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Abstract

This paper considers the issue of bulk loading large data
sets for the UB-Tree, a multidimensional index structure.
Especially in dataware housing (DW), data mining and
OLAP it is necessary to have efficient bulk loading tech-
niques, because loading occurs not continuously, but only
from time to time with usually large data sets.

We propose two techniques, one for initial loading,
which creates a new UB-Tree, and one for incremental load-
ing, which adds data to an existing UB-Tree. Both tech-
niques try to minimize I/O and CPU cost. Measurements
with artificial data and data of a commercial data ware-
house demonstrate that our algorithms are efficient and
able to handle large data sets. As well as the UB-Tree, they
are easily integrated into a RDBMS.

Keywords: bulk loading, UB-tree, multidimensional in-
dex, dataware housing, data mining, OLAP

1 Introduction

In case of loading a huge amount of data into a data base
indexed table, it is usually not feasible to use the standard
insert operation of the index, since this would result in a
big overhead caused by unnecessary page accesses. In most
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cases, tuples emerge in random order or an order, which is
not suitable for the used index and therefore will lead to ran-
dom inserts. Withrandom insertwe denote that consecutive
tuples will be inserted into different pages and consequently
an index search and a data page access is necessary for each
insertion. In case of just one data page no random access to
disk (it is cached) nor a page split happens. However, ran-
dom page accesses become frequent after subsequent page
splits. Therefore, the cost for loading will not increase lin-
ear to the number of required pages but linear to the number
of new tuples.

Additionally, the query performance is of crucial inter-
est, depending on clustering and page utilization. When
loading indexes, clustering and page utilization might de-
pend on the insertion order of tuples or the data distribution
[5], e.g., k-d-B-Trees [19] cannot guarantee a certain page
filling degree. But this is not desirable.

So far there has been already some work on bulk loading
of multidimensional index structures. Various papers exist
on this subject for other multidimensional index structures,
e.g., for R–Trees [21, 8, 13, 11, 6], Gridfiles [12] and quad
trees [7], and now we like to address this issue for the UB-
Tree.

The contribution of this paper is to describe two simple
and efficient bulk loading algorithms for the UB-Tree, one
for initial bulk loading and one for incremental bulk load-
ing. We present how to reuse existing techniques, which
have been tested and proven to be robust and fast in prac-
tice. This simplifies the integration of these algorithms to a
large extent.

The rest of the paper is organized as follows: Section 2
gives an short introduction to the UB-Tree. In section 3 we
discuss the general problem and in section 4 we present spe-
cific solutions for the UB-Tree. A short performance analy-



sis is given in section 5 and section 6 presents measurement
results. Section 7 concludes the paper.

2 The UB-Tree

The UB-Tree is a multidimensional clustering index,
which inherits all good properties of B-Tree [4]. Logarith-
mic performance guarantees are given for the basic opera-
tions of insertion, deletion and point query, and a page uti-
lization of 50% is guaranteed. The UB-Tree clusters data
according to the space filling Z–curve [16] (see Figure 1 (a))
and introduces the new idea of partitioning the data space
into disjoint Z–regions (see Figure 1 (c) and (d)). The Z–
address, which is the position of a tuple on the Z–curve (see
Figure 1 (b)), determines the Z–region to which the tuple
belongs. Z–regions are stored on the data pages of the un-
derlying B-Tree variant identified resp. separated from each
other by the last included Z–address. This Z–address is used
for searching Z–regions stored in the B-Tree. Page over-
flows are handled by splitting the affected page in the mid-
dle, where the split Z–address divides the tuples of the page.
Then these tuples are distributed to the existing page, which
is updated, and a newly created page identified by the split
address.

For example insertion of the tuple (4,5) into the two di-
mensional universe of8 × 8 points as depicted in Figure 1
(b) and (c) is performed as follows. We calculate the Z–
address of this point, which is 38, and then locate the region
containing this point, which is region5. Now we retrieve
the page corresponding to this region and insert the point.
When necessary a split is performed before storing. Finally
the page is stored.

These Z–regions in conjunction with a sophisticated al-
gorithm for multidimensional range queries [3] and the
Tetris [15] algorithm for sorted reading of multidimensional
ranges offer excellent properties [14] for multidimensional
applications like dataware housing, archiving systems, tem-
poral data management, etc. Integrating the UB-Tree into a
RDBMS using a B-Tree is very simple [18], since the UB-
Tree is a multidimensional extension to the B-Tree, or any
of its variants.

3 General Problem Description

Efficient bulk loading is an issue when loading a huge
amount of data into an indexed table. When creating a
new index we want to provide it as fast as possible to the
users and we want to gain the best possible performance for
range queries. According to [17] getting data into a data
warehouse is a critical process in the initiation and mainte-
nance of a data warehouse application. The sheer volume
of data involved dictates the need for a high-performance

data loader. The ability to store vast data sets efficiently can
have a dramatic effect on the overall cost associated with
the maintenance of a data warehouse application.

The source data is usually provided in some kind of
portable format, e.g., ASCII flat files, XML, Excel-Table,
etc., but not in binary format. This happens especially in
dataware housing and data mining applications when mov-
ing data from the OLTP systems to the OLAP system.

The main goals, which should be achieved by bulk load-
ing techniques, are the following ones:

1. Minimize random disk accesses,

2. minimize disk I/O,

3. minimize CPU load,

4. optimize clustering and

5. optimize page filling.

The main cost for loading arises by accesses to secondary
storage, strictly speaking the loading process is I/O bound.
Therefore, it is essential to minimize disk I/O and espe-
cially to avoid random accesses wherever possible. On the
other hand linear disk accesses are quite fast because of
caching techniques of todays hard disks and operating sys-
tems. Consequently the CPU load is also to be recognized
as critical factor for the loading process and should be min-
imized as well.

With respect to query performance it is important to pro-
vide good clustering, since this reduces random disk ac-
cesses for range queries. There are two types of cluster-
ing, namely tuple and page clustering. For bulk loading it
is possible to achieve both, in other words not only the tu-
ples within one page should be clustered, but also the pages
should be clustered according to the criterion of the used
index.

Additionally, a good degree of page filling should be
achieved in order to decrease the number of pages to load
for answering range queries. For databases, which are only
loaded once without ever adding new data, e.g., CD-ROM
databases, the pages should be filled up to their maximum.
A given page utilization can be guaranteed for initial load-
ing, but for incremental loading only 50% is guaranteed.
However, it might be higher depending on the data distribu-
tion with respect to the loaded data.

4 Algorithm Description

Multidimensional bulk loading algorithms can be classi-
fied according to two groups: a) Algorithms which apply a
certain partition to the multidimensional input data and load
those partitions into the index, b) and algorithms which ap-
ply a total sort order to the input data and load the pre-sorted
data into the index.
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Figure 1. Z–curve and Z–regions used by the UB-Tree

In the first category algorithms like [6] for R–Trees and
[12] for Grid–Files are available, while the second group
applies to [8] for R–Trees which sorts the data according
to the Hilbert curve as well as to the algorithms we present
here.
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Figure 2. Bulk Loading Architecture for one
dimensional clustering indexes

The bulk loading algorithms in this second category have
three processing steps in common (Figure 2), first they cal-
culate the key for each tuple of the data set, second the tu-
ples are sorted according to the key and third the sorted data
is loaded into the index.

In order to speed up the whole process it is useful to ar-
range these steps in a pipeline as depicted in Figure 2, since
this avoids writing temporary results between processing
steps to secondary storage, i.e., between the calculation and
the sort step and between the sort and the loading step. Ad-
ditional performance can be gained by using a binary for-
mat for the intermediate results, because it avoids conver-
sion from internal binary representation and external ASCII
representation and vice versa. This saves usually some disk
I/O, but what is even more important it saves a lot of CPU
time, because subsequent parsing and key calculation for
each tuple is avoided.

4.1 Key Computation

The key (in DW the dimensions), that is used to iden-
tify a tuple is usually a subset of the attributes of a tuple.
However, internally the used index might use a different
representation. For example compound B-Trees use just a
concatenation of the key attributes, but with space filling
curves there is an additional computation, which calculates
the scalar value on the curve representing the point spec-
ified by the key attributes resp. coordinates. B-Trees that
allow such computation are called functional B-Trees. The
UB-Tree uses such a B-Tree and adds calculation of the Z–
address. This calculation is very efficient, because it only
requires bit interleaving of the key attributes (the dimen-
sions) [16].

The keys are also used in the sorting and loading process
and therefore it is useful to add the key to each tuple of the
temporary data sets in order to reuse it for the subsequent
processing steps. This and using a binary format for the
intermediate files minimizes CPU load.

4.2 Merge Sorting

The best choice for external sorting of large data sets is
the merge sort algorithm [9]. It pre-sorts junks of the data
set, which fit into RAM and writes them back to disk as
initial runs. The best strategy to get the longest possible
runs is to use a heap for internal sorting, i.e., one gets2M
long initial runs [9], whereM is the number of tuples which
fit into internal memory. Those initial runs are then merged,
where as much files as possible are merged at once in order
to avoid subsequent merge runs requiring additional disk
accesses.

The disk accesses necessary for this are sequential ac-
cesses, which are quite fast, because of the pre-fetching of
hard disks and operation systems. In order to avoid unnec-
essary I/O resp. disk accesses it is possible to integrate the



creation of initial runs into the key computation and just
perform merging in the second step.

4.3 Initial Loading

When creating a new index from scratch we speak ofini-
tial loading. In case of the UB-Tree it is quite simple, be-
cause once the data set is sorted according to the Z–address,
we can use B-Tree standard techniques.

For the loading algorithms we use a special kind of page
data structure, calledlarge pagewhich is equal to the pages
stored on disk, but it can store twice the tuples of a standard
page. It is used only internally and may have a page utiliza-
tion of 200% with respect to a standard page. This is neces-
sary in order to simplify the algorithms and all percentage
statements, which are given in the following are with re-
spect to standard pages. We also do not discuss the mainte-
nance of the index pages of the underlying B-Tree, because
this can be archived by standard techniques [20], where we
just cache the index pages, which lead to the current data
page.

The initial loading algorithm works as following: It
starts with an empty large page called thepage . Now it
reads tuples and adds them to this large page until the page
utilization is two times the specified fill-degree. When it ex-
ceeds this limit it splits the current large page in the middle
into two normal pagespg1 andpg2 containing each half
of the tuples of the large page.pg1 is now complete, it has
the specified page utilization, and is written to disk. The
contents ofpg2 is copied to the largepage . The algorithm
continues now adding tuples to the large page and splitting
it as before, until no more tuples are left.

When finished, it has to check, if the largepage needs
a final split before storing it, since it might be filled to more
than 100% of a standard page. If so it splits the page and
stores the two new standard pagespg1 andpg2 otherwise
the page can immediately be stored as standard page, be-
cause its page utilization is less or equal than 100%.

This algorithm allows for guaranteeing a certain page
utilization. Just for the last two pages it is not possible to
guarantee this and they might be filled only to 50%. The al-
gorithm provides tuple clustering as well as page clustering,
since the input data set is already sorted according to the Z–
curve. In case of CD-ROM databases one can achieve the
maximum page utilization, which is up to 100%.

This algorithm can also be used to reorganize an exist-
ing UB-Tree, by reading the tuples not from a flat file or
the like, but from an existing UB-Tree. With some more
modification it is also easily possible to merge a pre-sorted
data set and an existing UB-Tree in order to get a new UB-
Tree. This method (initial merge loading) is superior when
the new flat file would contribute tuples to each page of the
existing UB-Tree, because it can guarantee a specified page

filling degree and clustering. However, when new tuples
contribute only to a subset of pages of the existing UB-
Tree and the majority of tuples contribute to new pages, it
is much faster to use an incremental loading algorithm – al-
though it is no longer possible to give the strict guarantees
for clustering and page utilization.

4.4 Incremental Loading

When extending an existing UB-Tree we speak ofincre-
mental loading. Incremental loading differs only slightly
from initial loading, because it does not only create new
pages as initial loading does, but additionally it updates ex-
isting pages.

The algorithm works as follows: We start with a large
page marked as invalid. Now the algorithm reads the first
tuple from the input data set and checks if the tuple be-
longs to the currentpage . If not, it stores the current large
page with the functionwriteLastPage , which cares
for a split. Now it retrieves the existing page to which the
tuple belongs from the UB-Tree. This page can be retrieved
with a simple B-Tree point search. That page is copied to
the largepage which is used internally. Now it inserts the
tuple into the largepage and checks if its page utilization
is two times the specified fill-degree. If so, it splits the cur-
rent largepage in the middle into two normal pagespg1
andpg2 containing each half of the tuples of the large page.
The page containing the just inserted tuple is copied to the
largepage and the other one is written to disk. The algo-
rithm continues adding tuples to the currentpage , check-
ing and splitting it as before until no more tuples are left.
When finished, it stores the currentpage with the function
writeLastPage .

Table 1 depicts this algorithm in pseudo C-code. It
should be mentioned that thestorePage functions needs
to check if the page to be stored does already exist or if
a new page needs to be created. This can be achieved by
marking those pages, which have been retrieved from the
UB-Tree. When splitting such a page it is necessary to cre-
ate the pagepg1 identified by the split address andpg2 has
to be updated, because it keeps its Z–address.

Compared to the initial loading algorithm there are two
new parts. One is the check if a tuple belongs to the cur-
rent page and the other, a new strategy for keeping the right
page after a page split. The desired page utilization can be
specified byfilldegree and will be guaranteed except
for the last two pages or the last two pages of a continu-
ous sub-part of the Z–curve occurring when the last page
needs to be split before storing. Those might be filled only
to 50%. The last two pages of a sub-part of the Z–curve
occur when a tuple does not belong to the current page (but
to another existing page of the UB-Tree) and if the current
page needs a split before storing. But, in order to increase



Tuple tuple;
ZAddress zaddr;
LargePage page = INVALIDPAGE;

while (datasetNotExhausted) {
readTupleAndKey(&tuple, &zaddr);
if (zaddr >= page.endzaddr ||

page == INVALIDPAGE) {
if (page != INVALIDPAGE) {

writeLastPage(page);
}
page = retrievePage(zaddr);

}
insertTuple(&page, zaddr, tuple);
if (getFillDegree(page) >

2 * filldegree) {
Page pg1, pg2;
splitPage(page, &pg1, &pg2);
if (zaddr <= pg1.zaddr) {

storePage(&pg2);
page = pg1;

}
else {

storePage(&pg1);
page = pg2;

}
}

}

writeLastPage(page);

Table 1. Core of Incremental Loading

the page utilization in this case, it is possible to apply the
enhancements known for B∗-Trees [10, 2] i.e., to use a set
of pages to distribute tuples between those pages in order to
get a better page utilization.

Page clustering can be guaranteed only for the newly cre-
ated pages. When the majority of tuples from a new input
data set contributes to new pages then it is much faster to use
incremental loading instead of initial merge loading, which
merges the new data set and an existing UB-Tree.

4.5 DBSM-Kernel Integration

The UB-Tree utilizes an underlying B-Tree, therefore
one dimensional bulk loading techniques can be reused.
This makes it easy to integrate the UB-Tree [18] as well
as UB-Tree bulk loading. It is only necessary to extend ex-
isting loading tools by Z–address calculation and page split-
ting for UB-Trees.

This means there are two simple changes in the bulk
loading tools having the architecture depicted in Figure 2.
The affected parts are designated by stripped boxes. The
first part of the loading process (key calculation) requires
adding Z–address calculation for UB-Trees. This should be

nothing more than adding a new key calculation function.
The other change is in the third part of the loading process.
Here, it is necessary to use the UB-Tree page splitting al-
gorithm in order to get well formed regions, i.e., regions
which are as rectangular as possible, since this affects the
query performance.

Thus, it is possible to use existing loading techniques,
e.g., for TransBase HyperCube, the first DBMS with in-
tegrated UB-Tree, we have made these changes without
changing the actual loading algorithm of the Transbase
loader.

5 Performance Analysis

The complexity of external sorting in general has been
discussed in [9, 1].

With merge sort in practice, sorting a file ofP pages
with n tuples is linear and requiresP reads for the input
data,P writes for the initial runs,P reads for the initial
runs andP writes for the resulting output data. This makes
2P sequential reads and2P sequential writes. CPU cost
divides into key calculation, which has alsoO(n) plus the
cost for the used internal sorting algorithm e.g., worst case
for heap sort isO(n log n).

Concerning only the I/Os of data pages without caching
we can make the following worst case estimations for the
numberC of page reads and writes, whereM is the num-
ber of tuples which fit onto one page,n the number of new
tuples ando the number of old tuples, which reside already
in the index. Index pages are neglected, because they can
be cached usually within main memory.

random insert: C = n
M + 2n, becausenM pages are read

clustered from the input file and one page has to be re-
trieved and stored from the existing UB-Tree for each
tuple.

initial loading: C = 2n+o
M , becausenM pages of data are

read clustered from the input file andoM pages are read
from the existing UB-Tree, whilen+o

M pages are cre-
ated.

incremental loading: Worst case isC = n
M + 2n, when

each input tuple belongs to another page. This can hap-
pen only when the number of input tuples is equal or
less than the number of pages in the existing UB-Tree.
The best case happens when there are nearly no up-
dates of existing pages. It isC = 2 n

M , since n
M pages

are read clustered from the input file andnM pages are
newly created.

For incremental loading it is a bit more complicated, be-
cause we have to take into account if new tuples contribute
to existing pages of the UB-Tree or to new pages. In worst



case, when each tuple contributes to a different existing
page, we get the same performance as for random insert.
However, when new tuples mainly contribute to new pages,
we get a performance which is similar to initial loading of a
new UB-Tree.

Figure 3 depicts this case where loading new data con-
tributes to empty parts of an existing UB-Tree. This affects
usually only a limited number of pages and therefore only a
few pages of the existing UB-Tree have to be updated. In the
example we have loaded a new data set into the area left to
the middle of the two dimensional data space. This required
only two updates of existing pages. Another incremental
load further left would require 8 or 4 page updates, depend-
ing on the position of the new data. The necessary updates
can be estimated with some changes to the cost functions
for UB-Tree presented in [14].

(a) Before loading (b) After loading

Figure 3. Changes of UB-Tree space partition-
ing during incremental loading of a new data
set into an unpopulated part of a two dimen-
sional universe

For data warehousing new input data usually contributes
to a part of the cube, which contains no data at this time.
Therefore, incremental loading is superior to initial loading,
which performs a merge of the possibly huge existing UB-
Tree and the new data set.

6 Performance Evaluation

The measurements presented here have been made with
the prototype implementation of the UB-Tree, since this al-
lows for controlling all involved parameters. It is realized
as middleware between a database management system and
a database application.

In cooperation with Teijin, which is developing an OLAP
server application, we have implemented the presented
loading algorithms for the Transbase and Oracle UB-Tree
middleware.

Tuple #
Random Order Page Numbers

ASCII Binary Initial Incremental

50k 55s 39s 1191 1235
1m 2259s 939s 23810 24537

Table 2. Comparison for artificial data

Previous measurements have proven that the different
DBMSs perform equally, therefore we present only the
measurements for the Transbase version.

It is obvious that page and tuple clustered UB-Trees with
a guaranteed page utilization are best for range query per-
formance. Therefore, we do not present measurements of
range queries, but only informations about the clustering
resp. the number of updated pages for incremental loading.
See also [20] for a discussion of time and space optimality
in B-Trees.

6.1 Artificial Data

The used machine for this measurement was a Sun Ultra
1 with a 167 MHz CPU and 64MB RAM. The secondary
storage medium was an external IBM Ultrastar 18XP hard
disk with 18GB storage.

We have used a data warehouse cube according to one
used at Teijin, which had the four dimensionsCustomer,
Organization, ProductandTime. The data distribution was
uniform and we loaded two different data sets. One with
50000 (50k) tuples and another one with one million (1m)
tuples. The tuples size was 32 bytes and 56 tuples fit to one
2kB page.

The measurement results depicted in Table 2 compare
the following cases: a) Loading of binary vs. ASCII format
of temporary files, b) the number of created pages of initial
loading vs. incremental loading.

We can neglect the order of input data in practice, since
no existing indexes deliver Z–order. Therefore we present
only loading of random ordered data.

The loading time was measured in seconds. This yields
that using binary format will result in≈ 30% shorter load-
ing time. For bigger data sets it should be even faster, since
more merge runs are necessary. This is clearly visible in
case of the 1m-random measurement.

The number of pages created with incremental loading of
50k tuples is 3% higher than with initial loading. However,
building the complete 1m DB with one initial and 6 incre-
mental runs took 1722, while merging the existing UB-Tree
and the new data sets with initial loading took 6280 seconds.
Therefore incremental loading is≈3.6 times faster than ini-
tial loading. For greater data sets it will become even worse.



6.2 Market Analysts Institute Data Warehouse

The used machine for this measurement was a Sun En-
terprise Server 450 with two Sparc-Ultra4 248 MHz CPUs
and 512MB RAM. The secondary storage medium was an
external 90 GB RAID system.

In order to evaluate our algorithms with real world data
we have loaded a data warehouse from a leading German
consumer-market analysts institute (MAI). They store data
pre-aggregated to two month periods, in order to reduce the
data volume and because some data sources do not deliver
data in a finer granularity. The data was stored in a cube
with the three dimensionsProduct, SegmentandPeriod.

The snapshot of the data warehouse used for our mea-
surements consists of≈ 43 million fact tuples belonging to
fifteen two-month periods. In our measurements we have
only considered the fact table, since this is the biggest table
and new data contributes mainly to this table. The source
data was stored in ASCII flat files and the binary represen-
tation of one tuple had 56 bytes. The page size was 2kB,
but due to the overhead for page management only 31 tu-
ples could be stored per page. Page utilization was set to
78%, which results in 24 tuples per page.

Figure 4 depicts the data distribution in tuples according
to the periods. This is interesting, since loading time should
reflect the data distribution of the periods.
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The periods have been loaded one by one into a UB-Tree.
The first one was loaded with initial loading and the sub-
sequent ones with incremental loading resp. initial merge
loading, which merges the new periods data with the ex-
isting UB-Tree into a new UB-Tree. Random insert is not
considered, because it is not competitive.

Figure 5 shows the measured times for initial merge
loading and incremental loading. The times for Z–address
calculation plus creation of initial runs and sorting is also
plotted. For loading the first period we have used initial
loading with ASCII temporary files and incremental load-
ing with binary temporary files, which loaded a UB-Tree
consisting of one empty page. We can see that difference in
the format of the temporary files gains a speedup of factor
of two. For loading the second period the two algorithms
perform similar, but for the subsequent periods incremen-
tal loading is clearly faster, because it only depends on the

number of input tuples. This can be seen also in comparison
with the data distribution in Figure 4. For an integrated ver-
sion of the loading algorithms one should expect a speedup
of several factors, because the current implementation of the
UB-Tree causes a lot of interprocess communication and
performs own page handling.
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A look at the page statistics in Figure 6(a) yields that in
average there have been 20 updated pages for loading one
period where there are approximately 119393 new pages.
This confirms our assumptions and analysis that loading
new data into an unpopulated part of the cube updates only
a small portion of the existing pages. Figure 6(a) shows that
99.99% of the pages of the final UB-Tree are filled with 24
resp. 23 tuples (a page utilization 74% and 77%). The other
0.0174% of the tuples are stored on pages with an average
page utilization of 65%!

With initial loading of all periods one gets 1786163 data
pages. This is means incremental loading produces just
4736 pages more than initial loading.

Very interesting is the fact that incremental loading usu-
ally requires to update only a few pages of the existing UB-
Tree. This happens because the different periods contribute
data to different parts of the cube, due to their difference
in the Time dimension. Therefore, no measurable perfor-
mance disadvantage for range query processing will occur
when using incremental loading instead of initial loading,
but there is a big speedup when loading the data.

7 Conclusion

In this paper, we have considered the problem of bulk
loading the UB-Tree. We have presented two UB-Tree bulk
loading algorithms which are simple, robust and provide ex-
cellent performance.

Initial loading provides tuple and page clustering, which
lead to optimal range query performance. It can also be
used for reorganizing UB-Trees and merging an existing
UB-Tree with others or a new data set. When initial loading
is too expensive, since it affects only a subset of pages of an
existing UB-Tree, we can use incremental loading, which is
superior compared to random insertion. It is usually much



Period total updated created

1 112641 1 112640
2 225952 17 113311
3 338714 32 112762
4 460728 8 122014
5 578525 34 117797
6 709274 1 130749
7 827758 32 118484
8 947911 18 120153
9 1068263 35 120352

10 1194613 8 126350
11 1318283 34 123670
12 1453864 3 135581
13 1576039 34 122175
14 1701450 17 125411
15 1790900 29 89450

total – 303 1790899
average – 20.2 119393.26

(a) Pages creations and updates

% of all
pages

page
count

page uti-
lization

tuple
number

% of all
tuples

0.0018 33 51% 528 0.0012
0.0018 33 54% 561 0.0013
0.0020 36 58% 648 0.0015
0.0021 37 61% 703 0.0016
0.0020 36 64% 720 0.0017
0.0024 43 67% 903 0.0021
0.0024 43 70% 946 0.0022
6.2913 112670 74% 2591410 6.0451

93.6913 1677917 77% 40270008 93.9398
0.0004 7 80% 175 0.0004
0.0003 5 83% 130 0.0003
0.0005 9 87% 243 0.0006
0.0004 7 90% 196 0.0005
0.0002 4 93% 116 0.0003
0.0003 5 96% 150 0.0003
0.0008 15 100% 465 0.0011

(b) Page distribute according to utilization
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Figure 6. Page Statistics for MAI DW

faster than random inserts and it is able to create partial page
clustering.

Incremental loading is always beneficial when new data
contributes only to so far unpopulated parts of the indexed
space. Data warehouse applications have this property and
therefore incremental loading is very beneficial because the
number of page updates is minimal. Thus, we can give
page utilization and clustering guarantees. Of course our
techniques are also applicable to bulk loading UB-Trees in
general.

Additionally we have shown that UB-Tree bulk loading
can easily be integrated into a DBMS which uses B-Tree.
Existing techniques for sorting etc. and the existing infras-
tructure of a DBMS can be reused. One may decide to make
only minor changes in order to provide bulk loading tool
for UB-Trees by extending an existing B-Tree bulk loading.
However, one may also integrate the presented incremental
bulk loading algorithm with some more effort in order to

gain its benefits.
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