
The Transbase Hypercube RDBMS:
Multidimensional Indexing of Relational Tables

Volker Markl1 Frank Ramsak1 Roland Pieringer 3 Robert Fenk1 Klaus Elhardt3 Rudolf Bayer1,2
1Bayerisches Forschungszentrum

für Wissensbasierte Systeme
Orleansstraße 34,

D- 81667 München, Germany

2Institut für Informatik
TU München

Orleansstraße 34,
D-81667 München, Germany

3TransAction Software GmbH

Gustav-Heinemann-Ring 109,
D-81739 München, Germany

{volker.markl, frank.ramsak,robert.fenk}@forwiss.de,{pieringer, elhardt}@transaction.de, bayer@in.tum.de

Abstract
Only few multidimensional access methods have made
their way into commercial relational DBMS. Even if a
RDBMS ships with a multidimensional index, the multi-
dimensional index usually is an add-on like Oracle SDO,
which is not integrated into the SQL interpreter, query
processor and query optimizer of the DBMS kernel. Our
demonstration shows TransBase HyperCube, a commer-
cial RDBMS, whose kernel fully integrates the UB-Tree, a
multidimensional extension of the B-Tree. This integration
was performed in an ESPRIT project funded by the Euro-
pean Commission. We put the main emphasis of our dem-
onstration on the application of UB-Tree indexes in real-
world databases for OLAP. However, we also address
general issues of UB-Trees like creation, space-
requirements, or comparison to other indexing methods.

1. Introduction
Relational database management systems (DBMS) usu-
ally rely on B*-Trees and bitmap indexes for indexing
large tables. In our demonstration we show TransBase
HyperCube [Tra99], a relational DBMS, which offers
multidimensional indexing of relations in addition to clas-
sical B*-Tree indexes. TransBase HyperCube is a full-
scale relational database system that fully integrates the
UB-Tree, a multidimensional index based on standard B*-
Trees and space-filling curves like the Z-curve. TransBase
conforms to the SQL92 standard, handles databases up to
16 Terabyte of data and can be used in the field of tertiary
storage retrieval systems due to its support of CD- and
DVD-ROM databases. The UB-Tree integration into the
TransBase kernel (as part of an ESPRIT project funded by
the European Commission) has been accomplished within
one year [RMF+00].

Multidimensional access methods (MAMs) like the UB-
Tree have a high impact on various database application
domains like data warehousing, data mining, or geo-
graphical analysis. The full integration of a multidimen-

sional access method into a DBMS not only speeds up
queries, it also ensures that the index is transparent to the
user and is fully integrated into concurrency and recovery
mechanisms. The UB-Tree in TransBase, called Hyper-
Cube (HC), is not an add-on, but is fully integrated into
the kernel. As the other indexing methods of TransBase,
the UB-Tree is transparent to the user, as no extension to
SQL queries is required. The only modification is an
extension of the CREATE-TABLE statement in order to
specify the creation of UB-Tree indexes. Thus the user
can define a multidimensional index on a set of attributes
of a table and use standard SQL for data manipulation and
retrieval. It is not necessary to learn new constructs to
work with multidimensional add-ons. For that reason,
existing applications with standard SQL can take advan-
tage of the performance benefits of multidimensional
access methods. In our demonstration we will illustrate
this fact by a data warehouse with data taken from a real-
world application.

2. Design and Implementation Issues

2.1. The UB-Tree

The basic idea of the UB-Tree [Bay97, Mar99] is to use a
space-filling curve to map a multidimensional universe to
one-dimensional space. Using the Z-Curve (Figure 1a)
preserves the multidimensional proximity. A Z-Address α
= Z(x) is the ordinal number of the key attributes of a
tuple x on the Z-Curve, which can be efficiently computed
by bit-interleaving [OM84]. A standard B*-Tree is used to
index the tuples taking the Z-Address as keys and thus
provides multidimensional clustering of the data.

The fundamental innovation of UB-Trees is the concept
of Z-Regions to create a disjunctive partitioning of the
multidimensional space. This allows for very efficient
processing of multidimensional range queries [Mar99]. A
Z-Region [α : β] is the space covered by an interval on
the Z-Curve and is defined by two Z-Addresses α and β.

We call β the region address of [α : β]. Each Z-Region
maps exactly onto one page on secondary storage, i.e., to
one leaf page of the B*-Tree.

For an 8×8 universe, Figure 1b shows the corresponding
Z-addresses. Figure 1c shows the Z-region [4: 20] and
Figure 1d shows a partitioning with five Z-regions [0 : 3],
[4 : 20], [21: 35], [36 : 47] and [48 : 63]. Assuming a page
capacity of 2 points, Figure 1e shows ten points, which
create the partitioning of Figure 1d. The details of the UB-
Tree algorithms are described in [Bay97, Mar99,
MZB99].

2.2. The TransBase HyperCube RDBMS

The integration of a multidimensional index into a rela-
tional DBMS requires modifications of the SQL com-
piler/interpreter, query processor, catalog manager, and

access structure manager [RMF+00]. Since the UB-Tree
is a multidimensional extension of the B*-Tree, it was not
necessary to change the existing code for the lock man-
ager, buffer manager, storage manager, and recovery
manager. The shaded boxes in Figure 2 mark the modifi-
cations of the single modules, where darker shading sig-
nals more complex modifications.

Figure 3 shows how to create a table organized as a UB-
Tree with the new “HCKEY” clause. If additional check
constraints for each index attribute of the UB-Tree are
specified, these constraints are exploited for generation of
an optimal multidimensional clustering. The order of the
indexing attributes has no impact to the performance due
to the symmetrical behavior of the UB-Tree.

With the kernel integration the UB-Tree query function-
ality is hidden by the SQL interface, i.e., no extension of
the DML is required. The extensions of the query engine,
especially of the optimizer, will take care of the appropri-
ate usage of the new index, e.g., processing a multidimen-
sional range query on the UB-Tree if possible.

3. Applications
The multidimensional clustering of the UB-Tree is the
main reason for the performance improvements for que-
ries with multi-attribute restrictions (i.e., multidimen-
sional range queries) over traditional indexing techniques
like composite B-Trees or index intersection. Figure 4
illustrates this for the two-dimensional case for the shaded
query box. A composite B-Tree only utilizes the range
restriction on the highest weighted key that results in

10 54 1716 2120
32 76 1918 2322
98 1312 2524 2928
1110 1514 2726 3130
3332 3736 4948 5352
3534 3938 5150 5554
4140 4544 5756 6160
4342 4746 5958 6362

10 32 54 76

1
0

4

2

5

3

7
6

(a) (b) (c) (d) (e)

Figure 1: Z-addresses and Z-regions

CREATE TABLE FACT(
PRODUCT integer not null CHECK(PRODUCT BETWEEN
0 and 536870911),
SEGMENT integer not null CHECK(SEGMENT be-
tween 0 and 16777215),
TIME integer not null CHECK(TIME between 0
and 31),
PD_PRICE integer,
PD_SALES integer,
PD_TURNOVER integer,
) HCKEY IS PRODUCT, SEGMENT, TIME

Figure 3: Create statement for UB-Trees

Figure 2: Affected modules of TransBase

Configuration and minor extension

Access Structure
Manager

Query
Processor

Lock
Manager

Catalog
Manager

Creation of
UB-Trees

SQL
Compiler/Interpreter

Extend Parser with
DDL statements
for UB-Trees

Query
Optimizer

New Rules+Cost
Model

for UB-Trees

UB-Tree Range
Query Support

UB-Tree Modules:
Transformation Functions, Page
Splitting, Range Query

Storage
Manager

Recovery
Manager

Buffer
Manager

Communication Manager

Extension of existing code

New modules

reading a complete horizontal or vertical stripe. The final
result set of a range query is then computed by post-fil-
tering. Multiple secondary indexes (B-Trees or bitmap
indexes) only retrieve tuples in the result set as they are
determined by index intersection on the restricted attrib-
utes. However, in this case the tuples finally have to be
materialized by random accesses. Reading many tuples
with random accesses is much slower than tuple-clustered
access, where most tuples on a page contribute to the
result set. The multidimensional clustering of the UB-
Tree comes close to the ideal case, as all restrictions on
the indexed attributes are utilized and tuple-clustered
access is achieved. UB-Tree clustering has also been
compared to other commercial approaches like bitmap
indexes and Oracle SDO as well as R-Trees. It has been
shown that UB-Trees also outperform these techniques.

Multidimensional range queries are typical for OLAP
applications as our demonstration with the data warehouse
of the “Gesellschaft für Konsumforschung” (GfK), the
largest German market research company, shows. GfK
tracks the sales of goods according to three dimensions:
time, product, and outlet (shops). Typical reports are the
market share analysis of product groups, the analysis of
the market development of single products, etc. Multiple
hierarchies classify the dimension members. The time
hierarchy consists of year, four-month period, and two-
month period levels. Products are categorized according
to sectors, categories, and product groups. For our demon-
strations we use an anonymized snapshot of the GfK data
warehouse, that consists of around 42 million fact records

(approx. 4 GB) associated with 15 two-month periods,
10.500 outlets, and more than 490.000 products.

4. Demonstration
After a brief introduction into TransBase and the UB-Tree
technology, we give a hands-on demonstration of the GfK
ROLAP data warehouse. The database is available both
on hard disk and on CD-ROM in order to show the bene-
fits of UB-Tree indexes on tertiary storage. All our dem-
onstration tools access the database via ODBC through
standard SQL queries (i.e., no specific add-ons or query
constructs are used for querying and data retrieval).

4.1. General Overview

The TransBase DDL needed to be modified in order to
enable the creation of UB-Tree indexed tables. We show
the creation of UB-Trees and their space requirements.
We discuss briefly when to favor UB-Trees over tradi-
tional DBMS indexes, as well as the limitations and side-
conditions of UB-Trees.

4.2. ROLAP Data Warehouse Demo

For the GfK schema we show interactive ad-hoc OLAP as
well as the standard reports that GfK runs in order to
create the market analysis reports and statistics for its
customers. We specifically show the performance of the
integrated UB-Tree as well as the performance of other
access methods, namely composite B*-Trees and multiple
secondary B*-Trees. Depending on the index configura-
tion and the query mix, the speed-up factor of UB-Trees
over composite B*-Trees lies between 4 and several or-
ders of magnitude.

5. References
[Bay97] R. Bayer. The universal B-Tree for multi-

dimensional Indexing: General Concepts. WWCA
’97. Tsukuba, Japan, LNCS, Springer Verlag,
March, 1997.

[Mar99] V. Markl. MISTRAL: Processing Relational Que-
ries using a Multidimensional Access Technique.
Ph.D. Thesis, TU München, 1999.

[MZB99] V. Markl, M. Zirkel, and R. Bayer. Processing
Operations with Restrictions in Relational Data-
base Management Systems without external Sort-
ing. Proc. of ICDE, Sydney, Australia, 1999.

[OM84] J. A. Orenstein and T.H. Merret. A Class of Data
Structures for Associate Searching. Proc. of ACM
SIGMOD-PODS Conf., Portland, Oregon, 1984.

[RMF+00] F. Ramsak, V. Markl, R. Fenk, M.Zirkel, K. El-
hardt, and R. Bayer. Integrating the UB-Tree into a
database system kernel. Proc. VLDB 2000 Conf.

[Tra99] TransAction Software GmbH. TransBase Docu-
mentation. 1999

Figure 4: Comparison of access methods

Compound clustering
B-Tree

X

Multiple secondary
Indexes or bitmap indexes

X

UB-Tree

X

Ideal case

X

Y Y

Y Y

