of our case study comparing the UB-Tree and two
attribute orders for composite B-Trees. Section 8 draws
conclusions and gives an outlook on future work.

2 Related Work

Due to the importance of OLAP applications much re-
search work has concentrated on the optimization tech-
niques for this field. The completely different query char-
acteristics of OLAP applications in comparison to OLTP
raised new questions.
The index selection problem for ROLAP application is
widely discussed in the research community [GHR+97,
Sar97]. Especially bitmap indexes have been proposed to
speed up ROLAP applications because of their compact-
ness and support of star joins [CI98, CI99]. However, as

bitmap indexes do not cluster the data, they only work
efficiently for small result sets [MRB99]. Clustering of
OLAP data is considered to be the key to provide good
performance. Clustering has been well researched in the
field of access methods. B-Trees [BM72], for instance,
provide one-dimensional clustering. Multidimensional
clustering has been discussed in the field of multidimen-
sional access methods. See [GG98] and [Sam90] for ex-
cellent surveys of almost all of these methods. A common
way of performance improvement is the usage of materi-
alized views - often in combination with indexing meth-
ods [JL98, Moe98, WB98]. Due to the large number of
possible views a selection problem exists besides the
maintenance issue [Gup97, SDN+96, SDN+98].
Our approach differs to these approaches, since it solely
organizes the fact table of a warehouse with a multidi-
mensional index and does not use techniques like bitmap
indexes or pre-aggregation, thereby resulting in lower
overall resource requirements and a better dynamic up-
date behavior. The response times of our approach show
that interactive OLAP is possible for a large number of
drill operations.

3 Multidimensional access methods

In this section we briefly discuss the differences of vari-
ous access method concepts with respect to query per-
formance. We then introduce the basic concepts of the
UB-Tree, an access method for multidimensional point
data.

3.1 A theoretical comparison of access
methods

In the following we will introduce how range queries are
processed with access methods that are standard in to-
day‘s relational DBMS. For simplification of our illustra-
tion we assume uniformly distributed data as well as in-
dependence of the dimensions. Figure 3-1 illustrates the
processing for the 2 dimensional case, which we will use
as example.

ideal
case

s1*s2*P

multidimensional
index

s1
↑↑↑↑ *s2

↑↑↑↑ *P

Multiple B-Trees,
bitmap indexes

s1*I1+s2*I2+s1*s2*T

Composite key
Clustering B-Tree

s1*P

Figure 3-1: Processing a multidimensional range query with
various access methods

We assume a table T with attributes A1 and A2 consisting
of P disk pages and a query box with the selectivities s1

and s2 on A1 resp. A2. In the ideal case we thus have to
retrieve s1*s2*P disk pages to answer the query. With a
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composite key B-Tree (i.e., a B-Tree with the concatena-
tion of the indexed attributes as key), however, only the
leading dimension of the composite key, say A1, can be
utilized, resulting in reading s1*P disk pages, i.e., a com-
plete stripe. The result set is then determined by post
filtering the tuples in main memory after retrieval. With
bitmap indexes or multiple B-Trees, index intersection
results in reading row ids or bitmaps with sizes s1*I1 and
s2*I2 for index sizes of I1 respectively I2 pages. After this
intersection, the result set tuples are retrieved by random
access, resulting in s1*s2*T page reads, if T tuples are
stored in the table. Note the difference between T (the
number of tuples in the table) and P (the number of pages
in the table). With an average of 30 tuples (empirical
value from our project partners) per page bitmap indexes
or multiple B-Trees are immediately more than 30 times
worse than the ideal case. In contrast to that, a multidi-
mensional index clusters the data more symmetrically
with respect to all dimensions. Since this clustering or
partitioning is discrete, there is always an overhead. How-
ever, with large database sizes the overhead gets smaller.
In general this means that multidimensional indexes ap-
proximate the ideal case with some kind of ceiling func-
tion for each selectivity.

3.2 Basic Concepts of the UB-Tree

In the following we describe the UB-Tree access struc-
ture, which is used as an alternative to composite B-Tree
to cluster the fact table of the GfK data warehouse.
The UB-Tree [Bay97, MZB99] is a multidimensional
index structure using a space-filling curve to create a
partitioning of a multidimensional universe while preserv-
ing multidimensional clustering as well as possible. Using
the Lebesgue-curve (Z-curve, Figure 3-2a) it is a variant
of the zkd-B-Tree [OM84].
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Figure 3-2: Z-addresses

To define the UB-Tree partitioning scheme we need the
notion of Z-addresses and Z-intervals. We assume that
each attribute value xi of attribute Ai of a d-dimensional
tuple x = (x1,...,xd) consists of s bits1 and we denote the
binary representation of attribute value xi by xi,s-1xi,s-2...xi,0.

1 Our implementation uses different lengths for the binary representation
of attribute values. We just use identical lengths for an easy illustration.

A Z-address α = Z(x) is the ordinal number of a tuple x on
the Z-curve and is calculated by interleaving the bits of
the attribute values:

∑ ∑ ⋅=
−

= =

−+⋅1

0 1

1
, 2)Z(

s

j

d

i

idj
jixx

For an 8×8 universe, i.e., s = 3 and d = 2, Figure 3-2b
shows the corresponding Z-addresses.
A Z-region [α : β] is the space covered by an interval on
the Z-curve and is defined by two Z-addresses α and β.
Figure 3-3a shows the Z-region [4: 20] and Figure 3-3b
shows a partitioning with five Z-regions [0 : 3], [4 : 20],
[21 : 35], [36 : 47] and [48 : 63].

(a) (b) (c)

Figure 3-3: Z-regions

The UB-Tree partitions the multidimensional space into
disjoint Z-regions, each of which is mapped onto one disk
page. At insertion time a full Z-region [α : β ] is split into
two Z-regions by introducing a new Z-address γ with α <
γ < β . γ is chosen such that the first half (in Z-order) of
the tuples stored on Z-region [α : β ] is distributed to [α :
γ ] and the second half is stored on [γ : β ]. Assuming a
page capacity of 2 points Figure 3-3c shows ten points,
which created the partitioning of Figure 3-3b.
The UB-Tree inherits the basic characteristics of the B-
Tree, i.e., it requires logarithmic time (with respect to the
size of the fact table) for the basic operations of insertion,
point retrieval and deletion and yields a worst case page
utilization of 50% as well as an average page utilization
of more than 69%. In addition, the response time for han-
dling queries with multi-attribute restrictions (i.e., range
query) is proportional to the result set size.
A more detailed description of the UB-Tree and the un-
derlying algorithms can be found in [RMF+00,Mar99].

4 The GfK Data Warehouse

For our case study we use a subset of the non-food panel
data warehouse application of the GfK (Gesellschaft für
Konsumforschung), the largest German market research
company.
This GfK data warehouse tracks the sales of non-food
goods according to three dimensions: Time, Product, and
Segment (i.e., point of sales, shops where the sales data is
collected) in order to provide in-depth analysis (like mar-
ket share, best-sellers, trends etc.) of the market. The
products are hierarchically classified according to sectors,
categories, and product groups. The lowest granularity in
the time dimension for this example is the two-month
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period (time required to get a representative sample of the
market), classified according to four-month periods and
years. For the Segment dimension multiple hierarchies
(e.g., turn-over classes, organizational classifications)
exist, but the most important one is the geographical clas-
sification of the shops according to country, region, and
micromarket. The snapshot of the GfK data warehouse
stores around 42 million fact records (approx. 4 GB)
associated with 15 two-month periods, 10.500 shops, and
more than 490.000 products.

Sales

Turnover
Price

Time

All

Year

Month4_Period

Month2_Period

Time

All

Year

Month4_Period

Month2_Period

Figure 4-1 The GfK Snowflake Schema

For the GfK data warehouse, like for most OLAP applica-
tions, the dimension hierarchies provide the key naviga-
tion paths for interactive OLAP, allowing for meaningful
query formulation via drill-down, roll-up, or slice-and-
dice operations. For example, a typical query to determine
the best selling laptop in the last period in Germany
would restrict the Time dimension on the two-month
level, the Segment dimension on the country level, and
the Product dimension on the product group level. We
exploit the semantics of the hierarchies to improve query
performance by applying multidimensional hierarchical
clustering (MHC) (cf. [MRB99]) to the GfK data ware-
house. With MHC, point restrictions to any hierarchy
level always lead to more preferable range restrictions on
the lowest level, i.e., on the fact table. All access methods
on the fact table benefit from MHC as a range query is
more efficient to handle than a set of point queries.

5 Reports and Ad-hoc queries on the GfK
DW

In order to analyze the performance of various access
methods for our case study, together with GfK a set of
reports and ad-hoc queries was defined for benchmarking
new data warehouse architectures. Each report falls into
one of three groups: hitlists, running reports, segmenta-

tion reports (or feature splits). Hitlists list several meas-
ures for the items within one product group or category,
and sort the items by one of the reported measures. Hit-
lists (Table 5-1)show a ranking of items with respect to
one measure in a single period.

Retail Audit - Germany - Segmentation hitlist
Camcorder; April/May Panelmarket

SUM
(Sales)

MIN
(Price)

MAX
(Price)

AVG
(Price)

SUM
(Turnover)

Item
50027

232 749 999 930,28 216056,96

Item
50035

171 639 849 827,23 141456,33

Item
40011

144 1179 499 1368,65 197055,60

... ... ... ... ... ...

Table 5-1 Segmentation Hitlist (example numbers)

Running reports differ from hitlists in that, instead of
different measures in the columns of the report, the col-
umns show the same measure in different periods. Their
rows can be grouped according to product features. Seg-
mentation reports, like hitlists, show different measures
for one period, but their rows are groupings according to
features like in running reports. An example segmentation
report is shown in Table 5-2. The three types so far make
up 90% of the analyses delivered by GfK to their clients.

Retail Audit - Germany - Segmentation report
Camcorder; April/May Panelmarket

SUM
(Sales)

MIN
(Price)

MAX
(Price)

AVG
(Price)

SUM
(Turnover)

Total 247218 499 3699 837,18 206965965,24

Hi8
mono

18527 499 729 638,77 13687191,79

Hi8
stereo

107936 749 3699 1691,92 182619077,12

... ... ... ... ... ...

Table 5-2 Segmentation report (example numbers)

Besides these fixed reports, GfK is moving more and
more to ad-hoc analysis. Ad-hoc analysis differs from
‘static’ reports in the way that usually a set of subsequent
drill operations are executed, which have the same con-
text. For example, a user starts his session with asking the
total sales for a specific segment in a given country and in
a given two month period. After that he may drill down to
a region or a product category to gain more detailed in-
formation. Finally, he wants to compare the numbers
with the previous period. As consequence, ad-hoc analy-
sis usually generates drilling patterns where the restric-
tions on one dimension change (e.g. going down the hier-
archy or switching to the sibling) while the restrictions on
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the other dimensions do not change. However, as user
behavior is not predictable, sometimes so-called random
queries are placed, which are used to navigate to a com-
pletely different ‘location’ in the cube.

6 Data Distribution Analysis of the GfK
Fact Table

Having the GfK DW schema in mind, we take a look at
how the data provided by GfK is distributed within the
imaginary data cube. This will help to understand some
design decisions in indexing the warehouse data. It will
also help to understand the performance results given in
Section 7.
The results of a thorough analysis are presented in the
form of diagrams where a vertical bar indicates the por-
tion of facts associated with a particular attribute element.
If the attribute elements are not at the highest level of
granularity, they are grouped first according to the highest
level, then to the second to highest, and so forth. In other
words, for any higher hierarchy level to an attribute, the
portion values must be the integral of a closed interval of
elements in the graph on the lower level.
Example:
In the Product dimension hierarchy, the first seven cate-
gories (286, …,289,291,…, 293) belong to Sector 161, so
the percentage of Sector 161 is the sum 4,83% + 6,97% +
... + 17,63% = 65,56%. See below, Figure 6-2 and Figure
6-3. It is a coincidence that grouping categories with
respect to their sector preserves numeric ordering of their
keys.
Note that attribute elements are suppressed if no fact
records at all are associated with them. Also note that,
except for the Time dimension, meaningless ID values are
used as labels for the X-axis, and for most diagrams only
every n-th value is labeled due to the high density of val-
ues.
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Figure 6-1 Fact distribution over product groups

For the Product Dimension, the portion of fact records
belonging to a specific product group is depicted in
Figure 6-1. The individual values are of less interest than
the fact that, although the most predominant product
groups account for up to 812 950 or 1,90% of the records,

which is more than ten times the mean percentage
(0,16%), a restriction to a single product group will never
yield more than roughly two percent of the data volume.
A worst-case selectivity of less than two percent promises
considerable effects of suitable indexing.
Worst-case selectivity on the next higher level of this
hierarchy path, product categories, is a lot higher, yet still
within bounds for performance gains via indexing. Figure
6-2 shows that portions can be as high as approximately
18%, where the average is 3,57%.
Grouping the first seven categories as a single sector and
assigning each of the last nine to a separate one are the
main reasons for the distribution over product sectors, as
depicted in Figure 6-3.
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Figure 6-2 Fact distribution over product categories
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Figure 6-3 Fact distribution over product sectors

0%

1%

2%

3%

4%

5%

6%

7%

8%

FM 96 AM 96 JJ 96 AS 96 ON 96 DJ 97 FM 97 AM 97 JJ 97 AS 97 ON 97 DJ 98 FM 98 AM 98 JJ 98

Two-month period

P
er

ce
n

ta
g

e
o

f
as

so
ci

at
ed

fa
ct

re
co

rd
s

Figure 6-4 Fact distribution over two-month periods
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Figure 6-4 shows the data distribution in the Time dimen-
sion. The distribution over two-month periods is as close
as the data ever comes to a uniform distribution for any
attribute. The fact that the first two-month period of Year
1996 and fifth and sixth two-month periods of Year 1998
are missing has an obvious effect on the higher levels in
this dimension. Still, when it comes to indexing, this
dimension will clearly present the fewest problems of all.

Finally, consider the Segment dimension. Figure 6-5
illustrates the fact distribution over countries. It just so
happens that GfK collects census data in Country 18, thus
this country dominates with respect to the number of fact
records collected. The same holds for the region level:
Country 18 is only assigned one region, leading to a
selectivity of more than 30% for a restriction on the
region level in worst case.
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Figure 6-5 Fact distribution over countries
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Figure 6-6 Fact distribution over regions

7 Benchmark results

In this section we present in detail our measurements on
the GfK DW. Due to the space restrictions we are only
able to present a subset of the obtained results.

7.1 Benchmark environment

All our measurements were run on a Sun Enterprise 450
(Solaris 2.6) with two 248MHz Ultra Sparc II processors
and 512 MB of main memory. We used the TransBase

HyperCube DBMS for our comparisons of the standard
access methods of TransBase with the kernel integrated
UB-Tree.

7.2 Benchmark DW schema and queries

From the logical DW schema presented in Section 4 we
have derived a star schema, i.e. the dimension tables are
not normalized and contain the full hierarchy information
(see Table 7-1). The foreign key relationship is realized
via the artificial keys generated by MHC for each dimen-
sion. As these keys include the hierarchy semantics we
are able to use these for the organization of the fact data.

CREATE TABLE TIME (
TIME_CS INTEGER NULL,
YEAR_ID NUMERIC NOT NULL,
MONTH4_PERIOD_ID NUMERIC NOT NULL,
MONTH2_PERIOD_ID NUMERIC NOT NULL
) KEY IS YEAR_ID,MONTH4_PERIOD_ID,MONTH2_PERIOD_ID;

CREATE TABLE SEGMENT (
SEGMENT_CS INTEGER NULL,
COUNTRY_ID NUMERIC NOT NULL,
REGION_ID NUMERIC NOT NULL,
MICROMARKET_ID NUMERIC NOT NULL,
OUTLET_KEY NUMERIC NOT NULL
) KEY IS COUNTRY_ID,REGION_ID,MICROMARKET_ID,OUTLET_KEY;

CREATE TABLE PRODUCT(
PRODUCT_CS INTEGER NULL,
SECTOR_ID NUMERIC NOT NULL,
CATEGORY_ID NUMERIC NOT NULL,
PRODUCTGROUP_ID NUMERIC NOT NULL,
ITEM_ID NUMERIC NOT NULL
) KEY IS SECTOR_ID,CATEGORY_ID,PRODUCTGROUP_ID,ITEM_ID;

CREATE TABLE FACT (
PRODUCT_CS INTEGER NOT NULL,
SEGMENT_CS INTEGER NOT NULL,
TIME_CS INTEGER NOT NULL,
PD_PRICE INTEGER NOT NULL,
PD_PACKAGE_PRICE INTEGER NOT NULL,
PD_SALES INTEGER NOT NULL,
PD_STOCK_OLD INTEGER NOT NULL,
PD_STOCK_NEW INTEGER NOT NULL,
PD_PURCHASE INTEGER NOT NULL,
PD_TURNOVER INTEGER NOT NULL,
PD_PROJECTION_FACTOR INTEGER NOT NULL,
PD_DISTRIBUTION_FACTOR INTEGER NOT NULL,
PD_UNIT_FACTOR INTEGER NOT NULL
) KEY IS PRODUCT_CS, SEGMENT_CS, TIME_CS;

Table 7-1 Create Statements for DW Schema

In order to have a realistic scenario for our case study, we
measured the following operations on the GfK DW:

• Reporting: processing of segmentation reports
with a restriction to a two-month period in the
Time dimension, to a specific country in the
Segment dimension, and a restriction to

o a product group ( 604 queries): PG
o a category ( 30 queries): CAT
o a sector ( 16 queries) : SEC
in the Product dimension

• Ad-hoc analysis: we execute the queries of a
typical ad-hoc session with 100 queries

• Maintenance: we show the performance of delet-
ing the data for a complete time period (e.g., for
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the purpose of archiving) as well as the perform-
ance of adding the data of a new time period

Table 7-2 shows a typical example query on the DW
schema.
SELECT sum(PD_SALES)
FROM FACT, TIME, SEGMENT, PRODUCT
WHERE TIME.MONTH4_PERIOD_ID = 199801120 AND
SEGMENT.REGION_ID = 3203 AND
PRODUCT.SECTOR_ID = 162 AND
FACT.TIME_CS = TIME.TIME_CS AND
FACT.SEGMENT_CS = SEGMENT.SEGMENT_CS AND
FACT.PRODUCT_CS = PRODUCT.PRODUCT_CS;

Table 7-2 Example Query

7.3 Measured access methods

In our case study we compare the following different
access methods:

• PTS: a composite B*-Tree with the key order
(Product, Time, Segment)

• TPS: a composite B*-Tree with the key order
(Time, Product, Segment)

• UB: a UB-Tree on the attributes {Product,
Time, Segment}

• MULT: a fact table indexed by three secondary
indexes on the attributes {Product, Time, Seg-
ment}

Composite B*-Trees require to choose one specific order
of the index attributes resulting in a difficult key order
decision problem. For the GfK fact table we investigate
two different attribute orderings: The order (Time, Prod-
uct, Segment) is investigated since all operations restrict
the Time dimension and often the Product dimension.
This index is expected to perform well for ad-hoc queries.
However, for the selected reporting queries, the restric-
tions to the Product dimension seem to dominate the re-
strictions on the other dimensions. Therefore, we expect
the PTS index to be optimal for the reporting queries,
especially for the product group series, as the restriction
to a product group is highly selective (in all cases below
2%; and a median of 0,05%).
In contrast to that, the UB-Tree does not require an attrib-
ute order as all dimensions are treated symmetrically. Due
to its multidimensional nature a UB-Tree on three dimen-
sions Time, Product, Segment allows for utilizing the
restrictions on all dimensions.
The same holds for multiple secondary indexes on the
three dimensions, but as secondary indexes are non-
clustering, the materialization of the result tuples requires
more pages accesses than for the UB-Tree.

7.4 Index sizes and maintenance perform-
ance

Even though the query performance is an important fac-
tor, other characteristics are also very important for the

overall performance of an index structure. In this case
study, we restrict our selves to present the index sizes and
the performance of typical maintenance operations.
Table 7-3 shows the index sizes for the fact table contain-
ing 42 million tuples.

UB PTS TPS MULT

Data pages 1703617 1347247 1348206 1347108

Index pages 120046 105844 106182 544260

Total 1823663 1453091 1454388 1891368

Table 7-3 Index sizes in number of 2KB pages

There is no major difference in the number of data pages
for PTS, TPS, and MULT, whereas the UB-Tree is about
25% larger. This stems from the fact that the tuple com-
pression on data pages for all TransBase tables is not yet
done for UB-Trees. The index parts for UB, PTS, and
TPS have almost the same size, whereas the MULT re-
quires roughly three times more index pages, as there are
three independent secondary indexes. With respect to the
index size we can state that a UB-Tree with compression
on the data pages does not require more space than a
traditional composite B-Tree, but less than secondary
indexes on the dimensions.

In order to evaluate the maintenance performance, we
delete all fact data for a given two-month period and
reinsert it into the fact table. We used the mass-loading
facility of the DBMSs for these tasks. Note that the tuples
to be inserted are sorted according to the Time dimension,
as only the data of one time period is spooled in.

Operation Time: UB Time: PTS Time: TPS

Delete 492.734 4985.045 540.692

Bulk Load 2032 2755 1342

Table 7-4 Time (in sec.) for maintenance operations for
3009810 tuples

Table 7-4 shows the execution times of maintenance
operations for 3009810 tuples for the indexes. We omit
the MULT index, as these kind of maintenance operations
take much too long (deleting the tuples took more than 16
hours). This is a fundamental problem of secondary in-
dexes – it is often suggested to first drop the indexes,
delete the data, and then create the indexes again, if a
large portion of the data has to be deleted. The same strat-
egy is applied for bulk loadings. The results for the other
indexes are not surprising: UB and TPS are able to iden-
tify the tuples to be deleted very fast, whereas PTS needs
to scan through all data pages. With respect to loading,
TPS does not require to sort the data and therefore re-
quires less time than UB and PTS, which require the data
to be sorted according to the key order.
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7.5 Reporting Performance

The results of the three reporting series are depicted in
Figure 7-1, Figure 7-2, Figure 7-4, and Figure 7-5. Our
first observation is that the MULT can neither compete
with the composite indexes nor with the UB-Tree for the
reporting series. Figure 7-1 shows the results of 5 PG
queries, which demonstrate the poor performance of
MULT; even for queries with small result sets it takes
much more time than the other indexes. As a conse-
quence, we exclude the MULT from further measure-
ments.
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Figure 7-1 Response time for the PG series with MULT

For the PG series (see Figure 7-2, Figure 7-3), the com-
posite B-Tree PTS is favored by the high selectivity on
the first index attribute for this query suite. In contrast, the
composite TPS can only utilize the restriction on the time
dimension and therefore has to read much more pages.
Even though the clustering according to the Z-curve of
the UB-Tree is not the optimal case for this query, the
UB-Tree shows on average better performance than PTS,
as it can make usage of the restrictions on all dimensions.
This query suite demonstrates clearly that the quality of
the multidimensional clustering of the UB-Tree.
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Figure 7-2 Response time for the PG series (small result sets)
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Figure 7-3 PG series (large result sets)

When we loosen the restriction on the Product dimension
in the CAT series (i.e., a restriction only down to the
category level), the composite B-Tree PTS will loose its
advantage, as a larger and larger interval on the index has
to be processed (see Figure 7-4).

0

50

100

150

200

250

300

0 0 86 76
3

29
23

37
56

50
59

81
90

34
79

8

48
70

6

80
32

3

11
84

41

22
61

52

26
23

06

43
35

60

Result Set Size

R
es

p
o

n
se

T
im

e
in

S
ec

o
n

d
s

PTS TPS UB

Figure 7-4 Response Time CAT series

For the SEC series, where only the highest hierarchy level
in the Product dimension is restricted, the UB-Tree even
clearly outperforms PTS, as it can benefit more and more
from the restrictions on the other dimensions (see Figure
7-4).
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Figure 7-5 Response time SEC series

The reporting queries show that the UB-Tree can compete
with an optimal composite B-Tree for reporting purposes,
and we will show the flexibility of the UB-Tree with
respect to ad-hoc queries in the following section.
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7.6 Ad-hoc Query Performance

As we have mentioned in Section 5, ad-hoc analysis be-
comes more and more important for OLAP applications.
We use subsequent queries from a (simulated) user ses-
sion, which follows typical drill and navigation patterns
of an OLAP analysis (the following figures plot the re-
sponse time of the queries according to the query se-
quence). Figure 7-5 shows the result of the first 9 queries
measured on all indexes. Ad-hoc queries require an access
method to be flexible with respect to changing restrictions
on all indexed dimensions. Even though MULT provides
symmetrical behavior, it can not outperform the compos-
ite B-Tree TPS nor the UB-Tree, which is by far (with
factors 8 to 22 compared to TPS) the fastest access
method for these queries. As the performance of the com-
posite B-Tree PTS depends on the restriction on the Prod-
uct dimension (e.g., drill down to a single product or a
product group as can be seen for query 5 in Figure 7-5), it
performs poorly as soon as this restriction is missing. As
the scenario of GfK has shown that most queries are often
restricted to a two-month period in the Time dimension,
but varying restrictions in the other dimensions, the com-
posite order TPS is more suitable for ad-hoc queries than
PTS. It is also important to note that with the exception of
the UB-Tree, no access methods provides response times,
which are suitable for interactive OLAP.
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Figure 7-6 Response time for ad-hoc queries

Figure 7-6 shows the results of a larger sequence of ad-
hoc queries (restricted to the comparison of TPS and UB),
which supports our claim that only the UB-Tree is able to
allow for interactive OLAP. With the UB-Tree we
achieve an average response time of around 25 seconds,
which is well below the limit of 1 minute for interactive
OLAP.
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Figure 7-7 Response time for ad-hoc query session

8 Conclusion
In this paper, we presented the performance analysis of
multidimensional indexing with UB-Trees for a real
world market research data warehouse. We precisely
analyzed both data distributions and query response times
for this decision support application. Our performance
analysis has shown that a UB-Tree enables more flexibil-
ity and performance improvements up to several orders of
magnitude over standard access methods, i.e., composite
B-Trees and multiple secondary indexes, and thus allows
for interactive processing of drill-operations, i.e., for
interactive OLAP.

In addition to the work reported in this paper, we also
have undertaken comparisons with bitmap indexes
[MRB99], which showed that bitmap indexes due to their
lack of clustering are not competitive to a clustering index
like composite trees or UB-Trees for large aggregation
queries. This is true despite the results reported in [JL98],
since the comparison given there does not take clustering
into account.
Summing up, a relational DBMS with a multidimensional
index as additional access method next to classical com-
posite B-Trees and bitmap indexes has a clear advantage:
For many typical and practical queries, multidimension-
ally indexed relations allow for a performance improve-
ment, which is not feasible with standard B-Trees or bit-
map indexes.
We are currently in the process of investigating physical
data modeling in order to find heuristics when to use a
multidimensional index and when to use one-dimensional
indexes for a given schema and query set.
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