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Abstract

Real world data has usually a non-uniform
data distribution, i.e., there are clusters of data,
but most of the universe is unpopulated space,
the so called dead space. When indexing such
data it is important to handle also dead space
efficiently, i.e., the index should not degenerate
with respect to size and performance when deal-
ing with such non-uniformly distributed data.

The UB-Tree partitions the whole universe,
i.e., it indexes the whole universe. For this rea-
son, queries on dead space might perform badly,
since they have to go down to the data page level
in order to ensure there is no data answering the
query.

To solve this problem of the UB-Tree, we pro-
pose the bounding UB-Tree (BUB-Tree), an UB-
Tree storing additional information in the index
part of the tree and modified algorithms utilizing
this information. Query processing can utilize
this information to prune search paths and con-
sequently reduce the number of necessary data
page accesses.
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1 Introduction

The UB-Tree partitions the whole universe
into a set of disjunctive but consecutive Z-
intervals, i.e., its index covers the whole uni-
verse. Queries on populated areas are handled
well by this technique, but queries covering dead
space might perform badly, since they have to

traverse the tree down to the data page level in
order to ensure there is no answer for the query.

To solve this problem of the UB-Tree we pro-
pose the bounding UB-Tree (BUB-Tree). In-
stead of storing just separators of Z-regions in
the index part of the B-Tree it stores Z-intervals
bounding the data stored on the corresponding
page. Queries now can utilize this information
during search to prune paths already at the in-
dex level and consequently the number of data
page accesses can be reduced while preserving
the good properties of the UB-Tree.

Related work are all papers on multidimen-
sional access methods, especially the R-Tree
[Gut84] and its variants the R+-Tree and the
R∗-Tree which are able to prune search paths to
dead space in queries.

2 The UB-Tree

In this section we introduce the BUB-Tree an
variant of the UB-Tree that can cope with dead
space queries and non uniformly distributed
data.

The UB-Tree [Bay97, Mar99] is a clustering
index for multidimensional point data, which in-
herits all good properties of the B-Tree [BM72].
Logarithmic performance guarantees are given
for the basic operations of insertion, deletion
and point query, and a page utilization of 50% is
guaranteed. The UB-Tree clusters data accord-
ing to a space filling curve, namely the Z-curve
[OM84], i.e., the multidimensional universe is
linearized to a one dimensional space by repre-
senting a multidimensional point by its position
on the Z-curve, the so called Z-address. The
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UB-Tree introduces the new idea of partition-
ing the data space into disjoint Z-regions, which
are mapped to disk pages. The Z-regions are
then indexed by a B-Tree on the last included Z-
address of a Z-region. These Z-regions in con-
junction with a sophisticated algorithm for mul-
tidimensional range queries enable the UB-Tree
to deal efficiently with multidimensional appli-
cations like data warehousing etc. Integrating
the UB-Tree into a RDBMS providing a B-Tree
is quite cheap as discussed in [RMF+00].

(a) UB-Tree Z-regions

(b) BUB-Tree Z-regions

3 BUB-Tree Z-regions

A tuple in the index part of a (U)B+-Tree
consist of a separator and a link to the asso-
ciates child node. Due to these separators the
whole data space is partitioned into disjunctive
Z-regions. Whether they cover dead space or not
is not known at the index level.

So instead of storing a link and a Z-address
which is a separator we store the Z-address of
the first (zfirst) and last (zlast) tuple on the page,
assuming tuples on a page are sorted with re-
spect to the Z-order. Consequently index pages
will contain fewer entries.

Fig. 1(a) shows the Z-region partitioning of
the UB-Tree and Fig. 1(b) the partitioning of the
BUB-Tree for a two dimensional universe where
all the data is distributed at the bottom of the up-
per half of the universe. The UB-Tree has Z-
regions covering large fractions of the universe
but those Z-regions are only populated with data
where they cover the the bottom of the upper
half of the universe. In contrast to this the Z-
regions of the BUB-Tree approximate just the
area where data is located.

3.1 Point Query

Point queries are handled by traversing the in-
dex starting at the root page. We search for an
index entry that contains the Z-address of the
search point within its Z-interval. This can be
done by binary search since the entries are sorted
according to Z-order on the page. If we do not
find such an entry, the point does not exist. If we
find an entry, we follow the associated link to the
next page and proceed as before as long as it is
a index page. Otherwise we check if the point
is stored on the data page. The worst case com-
plexity of this search is the same as for a B-Tree,
which is logarithmic to the size of the database.

3.2 Insertion, Split and Deletion

For insertion we do a point search, but instead
of stopping if there is no matching index entry
we traverse the path which is nearest to the given
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point with respect to the Z-order. When reach-
ing a data page we insert the point. A point in-
serted at the start or the end of the page triggers
an update of the index entry leading to this page.
This might propagate up to the root page.

Insertions that cause a page overflow are han-
dled by splitting the page at the position of the
biggest Z-difference (hole) between two consec-
utive page entries. Tuning parameters for this
are the minimum fill rate, the size of the hole
with respect to the Z-region volume resp. the
universe volume. The dead space that is cov-
ered by the index can be minimized by decreas-
ing the minimum fill rate, i.e., allowing a page
utilization below 50%.

Deletion is handled by a point query and on
success we delete the point from the data page.
Deletion at the start or the end of the page trig-
gers an update of the index entry leading to this
page. This might propagate up to the root page.
A page underflow is handled in the same way as
for the B-Tree.

3.3 Range Query

Processing of a query box[[ql, qh]] with
Z(ql) ≤ Z(qh), whereZ calculates the Z-
address, starts with a point search forZ(ql). If
we find a data page we have to post-filter its
content an continue with the next intersection
(NI) of the Z-curve greater thanzlast; otherwise
we continue with the NI which is greater than
zstart of the last inspected entry. Processing
is finished when reaching a Z-address eauql or
greater thanZ(ql).

4 Preliminary Performance Results

Preliminary results are very promising. In
our measurements the BUB-Tree index size was
3% bigger than the UB-Tree for optimal splits.
For uniformly distributed data there was no
difference with respect to data page accesses.
For non-uniformly distributed artificial and real
world data sets and queries the BUB-Tree was
able to save 70% of the data page accesses in
average. For some queries the BUB-Tree was

loading no data pages while the UB-Tree was
loading thousands of them.

5 Summary and Future Work

We have presented an enhanced variant of the
UB-Tree, the so called BUB-Tree, which can
cope with dead space queries.

In our future research we will investigate the
performance gains in comparison to the R-Tree
and its variants with artificial as well as with real
world data sets.
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