Exploitation of Pre-sortednessfor Sortingin Query Processing:

The TempTris-Algorithm for UB-Trees

Martin Zirkel™

Bayerisches Forschungszentrum *
fur Wissensbasierte Systeme
Orleansstr.34, 81667 Miinchen, Germany

Volker Markl”

Rudolf Bayer*

IBM Almaden Research Center’
K55/B1, 650 Harry Road, San Jose,
CA 95120-6099,USA

zirkel @f orwiss.tu-muenchen.de, bayer @in.tum.de, marklv@us.ibm.com
http://mistral.informatik.tu-muenchen.de

Abstract

Bulk loading is used to efficiently build a table or access
structure, if a large data set is available at index
creation time, eg., the spool process of a data
warehouse or the creation of intermediate results during
qguery processing. In this paper we introduce the
TempTris algorithm that creates a multidimensional
partitioning from a one-dimensionally sorted stream of
tuples. In order to achieve that, TempTris exploits the
fact that a one-dimensional order can be used as a
partial multidimensional order for the creation of a
multidimensional partitioning. In this way, TempTris
avoids external sorting for the creation of a
multidimensional index. In combination with the Tetris
sort algorithm, TempTris can be used to create
intermediate query processing results that can — without
external sorting - be re-used to generate various sort
orders. As example of this new processing technique we
propose an efficient algorithm for computing an
aggregation lattice. Thus, TempTris can also be used to
speed up the processng of CUBE operators that
frequently occur in OLAP applications.

1 Introduction

In query processing, operators often produce
intermediate results in a specific sort order, eg., a
clustering index access or a sort-merge join. In practice
even spool files used for bulk loading in data warehouses

Copyright 2001 |EEE. Published in the Proceedings of IDEAS 2001 in
Grenoble, France. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promo-
tional purposes or for creating new collective works for resale or
redistri-bution to servers or lists, or to reuse any copyrighted component
of this work in other works, must be obtained from the IEEE. Contact:
Manager, Copyrights and Permissions/ |EEE Service Center / 445 Hoes
Lane/ P.O. Box 1331/ Piscataway, NJ 08855-1331, USA.

(DW) are often sorted with respect to one dimension, e.g.,
the time dimension. During further processing, the sort
order of the intermediate result or spool file can be used
to efficiently compute the result of further operators like
projection or joining. In this paper, the sort order of the
input is exploited for generating a multidimensional
partitioning.

A multidimensiona organization of an input stream or
table has many useful applications in query processing,
e.g., when query processing requires answering a set of
sub-queries with multi-attribute restrictions or when
further processing the stream in different sort orders than
the original one.

So far there has been aready some work on bulk
loading for multidimensiona index structures, such as R-
Trees [8], Gridfiles [13] and quad trees [7]. These
algorithms have an |/O complexity of O(P-log P) for an
input size of P pages, which is usually due to the fact that
these approaches do not utilize a pre-sorted input and thus
require external sorting of the input data.

For B'-Trees and multidimensional access methods on
top of these, packing algorithms can be used with minor
modifications. The common method to create a space-
optimal B-Tree is to sort the data with merge-sort
according to the index key and write tuples in sort order
into disk pages, filling up each page to the desired degree
of page utilization.

Nowadays, the usua method for sorting in database
systems is the sort-merge agorithm [9], i.e. the input data
is written into initial sorted runs and then merged into
larger and larger runs until only one run — the sorted
output - is|eft.

The contribution of our paper is to introduce the
TempTris-Algorithm, a processing technique for the
creation of a multidimensional partitioning without
external sorting. TempTris generalizes the bulk-loading

algorithm for UB-trees [2] by utilizing the order of the
input stream. The basic idea of TempTrisisto utilize the
linear ordering of a tuple stream for the creation of a
multidimensional space partitioning based on a new target
order. A sweep line - defined by the attribute the input
stream is sorted on — is used to separate the stable part of
the partitioning (which can safely be written to disk) from
the dynamic part (where insertions still may take place
and thus would require additional 1/O, if this data was
already written to disk). Therefore the TempTris
algorithm is adaptive in the sense that it does less work as
the input stream has some degree of pre-sortedness.

The typicd application of TempTris is creating
clustering indexes and tables in a bulk loading fashion. In
this way, TempTris is useful both for the cresation of
permanent tables and for the onthefly creation of
intermediate results as they occur during query
processing.

In contrast to al previous work, our method utilizes
the fact that the input is one-dimensionally sorted for the
creation of the partitioni ng. We give a concise evaluation
by creating UB-Trees with the TempTris algorithm. We
compare our technique against the traditional sort-merge
techniques that are state-of-the-art for index bulk loading.
We adso present an efficient processing technique for
computation of aggregation networks [12] that combines
Tetris and TempTris and apply it to the cube operator [4]
onareal datawarehouse from “GfK”*.

TempTrisisthe inverse operation to Tetris (which cre-
ates a linealy ordered stream of tuples from a
multidimensional partitioning, see[14]). This allows for
carrying over to TempTris many of our analytical and
experimental results of the Tetris algorithm. In particular,
with sufficient, but modest cache memory, TempTris does
not require external sorting.

The rest of the paper is organized as follows: Section
2 introduces the TempTris algorithm. Section 3 gives an
example of the TempTris algorithm creating the Z-region
partitioning of UB-Trees. Section 4 anadyzes the
performance of TempTris and compares it to the
performance of merge-sort, the usual technique for bulk
loading. In Section 5 we discuss a new efficient
processing technique for the cube operator based on a
combination of TempTris and Tetris. Section 6 presents
measurements results and Section 7 concludes our paper
and gives an outlook on future work.

2 TheTempTrisAlgorithm

The basic idea of TempTris is to create a new target
order from a sorted stream of tuples (i.e, a source order).

! GfK stands for “Gesellschaft fiir Konsumforschung”, the
largest German Market Research Company.

This target order can be used to organize a relation with a
multidimensional access method on secondary storage.

During arun of TempTris a sweep line technique [16]
is used to distinguish between dynamic data (that consists
of regions of a partitioning that must still be kept in
memory cache for processing) and stable data (that
consists of regions of a partitioning that can already be
written to disk and will not be touched again). The
direction of the sweep-line is determined by the sort order
of the input stream. Basicaly, TempTris iteratively
appliesthe following two steps:

Insert a tuple according to the target order into a
dynamic region and split the region if necessary

Make al dynamic regions stable, which do not
intersect the sweep line

2.1 Terminology

The following notations of relational database systems
and the formal concept of multidimensional regions will
serve as basic terminology for describing the TempTris
Algorithm:

Let Rbe ardation having d attributes A,,..., Ay of do-
mains W,,..., Wy composed of tuples x = (Xy,..., Xg). Let
<gm (dimT {1,...,d}) beatotal order on W, and ming,
resp. maXg, the minimum resp. maxi mum value of W,.

W=W," ..." Wy=[min;,max,] " ...” [ming maxg]

is the base space of the relation R. Each <y, definesa
partial order onW. Risafinite subset of W, i.e, R W.R

is partitioned into a finite set of pages. Each page p stores
alimited number of tuples.

@ (b)

:) : 1
min =0 =lo min,=0 c=10

] Qs (stabl region
Figure 2-1: Terminology

| | Grina cluster @ tuple

Aregionr;isasubspace of W,i.e.r; ? W.A page p
correspondsto aregionr (p« r),if al typles stored on p
arelocated intheregionr , i.e.,

p« rU (xT pU x1 rcCp).

A (digoint) region set Q (cf. Figure 2-1a) of Wisa

setof regions{ry, ..., r} with

For a 16x16 universe W with A; as horizonta
dimension, A, as vertica dimension and the origin (0,0) in
the upper |€eft corner, Figure 2-1a shows the geometry of
7 regions{rq,rorsrs, rsrs,rgh, Figure 2-1b showsa
further region r ¢ that has been created from the region set
of Figure 2-1a by splitting r; into r; and rg. For the
regionsr, andrg, Figure2-1 aso showsthe four (Figure
2-1a) respectively three (Figure 2-1b) tuples, that are
stored on the pages corresponding to these regions.

A cluster (cf. Figure2-1b) isa sub-space of W, which
restricts one attribute Ay, to alinear interva [agm, Dgm 1

Clay,, by, = [Ming, maxq]” ..." [a,b] " ...” [ming, max]

Figure 2-1 aso shows the cluster Cpy, , for the

tuple ty = (tx, ta) = (10,12) with respect to attribute A,
i.e., the cluster Cg ;-

A sorted stream Sy« is an ordered set that contains
exactly the tuples of the relation R. The tuples of Sz« are
ordered ascending by <. The function removemin(S;.)
removes the smallest tuple from the stream and returns it
aresult.

During a run of the TempTris dgorithm, we cal a
page to be stable if the set of tuples stored on that page is
fixed (i.e., no further tuple will be removed or inserted
during further iterations); otherwise we cal a page
dynamic. We aso use the term stable region (dynamic
region) for the region corresponding to a stable (dynamic)
page.

2.2 TheTempTrisAlgorithm

TempTris divides the base space W into two digoint
region sets, the dynamic region set Q° and the stable
region set Q°. For the following explanation we consider
Asm to be the attribute according to which the input
stream is sorted. t4, iS the position of the sweep ling, i.e.,
the attribute value of Ay, of the current tuple of the input
stream. The stable region set is the set of regions fully

contained in the cluster C . The regions

[MiNn g tgim - 11
{ri,rorarars}in Figure 2-1a show the stable region
set and {r,, rg} isthe dynamic region set for the sweep
line with position ¢ = 10. The same holds for Figure
2-1b, which contains one further stable region rg which
has been created by splitting r;intor; andr.

During a run of TempTris, the stable page set
corresponding to the stable region set Q° will be built on
disk. In order to achieve that, TempTris caches the
dynamic page set corresponding to the dynamic region set
QP in main memory.

Suppose we have a stream SR,<d.m that is sorted with

respect to attribute Agn,. In the beginning, the dynamic
region set Q° consists of one region that covers the whole

base space W. The stable region set Q° is empty. Each
tuple t = removemin(SRSdlm) of the stream SR,<dm is
iteratively inserted into aregion r of the dynamic region
set according to the target order. The value ty,, of the sort

attribute of the current tuple t defines a sweepline that is
used to distinguish Q° and Q.

TempTris(Sg <im dim, Q%)

tuplet;
regionr ,rf 5
region-set Q° = {W};
region-set D= /;
Q= £
While(SR,<dim ? 'CE)
{
t= removemin(Sg qim);
* find the (unique) dynamic region containing t */
ro={rrT Q°andtl r}
[* insert t into corresponding page*/
page(r 1) = page(r) E{t};
if(Jpage(r 1)| > max_number_of_elements)
{ I* region overflow caused by page overflow*/
[* splitr intor, andr , aswdl as the */
[* corresponding pages */
split(r r 4,1 2);
[* update dynamic region set */
| QP =Q°\{r YE{r,} E{r,}
D={r|ri QPandr ¢ C

if(D? &)
{

:r}

[mindim vtdm - 1]

[* cacheflushing: flush all new stableregions */
[* todisk */
[* write pages corresponding to Dto disk */
Q°=Q°ED
[* remove pages corresponding to Dfrom*/
[*main memory */
Q=qQ”\D
}

[* write pages corresponding to the remaining dynamic */

[* regionstodisk */

QC=Q°EQ

Figure 2-2: TempTris Algorithm (pseudo code)

When consecutively inserting tuples, the sweepline
moves forward. Q° grows when a region r is split into
two regions r; and r, due to an overflow of the
corresponding page. When a dynamic region is no longer
intersected by the sweepline, it becomes stable and is
removed from QP (cache flushing). When the last tuple t

of SR,<d.m has been processed, the remaining dynamic

region set Q° becomes stable and is aso written to disk.
At this point the multidimensiond region partitioning has

been created. The TempTris agorithm is sketched in
Figure 2-2.

2.3 Correctnessof TempTris

The correctness of the TempTris agorithm can be
proven easily. In the following we merely sketch the idea
of the proof.

The stable region set grows monotonicaly until al
tuples of the input stream have been processed. Since the
input stream is sorted, no tuples will be inserted into
stable regions that are “left of the sweepline’, i.e,

intersecting the cluster C[minl,tal-ll . Thus each tuple is

stored in a page corresponding to a unique region and all
regions created by TempTris are digoint. Summing up,
the regions generated by TempTris form a digoint
multidimensional region partitioning. This proves the
correctness of TempTris.

2.4 Basic Performance Observations

TempTris writes each region only once. Thus for
generating a partitioning of P pages, TempTris needs to
perform P page write operations, resulting in an 1/O-
complexity linear in the size of the input stream if
sufficient but modest memory is available.

The dynamic region set maintained by TempTris in
worst-case contairs P regions, thus requiring to store the
entire stream in main memory to create the partitioning.
This extreme case happens, if all tuples have the same
valuein the sort attribute. In this case, the sweep line does
not move and no regions can be made stable until the very
end of the algorithm. In this case the sort order is not
useful for creating the partitioning. If P does not fit in
main memory, TempTris should call merge-sort to
perform the sorting in this worst-case scenario. Note that
no unnecessary 1/Os are caused by TempTrisin this case:
The main memory cache of TempTris then can be used to
create the initial runs for merge-sort. If a part of the
region iswritten to disk the incrementa loading agorithm
presented in [2] can be applied.

For query optimization that means, one can call
TempTris each time one would call merge-sort for
creating a partitioning of a sorted stream. If TempTris
cannot exploit the sort order efficiently, it — without
having caused unnecessary 1/0s - can dynamically switch
to merge-sort instead.

However, if the sort order is useful, one can expect the
region and page cache to contain about P/|A .| entries
with |Agm| being the distinct number of values in the
sorting dimension contained in the input stream. A
detailed andysis of the cache for uniformly distributed
dataisgivenin Section 44.

2.5 Possible Optimizations of TempTris

Page utilization of the stable region set created by
TempTris is a critical performance issue: Firgt, with a
better page utilization fewer disk pages will be needed to
store the multidimensiona partitioning. Second, with a
smaller amount of overall disk pages, queries on the
partitioning will be faster, since then fewer disk pages are
accessed.

TempTris as described in the previous section
immediately splits disk pages when they overflow and
thus may only guarantee a worst-case page utilization of
50%. However, the average page utilization with this
strategy will also not be much better. Applying improved
splitting agorithms as described in [10] for B-Trees, the
average storage utilization can beincreased to up to 81%.

A further improvement is to use a different page
concept for the dynamic regions stored in main memory
cache. Inthiscase, it is not necessary to have afixed page
capacity, but instead fill up the pages with tuples until the
cache overflows (i.e., dynamic page size). The split into
pages of fixed size then takes place when the cache is
flushed. Thisalowsfor creating large sets of pages with a
utilization of 100%. Then pages can be bulk written to
disk in sequential order, which may also be exploited by
sequentia readsin further processing.

An dgorithmic improvement of TempTrisis to avoid
caculating the stable candidates of the dynamic region
set, i.e, theset Din Figure 2-2, only after aregion split or
movement of the sweep ling, thus avoiding unnecessary
caculations and checks, reducing the overal CPU time
required for TempTris.

3 TheTempTris-Algorithm for UB-Trees

In the following we give an example of TempTris
creating the Z-region partitioning of UB-Trees (i.e., a d-
dimensional UB-Tree). To be able to exploit the order on
attribute Ay, for the Z-region creation, Az, Must be one
of the index attributes of the UB-Tree.

3.1 UB-Tree, Z-ordering

The UB-Tree[1],[17] uses a spacefilling curveto cre-
ate a partitioning of a multidimensiona universe while
preserving multidimensional clustering. Using the Lebes
gue-curve (Z-CurveFigure 3-1.a) it is a variant of the
Zkd-B-Tree [15] partitioning the universeinto Z-regions.

To define the UB-Tree partitioning scheme, we need
the notion of Z-addresses and Z-intervals. We assume that
each attribute value x; of attribute A of a d-dimensional
tuple X = (Xy,...,Xg) consists of s bits” and we denote the

2 Our implementation uses different lengths for the binary
representation of attribute values. We just use identical
lengths for an easy illustration.

binary representation of attribute value X; by X; ¢1X; s2...X; 0.

A Z-address a = Z(x) isthe ordinal number of atuplex on

the Z-Curve and is cdculated by interleaving the bits of
the attribute values:

so- 1

Z2(x)=a

i=0 j=1

ixd+j-1
X;; X2

oo

For an 8" 8 universe, i.e, s=3and d =2, Figure 3-1.b
shows the corresponding Z-addresses.

dimension1 dimension 1
0 1 4 5 16|17 |20 |21
2 3 6 7 18119 | 22|23
N 8 9 12--13'| 24| 25 | 2829 N
c c
k=] 10|11 | 14|15 | 26-|-27 | 30|31 2
@ 2
(5] 32733 | 36|37 | 48|49 | 52|53 (]
£ £
kel 34|35 | 38|:39 | 50-|-51 | 54 |.55 he}
40|41 | 44145 |56 |57 | 60|61
 j 42143 | 46147 | 58|59 | 62|63
(a) Z-curve/ 3ndlevel (b) data
dimension1 region Z-interval data
57 L] 57 1 [0:7] 04
H 2 [8:15] {9
o (B = 3 [16:20] {20}
sl za=125 - 4 [21:27] {21,26}
21 = 5 [28:35] {31,32}
g V /] 6 [36:43] {39,40}
= Z]
= E - 7 [44:59] {47,51}
[= 8 [60:63] {63}
A - Kl

(c)Z-regionPartitioning (d) Z-interval, Data

Figure 3-1: Z-Curve, Z-addresses, Z-regions

A Z-region [a : b] is the space covered by an interval
on the Z-Curve and is defined by two Z-addresses a and
b. Figure 3-1c shows a partitioning with eight Z-regions.

3.2 Example: Creating a Z-Region Partitioning

with TempTris

The following example illustrates TempTris by
creating a two-dimensional Zregion set Q° Figure 3-2
shows some steps of TempTris for a two-dimensiona
space with A; as horizontal dimension, A, as vertica
dimension and the origin (0,0) in the wpper left corner.
For our example we assume a page capacity of 2 tuples.

In the beginning, the dynamic region set consists of
only oneregion Q° = {W} = {r,}, Q°isthe empty set.
We denocte the position of the sweep line in the sort
dimension by c. In Figure 3-2a TempTris has not started
reading any tuples and therefore only region W1 QP is
intersecting the sweep lineat c= 0.

Figure 3-2b shows three dynamic regions created by
TempTris having read 5 tuples from the input stream, i.e,
QP ={ryrars}. ts = (1,3) was the last tuple inserted.
Thusthe current position of the sweeplineisc=1.

Al tg

A2

c=2

©
Figure 3-2: TempTris Algorithm for UB-Trees

In Figure 3-2c, tg is inserted and moves the sweepline
to ¢ = 2. Now the dynamic region denoted by r ; does not
intersect the cluster G, anymore. As a consequence, no
more tuples may be inserted into r ;. Thus this region is
made stable, i.e., the page corresponding to that region is
removed from main memory and written to disk. The
stable region set now consists of Q% = {r 3}, the dynamic
region set isQ° ={ ry,r}.

In Figure 3-2d the stable region set consists already of
5regions, Q° = {r, 3 rals e}. If the last tuple tis
processed, the remaining dynamic region set Q° =
{r 4, r 7} ismade stable and the UB-tree is compl eted.

3.3 Maintenance of the Cache

The dynamic regions are organized according to Z
order and Tetrisorder. For each ordering we provide an
index structure for efficient access. With the Zindex a
new tuple can be inserted in the corresponding page like a
point query. The task of the tetris-order is to handle the
sweep line that can be mapped to a range-query.

In [14] the Tetrisorder is introduced that creates a
total order with respect to A from Z-addresses. The
Tetris-address extracts an attribute from a Z-address and
concatenates it with the reduced Z-address. Formally the
Tetrisaddressis defined as follows:

Ti(X) = Xj o Z(Xpsee X1 Xj1s -2+ Xa)
Figure 3-3 presents the Tetrisorder for the two
dimensional case.

001234567A2

|

01234567A2

N\

01234567A2

q

wPNous wNRO
PN s 0N O

Figure 3-3: Two Tetris Orderings for the two dimensional
case

If we use the Tetris-order defined by the sorting
dimension all tuplex located in stable regions Q° have a
smaller Tetrisvalue Tj(x) than the smallest Tetris value
of the sweep-linec.

{T)IxT r and r T Q% <min{Ty(X)|x =c}

Therefore, for each dynamic region r is indexed
according to the maximum Z-value and Tetrisvaue.
Figure 3-4 depicts the Zvalue and Tetris-value of the

region [12,35]. The maximum Z-vaue is 35 and the
maximum Tetris-vaue has the ordinal 31.

@ T-address
o

O O Zades

Figure 3-4: Z-address and Tetris-address

The computation of the maximum Tetris value can be
done in linear time by bit-operations and is therefore of
O(n) whereas n isthe number of bits that represent Z(t).

4 Performance Analysis

For the creation of a Z-region partitioning from a
sorted stream S g4, we define cost functions for
processing times and intermediate temporary storage. Our
analysis considers the TempTris algorithm and external
sorting according to Z-values[2].

The Cost Model

In accordance with [6] we use a cost model that takes
random pages accesses and page transfers into account.
Let t, bethe (average case or worst case) positioning time
and t; be the transfer time of a hard disk. We assume that
the prefetching or write caching strategy of thefile system
reads or writes a physical cluster of L consecutive pages
from disk with one random access. This takes time t, +
t,x. Reading or writing k pages in consecutive order
therefore takes

Cocan(K) = &K/LUX, + max(k, L)

4.1

4.2 Cost Functions

Using the cost model of Section 4.1 we calculate the
cost of sorting arelation of P pages usng a main memory
of M pages and a merge degree of m for the merge-sort
algorithm. The bulk loading mechanism using merge-sort
[2] divides the load process into aretrieval phase (which
retrieves the data to create initial runs for the merge-sort)
and a sort phase (which actually performs the merge-sort).

SELECT regi on FROM T- | ndex
VWHERE T(region) < T(sweep-line)

1 "
Cread (P) = C\Nrite(P) = §p T +tt QXP
e L o

We sometimes do not distinguish between read and write
operations and then use c,,(P) for the cost of reading or

writing P pages.
2 P e
c (P)=¢c_,(P)+c o~~~ X
TempTrls() read() Wmegpage_utilizatiqnb
2>cr/W(P)+2>crlw(P) ,|f £<m
M Y— M

initialphase Sortphase

C
2>, (P)+ 2><Cr,W(P)><IogmE ,otherwise
I %f_/ M

i
i
!
ms = I
[
% initialphase

Sortphase

Figure 3-5: Determination of theD set

With this property the D set, i.e. the region which
becomes stable, can be very efficiently determined by a
range query (cf. .Figure3-5).

Figure 4-1: Cost functions

Using a full table scan for the retrieval phase to create
the initia runs (Creg + Cwrite) 1N CONjuNction with merge-
sort agorithm results in the formula for ¢, Using a full
table scan for retrieva the phase in conjunction with
TempTris results in the formula for Cremprris. If M >P
sorting takes place in main memory. Then the merge sort

P
factor of ¢, is reduced to zero. If V <m then the

sorting can be done with one run and the merge-sort
algorithm resultsin the formula:

Cms = 4>Cread/write(P)

To reduce the 1/0 cost of the merge sort agorithm the
merge degree should be set to maximum size with respect
to the main memory and therefore the merge degree is set
to

m=—
M
For a main memory of size M the maximum table size
that can be computed in linear timeis
M 2
max_tableﬂzezT

4.3 Processing Time

Current operating systems usualy fetch L = 8 pages
physical disk pages with one random access. Four our
cost analysis to create a multidimensiona partitioning as
target sorting from a one-dimensional source sorting we
assumet, =10 msand t;= 1 ms, amain memory cache of
32 MB and a merge degree of m = 2047 (best case).
Therefore the sort merge algorithm can sort 64 Ghbyte in
linear time. We set the constant page utilization of
Crempris 10 8196 (see Section 2.5).

10000
9000 /.‘-
» 8000
0
£ 7000
[;‘"Af
S 6000
S
< f, -
2 5000
=
2 4000
]
< 3000 /’ J’f
8 - merge-sor
© 2000 M _._; g; —
1000 W
0

0 100 200 300 400 500 600 700 800 900 1000
table size [1000 pages]

Figure 4-2: Sorted writing with Merge-Sort and TempTris

Figure 4-2 shows the cost of cregting a
multidimensional partitioning of a sorted input stream
with a page size varied up to 1 million disk pages. Asthe
figure shows, according to our cost model TempTris is
roughly two times faster than a competing merge-sort
algorithm.

4.4 Cacheof the TempTrisalgorithm

TempTris requires less temporary memory than sort-
merge. Assort-merge accesses and writes the entire input
stream at |east once for each run, the intermediate storage
for sort-merge is P pages. If the data is uniformly
distributed, TempTris requires amain memory of

P _ dfpd-1

log, P =\VP
2 d

pages to create a d-dimensional UB-Tree . That can be
computed by the size of the table P divided by the number
of splitsin attribute Agy, (i.e. P/2"°*Ve1 Figure 4-3
shows the size of the temporary storage to create the UB-
Tree required by merge-sort and TempTris. The table size
varies from 10K to 1G pages. For a page size of 2kB,
creating a four dimensional space partitioning with
TempTris for a 2GB input stream requires 64 MB
temporary space. For a2 dimensiona partitioning of that
size, only 2MB of cache memory are necessary.

3 50

§ [
H

2

£

1l
. j[
e

0 200 400 600 800 1000
d

aaaaaaaa

caCheTempTris(Pi d) =

——merge sort
—— Temptris 2d
—— Temptris 3d
[~ TempTris 41

oadde™

/

intermediate storage in pages

table size in pages
Figure 4-3: Intermediate stor age sizes of M erge-Sort and
TempTris

Result Table Sizes

As dready mentioned before TempTris with
optimizations can be expected to achieved a storage
utilization somewhere between 80% and 100%.

4.5

storage utilization

Figure 4-4:Stor age utilization

This optimization technique based on sharing. As the
TempTris algorithm maintains the dynamic region in the
memory we generalize this technique and define the
memory pagev asfollows:

v=u’p

u denotes the scale factor of the memory page. Figure
4-4 presents the worst case storage utilization for different
scale factors u and page capacities k. Using the
optimization technique any storage utilization can be
achieved. With a scale factor of 5 we get a storage
utilization at least of 85%.

This of course is worse than bulk-loading with merge-
sort, which always guarantees a storage utilization of
100%. Thus TempTrisisuseful, if

apage utilization of 100% is not desired. Thisistrue
in many OLTP databases, where in anticipation of
further insertions a certain percentage of each pagein
the database is intentionally |eft free, e.g. by setting
the parameter PCTFREE in Oracle.

The multidimensional partitioning is used for asmall
set of queries and then is dropped again. Then the
benefits of TempTris for creating the partitioning
severa times faster outweigh the query response
time, which can be expected to be up to 20% worse
than the response time of a 100% storage utilization
as created by sort-merge.

5 Processing an Aggregation Lattice

We now show a new technique for computing
aggregation lattices by combining TempTris and Tetris.
Aggregation lattices are often used to compute a set of
aggregations efficienty [5]. [12] provides a good overview
of aggregation techniques.

The main optimization for computing an aggregation
lattice comes from the fact that some aggregates do not
have to be computed from the base table, but can be
derived from other already computed aggregates (e.g., the
total sales for ayear can derived from the sales of the 12
month periods).

SELECT Month2 Period, Qutlet,
SUM Sal es) AS Sal es
FROM f act
WHERE Years > 1996 AND
Years < 1999 AND
Country = ‘ Germany’
GROUP BY Month2_Period, Qutlet,
W TH CUBE

ltem

ltem

Figure5-1: A CUBE statement

A common application for this processing techniqueis
the CUBE-Operator [4] frequently used in data
warehousing applications. The CUBE-Operator conputes
2% aggregates of a set of d attributes. Figure 5-1 shows an

example of a CUBE statement performed on areal DW
for a schema provided by the market research company
GfK.

For aggregation, conventiona algorithms first sort or
hash the relation according to the grouping attribute(s).
After sorting, the aggregation can be computed very
easily by smply reading the tuple stream in sort order.
However, sorting is a bottleneck if the result set does not
fit in the main memory and external sorting is necessary.

In order to compute the above three dimensional cube,
8 groupings have to be computed. The result of CUBE is
then a union of these groupings. The corresponding
aggregation lattice together with the size of each sub-
aggregate in pages is shown in Figure 5-2. Each node of
the network represents one grouping of the cube.

Usudly, this aggregation network is processed as
follows: For each node the conventional aggregation
algorithm is performed. With level 0 being the base fact
table, the result set of anode of level i istheinput for the
node at level i+1.

5.1 Cube Calculation by Sorting

In the following we caculate the I/O-cost for
processing the aggregation network, assuming that no
I/Os are necessary if an intermediate result fits into main
memory. For our further considerations we assume amain
memory cache of 16000 pages.

Level 3

477

Outlet Level 2

1,803

| Arowew urew oy sy |

Item

sequential
read

138,033 473,488

Month2Period, Outlet evel 1

Item, Month2Period

sequential
read

Item,Month2Period Outlet
composite B-Tree
Fact Table

Item, Outlet

sort

lz{towel.u urew ojul 110U ss0q I

1,929,735 Level 0

Figure 5-2; Aggregation L attice; External sorting

We sdected the caculation paths through the
aggregation lattice by the heuristic “Re-use existing sort
orders and use the smallest sub-aggregate for calculating
an upper node of the aggregation lattice’, which has
proven to be a reasonable heuristics in many practical
applications.

The nodes of the aggregation lattice have the
following size:

Aggregate
Item, Month2Period,

Sizein pages label
1929735 P1

Outlet

Item, Month2Period 138033 P2
Item, Outlet 473488 P3
Month2Period, Outlet 24953 P4
Item 1803 P5
Month2Period 1 P6
Outlet a477 P7

We assume two passes over the data for sorting and
the cost of reading and writing a page to be identicdl, i.e.,
sorting P pages has a cost of

Ca)n(P) = 4)creadlwrite (P)

We dso assume to have created a composite
clustering B-Tree on Item, Month2Period, Qutlet in this
lexicographic order on the base fact table. Therefore,
computing the aggregates <ltem, Month2Period> requires
a sequential read of the B-Tree consisting of P, pages and
asequentia write of theresult, i.e., P, pages:

C(Item,MonchPeriod) =Crea (Pl) + Curite (Pz)

The cdculation of <Item> reuses the aggregation
result <ltem, Month2Period> and accordingly requires
sequential reading and writing:

C(Item) = Cread (PZ) + erite(PS)

To compute the node dtem, Outletfithe fact table must
be sorted requiring to read P, pages for the creation of the
initial runs. Then those runs are written to disk again
resulting in writing P, pages. Merging and aggregating
the runs again requires P, read operations. Finally writing
the aggregation result is another P; page write operations:

C(= 2>Cread(Pl) +erite(P1) +erite(P3)
To compute aJonth2Period, Outletii sorting is
necessary with the cost
“

Item,Outlet)

Month2Period,Outlet) = 2>Cread (Pl) +

erite (Pl) + erite (P4)

Deriving <Month2Period> from this sub-aggregate
requires only sequentia read and write operations:

C(= Cread (P4) + erite(PG)

Finaly, the node avionth2Period, Outletfican aso be
used to calculate outlet, this time requiring a sort
operation:;

C(Outlet) =2 *Cead (P4) + erite(P4) + erite(P7)
Thusthetotal cost for aggregation using sorting is:

Month2Period)

aggregate/ sort
Ccube =7x

read/write(Pl) +2>C
Cread/write(P3)+5>C (P4)+

+ Cread/ Write(PS) + Cread/write (PG) + Cread / write (F)7)

(P)+

read / write

read / write

5.2 Cube Calculation by Combining TempTris
and Tetris

Now we present our new approach that combines
TempTris with Tetris. We organize the fact table of the
"GfK”-schema as a UB-Tree. The Tetris dgorithm [14] is
used for sorted reading from the fact table, which is
organized as a UB-Tree, as well as from the temporary
UB-Tree created by TempTris storing the aggregation
result of <Month2Period, Outlet>. Tetris does not require
external sorting, if the main memory cacheis sufficient:

According to [14], Tetris requires a main memory

cache of at most 3/P,”> =15501<16000 pages for

processing the 3 dimensional cube statement without
external sorting. The same maximum number of cache
pages isrequired by TempTris as shown in Section 4.4.

In contrast to the aggregation lattice in Figure 5-2, the
organization of the fact table as UB-Tree allows for using
Tetris to create the aggregation results of <ltem,
Month2Period> and <Item, Outlet> without external
sorting.

Level 3

Outlet Level 2

| Alowaw urew ojul sy |

sequential

138,033 read

Item, Month2Period

Tetris

Level 0

| AIoWaW urews ol 11§ 10U Se0q |

Item,Month2Period Outlet
UB-Tree
Fact Table

1,929,375

Figure 5-3: Aggregation Lattices; Temptris

In addition, Tetris produces a sorted stream on
Month2Period or Outlet which is used by TempTris to
create a temporary UB-Tree on <Month2Period, Outlet>.
As TempTris usually does not achieve a 100% page
utilization, the size of this UB-Tree is larger then the
result obtained by merge-sort. Assuming a page
utilization of 81% as described in Section 25, the UB-

Tree created by TempTris contains 31,192 pages in
contrast to the composite clustering B Tree created by
merge-sort, which contains 24,953 pages. The temporary
UB-Tree is necessary to apply Tetris again for the
creation of the <Month2Period> and <Outlet>
aggregations. This strategy avoids external sorting for
cal culating the cube.

With TempTris and Tetris the I/O-cost for calculating
the cubeisasfollows:

C(Itaﬂ,MonchPa'iod) = Cread (Pl) + erite (PZ)
C(|tem) = Cread (Pz) + varite(PS)
C(= Cread (Pl) + erite(Ps)

C(MonchPeriod ,Outlet) = Cread (Pl) + erite (P4)

Item, Outlet)

C(MonchPeriod) = Cread (PA) + erite(PG)

= Cread (P4) + erite(P7)
Therefore total cost for our new approachis:
temptris/ tetris
Ccube - 3>Cread/write (Pl) +2 >Cread/write(pz)

read/write(PS)+3>c (P4)+

+ Cread/write(PS) + Cread/write(l:)6) + Cread/write (P7)

For our example this means that the approach for
aggregation by srting accesses 14,384,745 disk pages,
roughly twice the number of pages that Tetris and
TempTris access (6,615,899 disk pages). This
improvement is due to two factors: First, Tetris saves 4
times reading the base table. Second, creating the
intermediate result for <Month2Period, Outlet> by
TempTris alows for also applying Tetris here, saving two
times reading thisintermediate result.

If the cube consists of more than 3 dimensions, the
combination of Tetris and TempTris will benefit even
more. In this cese, there are more opportunities for
applying TempTris and Tetris resulting in further savings
of disk accesses.

C(Outlet)

+C read / write

6 Performance Evaluation

The measurements presented here have been made
with the prototype implementation of the UB-Tree. It is
redlized as middleware between a database management
system and a database application. We have implemented
the TempTris Algorithm for Transbase UB-Tree
middleware. An Intel Pentium 111 500 CPU with512 MB
RAM has been used for these measurements. The
databases were created on 9 GB hard disk with an average
position time of 7,9 ms and a transfer rate of 0,6 ms per
page. The machine runs under SUSE Linux 6.2, kerne

version 2.2.10 SMP. To get no unpredictable cache
effectswe disable all systems caches.

Set |01 02 03 04 05 06

size |[32MB | 64MB | 128MB | 256MB | 512MB | 1024MB

Tuple | 335544 | 655360 | 1310720 | 2621440 | 5242880 | 10485760

Table 6-1:Size of the data sets

To show the performance gain of the TempTris
algorithm we create 6 three dimensional data cubes with
uniformly distributed data. Each cube is created from a
different data set. The size of a tuple was 100 bytes and
the page size was set to 2 kB. The size of each set is
depicted in Table 6-1.

14000
12000
10000

8000

Time (sec)

6000

4000

== TempTris

2000 [=¥=Merge Sort

0

0 2000000 4000000 6000000

Number of tuples

Figure 6-1:L cading performance

8000000 10000000 12000000

Each cube is created by the TempTris algorithm and
external sorting. The implementation of the externa
sorting does not use replacement selection [3], that based
on aheap to create runsthat are larger than memory. With
replacement selection the expected number of runs is
about half as many runs as created by quicksort [9].
However, the advantage of having fewer runs must be
balanced with the different 1/O pattern and the
disadvantage of more complex memory management [3].

4,0

3,6

2,8
24
=}
T 20
4

8- Merge Sort/ TempTri

0 2000000 4000000 6000000

Number of Tuple

Figure 6-2:Ratio merge-sort and TempTris

8000000 10000000 1200000

In[11] it isshown that it is possible to create 1.8 times
larger runs than the workspace. But this has no influence

on the measurement. As we set the available cache M
used by the merge sort and TempTris agorithm at most
half of the size of the measured sets and smaller than
M >m, external sorting is required and is done in linear
time. To cerate a storage utilization at least of 95 % we
use ascding factor for TempTris agorithm with u = 10.

Figure 6-1 shows the measured times for the creation
of 6 UB-trees from the different sets. One time with the
TempTris dgorithm and one time with the external sort
algorithm. The TempTris algorithm is superior to merge
sort agorithm. Both agorithms create the
multidimensional index in linear time as predicted with
our theoretical modd (cf. Figure4-1).

Figure 6-2 shows the performance ratio between the
external sorting and TempTris. With the TempTris
algorithm we gain an average speedup factor of 2. Aswe
use a page scaling factor u = 10 the page utilization is
about 95% (cf.Figure 6-3).

storage utilization
2

-

o 2000000 4000000 6000000 8000000 10000000 12000000

number of tuples

Figure 6-3: Storage utalization

As we said in paragraph 4.4 the creation of a
multidimensional partitioning of a UB-tree with the
TempTris agorithm requires for uniformly distributed

data only ypet temporary main memory pages. d
denotes the number of dimensions.

5000
4500

_ 4000

]

3 3500

3000

g
§ 2500

£ 2000
k]
2 1500

=&~ theoretical
== Temp

1000

0 1000000

2000000 3000000 4000000
Number of tuples stored in DB

Figure 6-4: Cachesize

5000000 6000000

Figure 6-4 shows the measured and the theoretica
cache size. For sets smaller than 1 M the cache size is
above the predict cache size. The reason for this is the
freedom of the split address. For larger sets the cache size
is above of the predicted one and even grows essentia
sower.

In order to evaluate our algorithms with real world
data we have loaded a data warehouse from a leading
German consumer-market analysts institute. They store
data pre-aggregated to two month periods. The data was
stored in a cube with the three dimensions Product,
Segment and Period.

800%
7.00%
600%
5.00%
4.00%
300%
200%

1,00%

0,00%

2 4 6 8 10 12 14 16

Figure 6-5:Data Distribution of DW

The data warehouse used for our measurements
consists of 43 million fact tuples belonging to fifteen two-
month periods. Figure 6-5 depicts the data distribution in
percent according to the periods. The size of a tuple was
56 bytes. In our measurements we have only considered
the fact table, since thisis the biggest table and new data
contributes mainly to thistable.

nnnnn

nnnnn

nnnnn

uuuuu

rrrrrrrr Merge Sort

Figure 6-6: L oading Performance of DW

The page size was 2kB but to the overhead of the page
managemert only 31 tuples fit on one page. As we use a
scaling factor u = 4 the page utilization is about 87%.

Figure 6-6 shows the measured times for loading the
fact table of the DW with the TempTris agorithm and
externa sorting. As predicted in out theoretical model the
TempTris algorithm is superior to merge sort Algorithm.
Both agorithms create the multidimensiona index in

linear time but the TempTris Algorithm shows a speedup
of about afactor 2 compared to external sorting.

7 Conclusion and Future Work

We have presented the TempTris agorithm as an
efficient way for creating a multidimensiona partitioning
from a sorted stream of tuples. This alows for bulk
loading a multidimensiona index faster than the usual
merge-sort algorithm. The main advantage of TempTrisis
that a multidimensional partitioning can be created
without external sorting, if sufficient, but modest cache
memory is presented.

We described the genera adgorithm and illustrated
TempTris by an example creating the multidimensional
Z-region partitioning of UB-Trees. We dso gave a
performance anaysis, which showed a performance
improvement of TempTris over a competing sort merge
algorithm by a factor of two. In addition, TempTris
requires only a root function of the input data set size as
cache, whereas merge-sort requires temporary storage in
the size of the input set.

We have presented performance measurements that
proved our predicted speed up factor of TempTris
algorithm of 2.

In combination with Tetris, the TempTris algorithm
can be used to efficiently compute the CUBE operator, as
we have aso illustrated in this paper by giving the cost
for computing a data cube from a three-dimensiona real -
world schema of GfK. In this example, TempTris
calcul ated an aggregation lattice with two times less page
accesses than the competing method using sort/hash
grouping.

TempTris is a genera approach: it can be used to
create the regular tiling of Grid-Files, the rectangular
partitioning of R-Trees or more complex partitioning
patterns like the Z-regions of the UB-Tree. The man
application of TempTris ae bulk loading of a
multidimensional index, especialy the computation of the
cube operator with aggregation lattices.

TempTrisistheinverse function of Tetris. Thus, many
of the result on Tetris presented in [14] can be taken over
to TempTris, especialy the cost-functions of the cache
size and the guarantees for processing an input stream
with one sweep.

Acknowledgements

We thank our project partners Microsoft Research,
Teljin Systems Technology, and the European Union for
funding this research work. We also thank Sebastian Hick
for doing the prototype implementation.

References
[1] R. Bayer, “The universal B-Tree for
multi dimensional Indexing,” Institut fir

(2]

(3]

[4]

(5]

(6]

[7]

(8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

Informatik, TU Munchen, Munchen TUM-19637,
1996.

R. Fenk, A. Kawakami, V. Markl, R. Bayer, and S.
Osaki, “Bulk loading a Data Warehouse built upon
a UB-Tree” presented a IDEAS, Yokohama,
Japan, 2000.

G. Greefe, “Query Evauation Techniques for
Large Databases,” ACM Computing Surveys, vol.
25, pp. 73-170, 1993.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and H.
Pirahesh, “Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and
Sub-Totd,” Data Mining and Knowledge
Discovery, val. 1, pp. 29-53, 1997.

V. Harinarayan, A. Rgaraman, and J. D. Ullman,
“Implementing Data Cubes Efficiently,” presented
at SIGMOD, Montreal, Canada, 1996.

E. P. Harris and K. Ramamohanarao, “Join
algorithm costs revisited,” VLDB Journal, vol. 5,
1996.

G. R. Hjdtason, H. Samet, and Y. Sussmann.,
“Speeding up Bulk-Loading of Quadtrees,”
presented a8 ACM International Workshop on
Advances in Geographic Information Systems,
1997.

I. Kamel and C. Faloutsos, “On Packing Rtrees,”
presented at CIKM, 1993.

D. E. Knuth, Sorting and Searching. Reading
Massachusetts: Addison-Wesley, 1998.

K. Klspert., “ Storage utilization in B*-trees with a
generalized over ow technique,” Acta
Informatica,, vol. 19, pp. 35-55, 1983.

P. Larson and G. Graefe, “Memory Management
During Run Generation in Externa Sorting,”
presented at SIGMOD, International Conference on
Management of Data, Seattle, Washington, USA,
1998.

W. L ehner, “Aggregatverarbeitung in
Multidimensionalen Datenbanksystemen.,”
Erlangen: Friedrich-Alexander Universitét, 1998.
S. T. Leutenegger and D. M. Nicol, “Efficient
Bulk-Loading of Gridfiles.,” |EEE Transactions
on Knowledge and Data Engineering,, vol. 9, pp.
410-420, 1997.

V. Markl, M. Zirkel, and R. Bayer, “Processing
Operations with Redtrictions in Relational
Database Management Systems without externa
Sorting,” presented at ICDE, Sydney, Austraia,
1999.

J A. Orenstein and T. H. Merret, “A Class of Data
Structures for Associate Searching,” presented at

[16]

[17]

Proc. of ACM SIGMOD-PODS Conf, Portland,
Oregon, 1984.

F. P. Preparata and M. |. Shamos, Computational
Geometry: An Introduction. New York: Springer-
Verlag, 1985.

F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K.
Elhardt, and R. Bayer, “Integration the UB-
Tree into a Database System Kernel,”
presented at the 26 International Conference
on Very Large Databases, Cairo, Egypt, 2000.

