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Abstract

Data-warehousing applications cope with enormous data
sets in the range of Gigabytes and Terabytes. Queries
usually either select a very small set of this data or
perform aggregations on a fairly large data set.
Materialized views storing pre-computed aggregates are
used to efficiently process queries with aggregations. This
approach increases resource requirements in disk space
and slows down updates because of the view maintenance
problem. Multidimensional hierarchical clustering
(MHC) of OLAP data overcomes these problems while
offering more flexibility for aggregation paths. Clustering
is introduced as a way to speed up aggregation queries
without additional storage cost for materialization.
Performance and storage cost of our access method are
investigated and compared to current query processing
scenarios. In addition performance measurements on real
world data for a typical star schema are presented.

1. Introduction

Data processing in data warehousing (DW)
applications uses drill-down operations as well as slicing
and dicing according to several dimensions. For this
reason, multidimensional data models, multidimensional
query languages and even multidimensional DBMS
(MDBMS) have been developed by the research
community and implemented as commercial products. To
a large extent, relational DBMS are used for decision
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support applications, since these systems are well
researched and are reported to provide more efficiency for
huge databases than MDBMS. Regardless, whether a
multidimensional or relational paradigm is used to model
and query OLAP data, queries result in multidimensional
range restrictions in combination with sort operations and
aggregations. Therefore any DBMS storing OLAP data
must efficiently handle this typical query pattern.

Pre-computation, clustering and indexing are common
techniques to speed up query processing. Pre-computation
results in the best query response time at the expense of
load performance and secondary storage space. For DW
applications, pre-computation is mostly discussed for
aggregation operations [CD97]. However, one
requirement of DW is to efficiently deal with ad-hoc
queries. Then, deciding which queries to pre-compute
becomes extremely difficult. Pre-computation also leads
to a view maintenance problem.

Indexing is used to efficiently process a query if the
result set defined by the query restrictions is fairly small.
Most OLTP applications use B-Trees as their standard
indexing scheme. Favoring retrieval response time over
update response time allows one to build several indexes
on one table or data cube of a DW. Bitmap indexes are
widely discussed as an improvement over B-Trees for
DW applications, since they efficiently evaluate queries
with multi-attribute restrictions. However, the overall
result set still must be relatively small. This is a major
drawback of bitmap indexes, since usually a relatively
large part of a cube has to be accessed in order to
calculate aggregated measures.

Clustering places data that is likely to be accessed
together physically close to each other. The goal of
clustering is to limit the number of disk accesses required
to process a query.

The contribution of our paper is a clustering scheme
for the fact table of a data warehouse according to
multiple hierarchical dimensions, so that star joins result
in multidimensional range queries on the fact table. Using
a multidimensional organization of the fact table based on



Z-ordering, query processing can exploit clustering in
order to reduce random disk accesses. Instead of an
artificial schema and data like the TPC-D benchmark used
in our earlier paper [MZB99], we had the chance to do
performance measurements on real world data provided
by our project partners, namely a relational DW for a fruit
juice company using a star schema with a fact table of 26
million records (an overall size of 7 GB). We compare
our multidimensional approach to traditional bitmap
indexing. On this real-world data we experienced a
performance increase up to a factor of ten.

The rest of the paper is organized as follows: Section 2
surveys related work. In Section 3 we describe our
terminology and identify a standard query pattern for
OLAP queries. Section 4 introduces multidimensional
hierarchical clustering (MHC), and shows how MHC and
the Tetris algorithm are used to efficiently process star
joins. Section 5 gives simulation results, whereas Section
6 presents performance measurements on real world data.
Section 7 draws conclusions and gives an outlook on fu-
ture work.

2. Related Work

The new requirements and research issues set by
OLAP applications are summarized in [Wid95, WB97].
Besides the questions of data management (e.g., data
cleansing, data maintenance) there are two issues of great
importance. First, the question of providing a ‘good’ data
warehouse architecture combining a conceptual, a logical,
and a physical data model. An overview of the most
popular models can be found in [BSH+98]. All these
approaches have in common that they are based on a
multidimensional data model. On the logical and physical
level two main streams have been established – ROLAP
that is based on the relational model and MOLAP that
uses MDBMS.

The second important issue is the question of
performance optimization. Due to the completely differ-
ent query characteristics of OLAP applications in
comparison to OLTP new questions have to be addressed
here. The performance problem is heavily linked to the
physical data model.

The index selection problem for ROLAP applications
is widely discussed in the research community [GHR+97,
Sar97]. Especially bitmap indexes provide good
performance because of their compactness and support of
star joins [CI98]. A common way of performance im-
provement is the usage of materialized views - often in
combination with indexing methods [Moe98, WB98].
Due to the large number of possible views a selection
problem has to be solved besides the maintenance issue
[Gup97, SDN+96, SDN+98]. Clustering of OLAP data
plays a key role in providing good performance.
Clustering has been well researched in the field of access
methods. B-Trees [BM72], for instance, provide one-

dimensional clustering. Multidimensional clustering has
been discussed in the field of multidimensional access
methods (e.g., [GG97] and [Sam90]). [ZSL98] addresses
the issue of hierarchical clustering for the one-
dimensional case.

3. Processing OLAP Queries

On the conceptual level a multidimensional (MD) view
on the data models has been established by academia and
the industry for OLAP applications [CD97]. In the MD
model the numeric (quantitative) data (measures) (e.g.,
sales, cost) which is the focus of the analysis is organized
along multiple dimensions. The dimensions provide
categorical (qualitative) data (e.g., container size of a
product), which determines the context of the measures.
Therefore the measures can be seen as a value in a MD
space – one often refers to this model as a MD cube. An
important concept of OLAP data models is the notion of
dimension hierarchies. Hierarchies are used to provide
structure to the otherwise flat dimensions. Often the data
in the dimensions can be categorized according to some
additional characteristics (e.g., shops could be classified
according to their location). Usually OLAP users are not
interested in single measures but in some form of
summarized data (e.g., sales in a certain area). Hierarchies
provide an appropriate method of describing the level of
aggregation for a dimension.

Typical OLAP operations are drill-down, roll-up and
slice-and-dice [Kim96] and usually multiple dimensions
are restricted at the same time. In general one can state
that these operations in a MD model lead to range
restrictions on the lowest hierarchy level of each
dimension [Sar97].

3.1 The Physical Data Model

In the following we are concentrating on ROLAP
where the conceptual MD model is mapped onto a
relational database schema. The most established
relational data models for OLAP applications are the star
schema and the snowflake schema. In both approaches a
central fact table contains the measures and the dimension
tables are situated around it. The connection between a
fact tuple and the corresponding dimension members is
realized via foreign key relationships. In ROLAP
hierarchies on dimensions are usually modeled implicitly
by a set of attributes A1, ..., An where Ai corresponds to
hierarchy level i. We call such a sequence of attributes
hierarchically dependent.

3.2 Running Example: The ‘Juice & More’
Schema

In this paper the following schema of the beverages
supplier ‘Juice & More’, a real customer of one of our



project partners (the company and the data presented here
have been made anonymous) will serve as running
example. In ‘Juice & More’ data is organized along the
following four dimensions: CUSTOMER, PRODUCT,
DISTRIBUTION and TIME. Figure 3-1a shows the
hierarchies over the dimensions (the number in
parentheses specifies the maximal number of level
members).

(b)
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Figure 3-1 Hierarchies in the ‘Juice & More’
schema and the corresponding star schema

The ROLAP data model for the ‘Juice & More’
schema (Figure 3-1b) is a typical star schema with one
fact table FACT and a table for each of the 4 dimensions.
Let ‘SALES’ and ‘DISTCOST’ be some of the measures
in the fact table.

3.3 Star Joins

Queries usually contain restrictions on multiple
dimension tables (e.g., sales for a specific customer group
and for a specific time period are asked) that are then used

as restrictions on the usually very large fact table. This so-
called star join  is typical for ROLAP. Figure 3-2a shows
the template for star joins on ‘Juice & More’. We are
focusing on hierarchical restrictions on the dimension
tables (e.g., Product.Type=‘Juice’ AND
Product.Brand=’XYZ’). In Section 4.2 we present a tech-
nique which maps a star join to a multidimensional range
query (see Figure 3-2b) on the fact table.

(a)

Select <MEASURE AGGREGATION>

From Fact F, Customer C, DISTRIBUTION D,

Product P, Time T

Where F.ProdKey = P.ProdKey AND

F.CustKey = C.CustKey AND

F.TIMEKEY = T.TIMEKEY AND

F.DISTKEY = D.DISTKEY AND

<CUSTOMER RESTRICTION> AND

<DISTRIBUTION RESTRICTION> AND

<PRODUCT RESTRICTION> AND
<TIME RESTRICTION>

(b)

Select <MEASURE AGGREGATION>

From Fact F

Where F.ProdKey BETWEEN Pkey1 AND Pkey2 AND

F.DistKey BETWEEN Dkey1 AND Dkey2 AND

F.CustKey BETWEEN Ckey1 AND Ckey2 AND

F.TimeKey BETWEEN Tkey1 AND Tkey2

Figure 3-2 Star-Join Example and
Multidimensional Range Query

4. Clustering OLAP data

Since symmetrical clustering with respect to several
dimensions is hard to achieve, most physical OLAP
storage models either use non-clustering indexes like
secondary B-Trees or cluster data with composite B-
Trees. The most prevalent OLAP data structure are
bitmap indexes (e.g., [OQ97]). Bitmap indexes are useful,
if multiple restrictions in low cardinality attributes like
REGION or BRAND result in a very small selectivity
(i.e., ratio of result set size and table size) for the con-
junctive restriction. However, bitmap indexes are non-
clustering secondary indexes which for small result sets
may require a random access for every tuple. For large
result sets (i.e., when for a page size of C tuples the
selectivity of a query exceeds 1/C) they may require an
access to every page of the table in worst case.



Figure 4 -1 shows how bitmap indexes process a query
that calculates the total sales of customers in Asia for
distribution organization “TM” (zero bits in each bitmap
are indicated by a dot in the figure).

For each restriction, the bitmap is retrieved from the
corresponding bitmap index. After intersecting these two
bitmaps by a bitwise AND-operation the tuples corre-
sponding to 1-bits are retrieved. In the figure we assume
C = 10 tuples to fit on one page, thus ten consecutive bits
correspond to the tuples on one disk page. The selectivity
for the dimensions is 32% respectively 34%, resulting in
an overall selectivity of 10%. Since the data is not
clustered on the pages, the query needs to retrieve 80% of
the fact table to retrieve 10% of the tuples.

In practice this ratio is even worse: Actual values for C
range between 20 and 400 for 8kB pages. For the ‘Juice &
More’ data warehouse the actual value is C =  30.
Therefore bitmap index intersection might result in a full
table scan already, when the conjunctive selectivity of a
query exceeds 3.33%.

4.1 A Formal Description of Hierarchies on
Dimensions

For our definition of MHC we use a set concept to
formally define hierarchies: A dimension  consists of a
base type having a set of values ={v1,...,vn}. A hierarchy
of depth h over  is an ordered set of h+1 levels, i.e.,
H={ 0 ,..., h} (see Figure 4–2). Each hierarchy level i of

H over  is a set of sets i = { im1 , ..., i
jm } with i

km  ⊆ 

for k=1,..,j. Each m ∈ i is a member set (or member) of

the hierarchy of level i containing all members of a
category. Usually a member m is assigned a name la-

bel(m) (e.g., ‘Orange Juice’ for 1
1m ) instead of

enumerating all values vk ∈ m. The subset relationship ⊆
between the members of two neighboring levels i and

i+1 defines a hierarchical relation (i.e., partial ordering)
between the levels (e.g., the product ‘OJ0.7L’ is in the
product category ‘Orange Juice’). Increasing the level of a
hierarchy increases the granularity of the categorization,
i.e., the data is classified according to finer categories.

With the base set  as the only member of level 0
(i.e., 0 = { }) a hierarchy H builds a hierarchy tree (we
will explain how to deal with complex hierarchies in
Section 4.2.2.) with the root level 0. The nodes of H are
the hierarchy members (or member labels) connected by
edges which are defined by the subset relationship
between members of neighboring levels. The children of

a member i
km of level i are all members 1+i

lm of the lower

level i+1 that are subsets of ikm , i.e.,

children( i
km )={ 1+i

lm  ∈ i+1 | 1+i
lm ⊆ i

km } (e.g., the set

{{‘Apple Juice 0.5L’},{ ‘Apple Juice 1L’}} is the
children set of ‘Apple Juice’). The parent of a member

i
km  of level i then is the member 1−i

lm of the upper level

i-1 that is a superset of ikm , i.e.,

parent( i
km )={ 1−i

lm  ∈ i-1 | 
1−i

lm ⊇  i
km }  (e.g. ‘Orange

Juice’ is the parent of ‘OJ 0.7L’).
The bijective function ordm (see Figure 4–2 for an

example) defines a numbering scheme for the children of

1L} Juice Apple 0.5L; Juice Apple 1L; OJ 0.7L; OJ 0.33L; {OJ0
1 =m

1L} OJ 0.7L; OJ 0.33L; {OJ1
1 =m
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Figure 4-2 Example Hierarchy in Member Set Representation

Figure 4-1 Bitmap Index Intersection
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a member m of H. Ordm assigns each subset (child) of m a
number between 0 and the total number of children of m
i.e.,

}1|)(|,...,0{)(: −→ mchildrenmchildrenord m .

Hierarchies should never relate members of different
dimensions, since dimensions are independent and thus
such a hierarchy could be split up in two separate
hierarchies (see Section 4.2.2).

4.2 Multidimensional Hierarchical Clustering

Clustering of one-dimensional objects and single
object hierarchies has been discussed to a large extent
(e.g., [ZSL98], [BK89], [Sal88]). However, OLAP
queries often impose restrictions with respect to hierar-
chies over multiple dimensions. The result set satisfying
these restrictions is usually quite large; for presentation it
is grouped and aggregated or ranked. Clustering data with
respect to multiple hierarchies can substantially speed up
these operations.

If the order of dimensions during drill down is known
in advance, clustering the fact table in this dimension
order will result in a good query performance. In
principle, a concatenated clustering index (i.e., B*-Tree)
on the hierarchy levels of all dimensions in one
lexicographic order is maintained. Even when creating
multiple concatenated B-Trees there is a high probability
that the pre-defined clustering order will not be very
useful for a particular query.

MDBMS use multidimensional arrays to physically
cluster data. However, for non-aggregated data this often
leads to sparsity problems, which are discussed in more
detail in Section 4.3. Multidimensional access methods as
commonly used in spatial DBMS provide
multidimensional clustering in order to efficiently answer
multidimensional range queries. In combination with a
suitable hierarchy encoding these methods can be used to
significantly speed up OLAP queries.

4.2.1. Order Preserving Encoding of Hierarchies by
Surrogates. Many attributes in relational DBMS in
general and in data warehouses in particular have an
actual domain of a very small set of values. A typical
example is the attribute REGION of the dimension table
CUSTOMER of ‘Juice & More’, which has an actual
domain of 8 values. However, a much longer character
string is used to store the regions. We call the data type of
an attribute to be an enumeration type, if its actual domain

 consists of a relatively small finite set of values.

In order to maximize the entropy of an enumeration
type  we define an order preserving one-to-one mapping
f and its inverse function f -1:

f :  → {0,…,| |-1} such that for a, b ∈ : ƒ(a) < ƒ(b)

 a <  b

If there is no reasonable ordering on an enumeration
type (e.g., it does not make sense to ask for REGION <
“Middle Europe”), we drop the requirement on f to be
order preserving:

f :  → {0,…,| |-1}, f injective

We call f a surrogate function for an enumeration type.
For each value a ∈  we call f(a) the surrogate of a. For
a very compact representation we number surrogates in
sequential order. Figure 4–3a lists the values of the
enumeration type REGION and the corresponding
surrogates.

REGION f(REGION)

South Europe 0
Middle Europe 1
Northern Europe 2
Western Europe 3
North America 4
Latin America 5
Asia 6
Australia 7

(a)

(b)

0

CUSTOMER

SouthEurope North America Asia

RetailWholesale Kaná s SushiBar

Joe‘s Sports Bar

... ...

Bar

4 6

2

1

10

RetailUSACanada 10

... ...

... ...

... ...

Australia7

Wholesale0

Figure 4-3 Surrogates for REGION and the entire
Customer Hierarchy

To efficiently encode hierarchies, we introduce the
concept of compound surrogates for hierarchies [Mar99].
Since we require hierarchies to form a disjoint partition-
ing, a uniquely identifying compound surrogate for each
child node of a hierarchy member exists and can be recur-
sively calculated by concatenating ( �� WKH� FRPSRXQG
surrogate of the member with the running number of the
child node as calculated by the surrogate function ord
from Section 4.1. Thus, for a member mi of hierarchy
level i of hierarchy H we define its compound surrogate:
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The path North America È USA È Retail È Bar
(Figure 4–3b) has the compound surrogate:



ordCustomer (North America)  ordNorth America (USA) 

ordUSA(Retail)  ordRetail(Bar) = 4 1 1 2.
The upper limit of the domain for surrogates of level i

is calculated as the maximum fan-out (number of
children) of all members of level i–1 of a hierarchy H,
i.e.,

surrogates(H, i) = max {cardinality(children(H, m))
where m ∈ level(H, i - 1)}

A path Φ through a hierarchy of depth h is specified by
a list of members m1, ..., mh, where mi is a member of
hierarchy level i. With li = log2 surrogates(H, i) a fixed
length compound surrogate can be stored in a very
compact way by binary encoding.1
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With l1=3, l2=3, l3=1, and l4=3 for the CUSTOMER
dimension (cf. Figure 3-1a) this formula leads to the
compound surrogate:
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4321 3133

==
==== llll

Usually growth expectations for a hierarchy are known
well in advance. Often hierarchy trees are even static.
Therefore it is possible to determine a reasonable number
of bits for storing each surrogate of the compound surro-
gate of a hierarchy. Since hierarchy trees grow exponen-
tially, the overall number of bits necessary to store a
compound surrogate is relatively small. For instance, a
hierarchy tree with four branches on 8 levels already
represents 48 = 65536 partitions and is stored by 16 bits.

The maximum length lmax of a compound surrogate for
‘Juice & More’ can be computed from the maximum fan-
out of the hierarchy levels given in Figure 3-1a. For any
of the 4 hierarchies lmax does not exceed 15 bits and thus
can be stored in a single integer value.

The lexicographic order on the hierarchy levels is pre-
served by this very compact fixed length encoding to
integers. Point restrictions on upper hierarchy levels result
in range restrictions (intervals) on the finest granularity of
a hierarchy. For instance, the point restriction NATION =
“USA” on the second level of the CUSTOMER hierarchy
with f(“North America”)=4=1002 and f(“USA”)=1=0012

maps to the range restriction cscustomer between 528=100
001 0 0002 and 543 =100 001 1 1112 (i.e., to the interval
[528,543]). Thus, a star join with this surrogate encoding
for the foreign keys of a fact table results in a range re-
                                                     
1 In general we use variable length compound surrogates that need li(m)
= log2 |children(m)| bits to store the surrogate for any child of m.
However, since the hierarchy of ‘Juice & More’ is quite balanced (i.e.,
most hierarchy members have the same number of children), we chose
fixed length compound surrogates for clustering the ‘Juice & More’ fact
table.

striction on each compound surrogate, if some hierarchy
level of each dimension is restricted to a point. In the
same way intervals on the children of one hierarchy level
result in a range on the corresponding compound surro-
gates (e.g., year = 1998 and month between April and
June). A star join on a schema with d dimensions creates a
d-dimensional interval restriction on the fact table.

4.2.2. Dealing with Complex Hierarchy Graphs. If two
levels of a hierarchy graph are linked by several paths,
there are several possibilities to define a hierarchy tree
and therefore several ways to calculate the compound
surrogates for physical clustering:

If the order on the lowest level of granularity is
identical for two hierarchy paths, then one path can be
derived from the other path by an order preserving
function on the lowest level of granularity. Then the
clustering order for both hierarchy paths is identical.
Thus, the clustering order for WEEK and MONTH in
Figure 4–4a is identical. Both can be computed by an
order preserving function from DAY, the lowest
granularity level of the TIME hierarchy.

If the query profile is known, the most useful path of
the hierarchy graph used for restrictions, sort operations
or grouping should be chosen. Thus, if in Figure 4–4b
queries on CUSTOMER usually restrict REGION and
NATION, this path should be chosen for clustering.

If the query profile is not known, all paths of a
hierarchy graph may be used for clustering, since hierar-
chies may be used for restrictions independently during
drill-down. For clustering the different paths then can be
considered to be independent dimensions. In the hierarchy
graph of Figure 4–4b both the REGION and the
CUSTOMER hierarchy might be used for clustering.
However, this approach increases the clustering dimen-
sionality and thus should be used with care.

Other issues in the context of complex hierarchies are
unbalanced hierarchies, slowly changing dimensions and
multiple inheritance. Unbalanced hierarchies occur, if
some hierarchy members have more child levels than
others. This means, that the compound surrogates of Joe’s
Sports Bar and Kana’s Sushi Bar in Figure 4–3b have
different lengths. Using variable length compound
surrogates or padding the shorter compound surrogate

Figure 4-4 Complex Hierarchy Graphs

(a) (b)

YEAR

MONTH WEEK

DAY

REGION

NATION

TRADE TYPE

CUSTOMER TYPE

CUSTOMER SIZE

CUSTOMER



with zero bits solves this problem without any impact on
clustering.

Slowly changing dimensions can be addressed by
marking each node of a hierarchy tree with a validity time
interval. An object is physically clustered and retrieved
with respect to its validity time. Reorganization of the
physical clustering is not necessary: Even with a new
classification upon a certain point of time the existing
clustering should be correct from a historic perspective. If
the business type of Joe’s Sports Bar changes from bar to
restaurant in 1998 (cf. Figure 4–5), all previously
clustered data still is correct.

CUSTOMER

South Europe North America ...

USACanada

Retail Wholesale

Bar Restaurant

Joe‘s Sports Bar

Year <= 1997 Year > 1997

Figure 4-5 Change of a hierarchy over the time

The total sales over all bars in 1997 must include Joe’s
Sports Bar, whereas it is included in restaurants for 1998.
However, each object of a hierarchy needs information
about re-classification in order to correctly calculate the
total sales to Joe’s Sports Bar over the last years.

Multiple inheritance (e.g., Joe’s Sports Bar is
considered to be both a bar and a restaurant at the same
time) is solved similarly to slowly changing dimensions:
One of the several possible paths to a hierarchy node is
chosen for clustering. The other paths of a hierarchy
graph to that object then merely store a pointer to the sub-
tree that actually stores the object. If multiple aggregation
paths are possible, precautions must be taken that only
one of these paths is used for aggregation.

4.3 Choosing a suitable Data Structure: The
UB-Tree

In principle, MHC may be implemented by any
multidimensional access structure in combination with the
surrogate calculating function of Section 4.2.1. However,
using R-Trees [Gut84] or R*-Trees [BKS+90] may result
in a sub-optimal performance, since these structures may
subdivide the universe into overlapping tiles, which may
result in multiple accesses to one disk page. Therefore the
most interesting candidates are Grid-Files [NHS84], hB-
Trees [LS90], R+-Trees [SRF87] or space filling curves in
combination with one-dimensional access methods

[OM84, Jag90]. All of these methods provide a disjoint
partitioning of multidimensional space. Because of its
inherent hierarchical data space organization and its easy
implementation, we use the UB-Tree for the ‘Juice &
More’ data warehouse. However, the principle benefits of
our technique also apply to the other access methods.

The UB-Tree [Bay96, Bay97a] is an access method for
multidimensional point data and thus copes with sparsity
without any additional overhead. It utilizes a space filling
curve to create a hierarchical disjoint partitioning of a
multidimensional universe while preserving
multidimensional clustering. Using the Z-curve it is a
variant of the zkd-B-Tree [OM84] partitioning the
multidimensional space into Z-regions (i.e., a subspace of
the multidimensional space defined by an interval on the
Z-curve). Each Z-region corresponds to one page on
secondary storage. The UB-Tree requires logarithmic
time (in the number of actual values in the data cube) for
the basic operations of insertion, point retrieval and
deletion, and storage requirements are also linear.

By the virtue of compound surrogates from Section
4.2.1 for each dimension, the UB-Tree creates a MHC.
This clustering is efficiently exploited by the UB-Tree
range query algorithm [Bay96, Mar99] to answer queries
with point or range restrictions in multiple hierarchies.
Range queries are processed by retrieving all Z-regions
that intersect the query box and thus linearly depend on
the result set size.

The problem of the zkd-B-Tree when handling tuples
with identical leading bits in some attributes [LS90] does
not occur for MHC with UB-Trees: The leading bits of
each dimension belong to the top level hierarchies and
therefore partition the data space with respect to that di-
mension. Since the interleaving order of bit-interleaving
hierarchically organizes the data space, the boundary of
each Z-region exactly reflects the hierarchy over each
dimension. The first hierarchical split levels correspond to
the upper nodes of the hierarchy tree. Therefore, a query
box defined by hierarchical restrictions over a
multidimensional hierarchically clustered UB-Tree will
contain most Z-regions completely. The retrieval
overhead is minimal; almost all data being retrieved is
part of the result set.

4.4 Addressing Sparsity

Sparsity is defined as the percentage of a domain that
is not existent in the actual domain. For a multi-
dimensional data cube sparsity is the ratio between the
number of cells not containing any data and the overall
number of cells of a data cube. Some OLAP tools allow
one to mark dimensions to be sparsely populated and then
specially handle them. However, a data cube is formed as
the cross product over the domains of all dimensions.
Therefore, even for non-sparse dimensions the sparsity of
the entire cube becomes extremely high soon. The ‘Juice



& More’ schema, for instance, is a star schema with four
independent dimensions with a sparsity of 99,8%
(cardinalities taken from Figure 3-1b):
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To our knowledge sparsities of more than 99% are
typical for data warehousing applications (e.g., the TPC-D
benchmark). Thus, in practice sparsity forbids to
materialize an entire data cube of raw data. Physical data
organization in a multidimensional array is only feasible
for highly aggregated data. However, serious decision
support applications require a deep drill down into
interesting areas of a data cube. Therefore it is necessary
to have a physical representation of a sparsely populated
data cube that offers efficient access to parts of that cube.
With MHC drill down defines a subspace of a data cube
by range restrictions in several dimensions. Thus, MHC is
a method to cluster sparse data with respect to several
dimensions in combination with an efficient range query
and sort algorithm (cf. Section 4.5) for efficient handling
of drill down queries.

4.5 Processing OLAP Queries on
Multidimensionally Clustered Data - The
Tetris-Algorithm

With MHC a star join in data warehousing applications
basically maps to group/aggregate operations in combi-
nation with multi-attribute range restrictions as shown in
Section 4.2. This typical query pattern is efficiently
handled by the Tetris algorithm [MB98], a generalization
of a multidimensional range query algorithm (see
[MZB99] for a detailed description and analysis):
Basically, the partial sort order imposed by a multi-
dimensional partitioning is used to process a table in some
total sort order. Disk accesses are only necessary for the
query space defined by the multidimensional hierarchical
restrictions. With sufficient, but modest, cache memory
each disk page is accessed only once (see Section 5).

Figure 4-6 illustrates how Tetris processes a
hierarchically clustered relation to aggregate the sales for
each different fruit juice for all customers in Asia. The
restriction of REGION=‘Asia’ results in an interval in the
CUSTOMER dimension. The same holds for the
restriction TYPE=‘Juice’ for PRODUCT. The boundaries
of each query interval correspond to Z-region boundaries
and thus minimize the number of Z-regions only partly
contained in the query box.

Orange

Juice

Asia

Apple

Juice

Asia

Figure 4-6: Processing a query box in sort order
with the Tetris algorithm

The query box is read in sort order from bottom to top;
the aggregates for each juice type are calculated on the
fly. The part of each Z-region from which tuples are
cached is shaded. When all Z-regions intersecting the
‘Orange Juice’ slice have been read, this slice is sorted
and aggregated. In the same way the next slices (‘Apple
Juice’, ‘Cherry Juice’, etc.) are processed. This continues
until the entire product interval defined by the restriction
to ‘Juice’ has been handled.

Tetris usually avoids external sorting, since only slices
of the result set need to be sorted at a time. Thus only
sublinear temporary storage is required with respect to the
result set size. I/O-time is linear with respect to the result
set size. In contrast to a standard merge-sort algorithm
sorting is no longer a blocking operation. Aggregations
can be calculated on-the-fly and allow for better
interactive response times. In addition, the Tetris
algorithm efficiently processes iceberg queries for ranking
[FSG+98], if the desired measure is used as a further



dimension of the UB-Tree. The Tetris algorithm then does
not read the entire query box in the sorting dimension, but
terminates after processing the first slices.

4.6 Materializing Aggregates

MHC is not only applicable to the fact table itself, but
can also be used to organize views with materialized
aggregates. Higher aggregation levels result in a UB-Tree
with shorter compound surrogates or reduced dimension-
ality. It makes sense to store pre-computed aggregates for
the highest aggregation levels with restrictions in only one
dimension, e.g., the total sales on a yearly basis. Since not
all possible aggregations can be stored in general, MHC
allows one to derive many further aggregates efficiently
from the raw data. This avoids materialization of many
aggregation levels and thereby reduces the view
maintenance problem to a large extent. The ‘space–time’
tradeoff between preaggregation and query response time
still exists, but MHC reduces it significantly.

5. Performance Analysis

The cost functions used for our analysis take
clustering, prefetching as well as CPU-time and I/O-time
into account and were derived in [Mar99] and [MZB99]
based on [HR96]. For retrieving or grouping and
aggregating (i.e., sorting) a relation in combination with
multidimensional hierarchical restrictions we simulated
response times and intermediate temporary storage. We
consider several organizations of the fact table of a star
schema: MHC, a composite secondary index (CSI,
clustering B*-Tree) over all attributes (foreign keys of
each dimension and measure attributes), a single
secondary index (SSI, non-clustering B*-Tree) on the
attribute with the least selectivity, a full table scan (FTS),
and bitmap index intersection (BII), which combines the
bitmaps of each restricted attribute to determine the result
set of the query. In the following we assume that the fact
table is stored on P disk pages.

5.1 Retrieval with Multi-Attribute Restrictions

An FTS to answer multidimensional range queries with
selectivity sj in dimension j can exploit prefetching
techniques to reduce the number of random page accesses
at the expense of having to read the entire table. Using a
CSI with a composite B*-Tree in lexicographic order A1,
..., Ad, the index for the restriction in A1 may be used at
the expense of having a random access for each page. A
SSI on Aj requires a random page access for each tuple
satisfying the restriction in Aj, since no clustering of the
tuples is available. The number of random accesses of a
SSI is limited to P, if the row identifiers of the SSI are
sorted and then processed in physical page order for data
page retrieval. For point restrictions on the index attribute

(e.g., REGION = ‘Asia’), sorting of row identifiers may
even be avoided: index pages for tuples with identical
index attributes may be organized in the physical order of
the row identifiers. Then point restrictions will get a list
of row identifiers sorted according to the physical location
of the tuple. This makes a SSI not to degenerate and
behave similarly to an FTS in worst case.

BII requires that the corresponding part of each bitmap
index has to be retrieved. In addition, BII requires a
random access for each tuple satisfying the restrictions in
all attributes. The result of BII is a bitmap, which is used
to access data pages in physical order. Thus multiple
random accesses to one data page will not occur.
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Figure 5-1: Access Methods and Clustering

The shaded part of each cube in Figure 5-1 shows the
part of a three dimensional database which is retrieved by
the corresponding access method to answer a query to
compute the sales for one year (sTIME = 33%) for all fruit
juices (sPRODUCT = 25%) sold by direct marketing (sDIS-

TRIBUTION = 17%): an FTS retrieves the entire database
exploiting clustering and prefetching. In contrast to that a
SSI will rarely utilize any clustering benefits for small
result sets. BII retrieves each bitmap by clustered access,
whereas the data itself will often be spread over many
data pages and then must be retrieved by random access
to one page for nearly every tuple. However, for larger
result sets the probability rises that prefetching might be
applicable for bitmap indexes. This means, that BII will



not be much less efficient than an FTS in worst case. A
CSI with the DISTRIBUTION dimension as first attribute
in concatenation order utilizes clustering but only exploits
the 17% restriction on DISTRIBUTION. In contrast to
that, MHC utilizes the restrictions of all dimensions and
retrieves the data in a clustered way. Both effects contrib-
ute substantially to the performance advantage of MHC.

5.2 Simulation of Response Times for Queries
with Multi-Attribute Restrictions

Figure 5–2a shows a simulation of the sales query
(sTIME = 33%, sDISTRIBUTION = 17%, sPRODUCT = 25%,
sCUSTOMER = 100%, see Section 5.1) for 4-dimensional
hierarchical clustering compared to other access
techniques for table sizes up to one million pages.
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Figure 5-2: Response times for queries with
multi-attribute restrictions on ‘Juice & More’

Varying the selectivity of the restriction in TIME for a
table size of P = 878k pages (about 7GB for a page size of
8kB) shows that MHC is superior to both a SSI and a CSI
on the TIME dimension, since these access methods
cannot exploit any restriction but the one on TIME. MHC
exploits the restrictions on DISTRIBUTION and

PRODUCT in addition to the restriction on TIME. Thus
MHC is also superior to an FTS and to BII using bitmap
indexes for all four dimensions (Figure 5–2b). For a
selectivity of 75% on TIME (i.e., an overall selectivity of
3,1875 %) an FTS is already preferable to BII. Since
bitmap indexes do not cluster the data, the result set
defined by the restrictions in all dimensions must be
sufficiently small for BII to be competitive.

5.3 Simulation of Response Times for Queries
with Multi-Attribute Restrictions and Sort
Operations

Using the same parameters as in Section 5.2 and
additionally using a main memory cache of 32 MB for the
merge sort algorithm Figure 5–3 shows the cost [in s] for
sorting the result set of a fact table defined by restrictions
in multiple hierarchical dimensions.
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Figure 5-3: Sorting the restricted ‘Juice & More’

fact table according to the TIME dimension



Figure 5–3a shows the cost [in s], if the sales query of
Section 5.1 is modified such that the sales are not
calculated for the entire year, but aggregated by month.
This query requires sorting the 4-dimensional query box
by month to calculate the monthly sales. Again the table
size is varied from one page to one million pages. The
speed up of the MHC and Tetris grows superlinearly with
increasing table size, since due to the result set size all
other access methods require an external merge sort to
calculate the monthly groups.

Figure 5–3b shows that the temporary storage for the
merge sort algorithm used by FTS, BII, CSI distribution
and SSI distribution soon exceeds the main memory sorter
cache of M = 32 MB. In contrast to caching the entire
result set, sorting with Tetris only requires to cache one
Tetris slice and never requires more than 14 MB of cache.
Thus sorting with Tetris can take place in main memory.

A CSI or SSI on TIME does not require any sorter
cache. The tradeoff of these two access methods is the
inability to use restrictions in multiple dimensions.
Overall, MHC and Tetris outperform any access method
either with respect to response time or with respect to
both response time and temporary storage requirements.

5.4 Further Analysis

Using our cost functions we found out that MHC and
the Tetris algorithm are superior to one-dimensional
access methods, unless a strongly preferred sort order
exists or the restrictions are not selective enough to make
up the tenfold speed of an FTS. A limitation of our
technique is the number of dimensions: Increasing
dimensionality exponentially reduces the potential of
multidimensional space partitioning to create a total sort
order in one dimension. Our theoretical and practical
analysis [Mar99] shows that multidimensional indexes of
up to 6 dimensions are handled very well with table sizes
larger than 1 GB. These dimensionalities are typical for
data warehousing applications. With larger table sizes
even further attributes could be added to the MHC in
order to speed up queries with restrictions or sorted
processing in these attributes.

6. Performance Measurements

In this section we present measurements performed on
the ‘Juice & More’ schema with our prototype
implementation of MHC with UB-Trees on top of the
commercial Oracle8 Server. For comparison reasons we
also conducted measurements with native Oracle access
methods: full table scan (FTS) and bitmap indexes (BII).
The bitmap indexes were created on each hierarchy level.
Secondary indexes are not included in our comparison,
because earlier experiments with several queries of the
TPC-D benchmark showed that they are neither
competitive to UB-Trees nor to FTS or BII [MZB99].

6.1 Measurement Environment

The measurements were performed on a SUN
Enterprise with four 300 MHz UltraSPARC processors
and 2 GB RAM under Solaris 2.6. As secondary storage a
partition on a SPARCstorage Array with Raid-Level 0 (6
disks striping, 5-6 MB/s transfer rate per disk) was used.

It is important to note that our implementation still
causes significant overhead due to the fact that we have
implemented the UB-Tree on top of a DBMS and not in
the kernel itself. First, the number of SQL statements that
have to be processed (UB: 1 statement for each page in
the result set, Oracle methods: 1 statement in total) leads
to extensive inter-process communication (about 30% of
the total processing time) and DBMS overhead (e.g.,
parsing of statements). Second, our table is larger than the
one for the FTS and the bitmap indexes due to
unimplemented compressing techniques in the UB-Tree
(for 8 KB pages: UB: 878362 pages, FTS: 723539 pages,
BII: FTS+31134 pages).

6.2 Results

We present the results of 8 star joins on the ‘Juice &
More’ schema which are classified according to the
number of hierarchy levels restricted per dimension (see
Table 6-1). For each query type we measured 2 instances
which due to the non-uniform data distribution in the fact
table result in different overall selectivities of the query.

Table 6-1 Query Types and Selectivity of
Measured Instances

Customer Product Distribution Time Selectivity
Instance 1

Selectivity
Instance 2

Q1 2 2 0 1 0,0414% 0,3176%

Q2 1 1 1 1 0,029% 3,4383%

Q3 1 1 1 0 0,0182% 2,0981%

Q4 0 1 0 1 6,0000% 34,0000%
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Figure 6-1 Performance Results

Figure 6-1 shows that multidimensional hierarchical
clustering provides fast OLAP query processing in
comparison to traditional techniques. In 7 of 8 queries our



prototype implementation of MHC was significantly
faster (up to a factor of 10 for Q2(0,029%)). Already a
restriction of 2 out of 4 dimensions suffices if the overall
selectivity is low enough (i.e., 6% for Q4). However, for
an overall selectivity of more than 10% an FTS in general
is preferable to any index method - this observation also
holds for MHC (see Q4(34%)). Further measurements
which are not reported here underline following
observation: MHC results in faster response time than the
native methods if restrictions in multiple dimensions can
be utilized and the overall selectivity is below 10%. In
addition the resource requirements of MHC were
significantly less than these of native access methods
which makes it especially valuable in multi-user
environments.

7. Conclusions and Future Work

We have defined an encoding scheme for hierarchical
dimensions that enables clustering of data with respect to
multiple hierarchical dimensions. MHC can be
implemented with any suitable multidimensional access
method. MHC reduces the number of random accesses to
the fact table for star joins and other queries with
restrictions in multiple hierarchies by a factor of about C,
where C is the page size in tuples. In addition, sort
operations as necessary for grouping and aggregation are
performed on the fly without additional I/O. For
dimensionalities typical for data warehousing only I/O-
time linear in size of the result set prior to aggregation
and sublinear temporary storage are necessary to
aggregate parts of a data cube. Thus secondary storage
space and pre-computation time for many aggregates and
bitmap indexes can be avoided. In addition the widely
discussed view maintenance problem is minimized. In our
prototype implementation of MHC we use a UB-Tree
with Z-ordering as the underlying multidimensional
access method. The benchmark results for typical queries
of a 7 GB real world retail data warehouse confirmed our
analytical expectations and showed significant speedups
up to factor 10 in response time. Depending on the query,
temporary storage requirements for sorting are reduced by
several orders of magnitude. Our clustering approach also
holds not only for ROLAP but also for MOLAP
implementations of a DW since both ROLAP fact tables
and MOLAP data cubes can be clustered in this way.

In our future work we are particularly interested in
doing tests in multi-user environments where we expect
even more significant speedups. In addition we are
investigating a methodology for query optimization with
multidimensional indexes, both for heuristics-based and
cost-based query optimizers.
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