
Interval Processing with the UB-Tree∗

Robert Fenk∗ Volker Markl+ Rudolf Bayer∗

∗Bavarian Research Center for
Knowledge Based Systems

Orleansstrasse 34, 81667 Munich,
Germany

fenk@forwiss.de
bayer@in.tum.de

+IBM Almaden Research Center
K55/B1, 650 Harry Road

San Jose, CA 95120-6099,
USA

marklv@us.ibm.com

Abstract

Advanced data warehouses and web databases have set
the demand for processing large sets of time ranges, quality
classes, fuzzy data, personalized data and extended objects.
Since, all of these data types can be mapped to intervals,
interval indexing can dramatically speed up or even be an
enabling technology for these new applications.

We introduce a method for managing intervals by index-
ing the dual space with the UB-Tree. We show that our
method is an effective and efficient solution, benefitting from
all good characteristics of the UB-Tree, i.e., concurrency
control, worst case guarantees for insertion, deletion and
update as well as efficient query processing. Our technique
can easily be integrated into an RDBMS engine providing
the UB-Tree as access method. We also show that our tech-
nique is superior and more flexible to previously suggested
techniques.

Keywords:interval management, parameter space, UB-
Tree, intersection query

1 Introduction

The management and processing of intervals is a special
case of extended object handling with growing demand in
various application areas.

Applications requiring interval matching and manage-
ment include:
∗Copyright 2002 IEEE. Published in the Proceedings of IDEAS 2002

in Edmonton, Canada. Personal use of this material is permitted. How-
ever, permission to reprint/republish this material for advertising or promo-
tional purposes or for creating new collective works for resale or redistri-
bution to servers or lists, or to reuse any copyrighted component of this
work in other works, must be obtained from the IEEE. Contact: Manager,
Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O.
Box 1331 / Piscataway, NJ 08855-1331, USA.

Temporal Databases [SOL94]; Quality Classes, Person-
alization and Fuzzy Logic/Matching where intervals can
be utilized to describe the problem; Spatial Data where a
spatial object can be approximated by a bounding box or
set of intervals on a space filling curve. [FR89, BKK99,
KMPS01]

For point data there are only a few well defined query
types, e.g.,point queryand range query, but for intervals
there are plenty different query types, e.g., the 13 Allen Re-
lations [AH85] for temporal data.

Following [GG98] the basic query types we consider are:
Exact Match Query (EMQ): Checks if the data base con-
tains an interval which exactly matches the query interval;
Intersection Query (IQ): Find all intervals which have at
least one point in common with the query interval;Point
Query (PQ): Find all intervals containing a certain query
point; Containment Query (CQ): Find all intervals en-
closed by the query interval;Enclosure Query (EQ): Find
all intervals enclosing the query interval.

The IQ plays a crucial role in the calculation of most
other relations as an efficient filter for a candidate set. But,
depending on the application field additional query types
might be necessary, e.g., theExtent Match Query, which
finds all intervals with a given extent,Adjacency Query
(meets, precedes), which finds all neighbours of a given
interval, and theNearest Neighbour Query, which finds
the nearest object to a given object. While some of them
(e.g., meets, precedes, before, etc.) can be mapped to inter-
section queries and post filtering, others (e.g.,Extent Match
Query) require different algorithms or indexing techniques
in order to run efficiently.

Standard relational database management systems
(RDBMS) so far do not support interval objects or spatial
objects efficiently. Enhancing RDBMS by new indexing
methods usually implies restrictions in concurrency control
and recovery. Having a separate index structure which has



not been integrated into the DBMS kernel results in applica-
tions which are more complex to develop and maintain. So
the only economically reasonable solution to tackle interval
indexing is to intelligently exploit the techniques provided
by a DBMS. Recently new indexing techniques like the RI-
Tree [KPS00, KMPS01] address this problem.

The contribution of our paper is to show the feasibility
of the the parameter space approach when indexing it with
the UB-Tree, allowing for a flexible and highly-performant
interval access method. We show that the data distribution
of the dual space is handled well by the UB-Tree, that the
typical queries on intervals map to multidimensional range
queries on the UB-Tree and compare the performance of
our approach to prior art in interval indexing.

In order to implement and use interval indexing with a
commercial RDBMS, we rely on existing indexing meth-
ods already provided by the DBMS. For that reason we
compare the parameter space approach indexed by the UB-
Tree, a multidimensional access method (MAM) provided
by TransBase Hypercube DBSM, [TAS00] with the RI-Tree
which also can be implemented on top of an existing B-
Tree, e.g., the B-Tree provided by TransBase. We do not
discuss the integration of the UB-Tree, since this has been
already done in [RMF+00].

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 introduces the con-
cepts and techniques of the parameter space and Section 4
describes how the UB-Tree can be used to index the param-
eter space. Section 5 describes the RI-Tree in more detail
as this is the interval indexing technique we are comparing
with. In Section 6 we present our performance analysis.
Section 7 describes how to integrate our interval process-
ing method into a DBMS featuring a B-Tree. Finally we
conclude our paper with Section 8.

2 Related Work

A huge number of different techniques for interval man-
agement has been proposed. [KS91, TCG+93, Boz98,
MTT00] give surveys on them. We only consider secondary
storage index structures, since main memory data structures
usually can not be mapped directly to existing DBMS tech-
nology, e.g., the external Segment-Tree [BG94] is a nontriv-
ial mapping of the Segment-Tree.

Further more we want to focus on indexing structures
which can be used by exploiting the techniques of commer-
cial RDBMSs, e.g., indexes like the B-Tree or UB-Tree.
Therefore, we do not consider [SOL94, GLOT96, KS91]
which require indexing techniques not available in any com-
mercial DBMS.

[Ore90] utilizes an approach quite similar to ours, also
featuring a Z-curve based access method and the parame-
ter space transformation. However, he focuses on spatial

objects and spatial joins, but not on intervals.

The use of regular B+-Trees for indexing valid time in-
tervals was suggested in [GLOT96]. Here, the intervals
are mapped to two-dimensional points with the same map-
ping function used for the TP-index [SOL94]. These two-
dimensional points are mapped back to one-dimensional
points (not intervals) by defining a total order among them
using either horizontal, vertical, or diagonal sweep lines.
B+-trees are used to index these points after the final trans-
formation. Temporal queries also go through these trans-
formations. In this scheme, some specific temporal queries
transform into range search queries for the B+-trees, and
can be efficiently evaluated. However, because of the trans-
formations, many queries require multiple range search op-
erations, and cannot be handled efficiently.

The SR-tree (Segment R-tree) [KS91] is a variant of the
R-tree to index segments. Unlike the R-tree, the SR-tree
keeps data also in the internal nodes. Any segment that
spans any of the children of a node is kept in that node and
is checked every time that node is visited in a search query.
The SR-tree is a dynamic index, i.e., it allows deletions and
insertions at any time. However, insertion and deletion al-
gorithms may cause a high degree of overlap between the
nodes. One should also mention that, although insertion
and deletion times are logarithmically bound, they are rel-
atively more expensive compared to index structures such
as the B+-/UB-Tree. The same drawbacks hold also for the
R-Tree and the R∗-Tree. Moreover, no integrated R-Tree
offers the excellent concurrency and maintenance proper-
ties of the B-/UB-Tree. Furthermore all the R-Tree variants
integrated in commercial DBSMSs are secondary indexes
and consequently they cannot perform as good as clustering
indexes like the B-Tree or the UB-Tree.

The Relational Interval Tree (RI-Tree) [KPS00, KMS01,
KMPS01] utilizes a virtual binary tree to partition the data
space and group intervals to nodes of the binary tree. The
node values are used as an additional attribute of the rela-
tion storing the intervals. Standard DBMS indexes (e.g., B-
Trees) are used to index the relation. The intersection query
maps to a SQL statement and can be processed efficiently by
the DBMS. Due to its design, the integration into a DBMS
or application is quite easy.

3 The Parameter Space

Simple geometric shapes can be considered as points
in higher dimensional space called theparameter space
[Ore90, GG98]. This doubles the number of dimensions
and therefore it is also common to use the termdual space
for this approach.



B

D

C

A

I

P

Data Queries

(a) Data and
Queries

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Empty

now

Space

Points

now

Huge
Intervals

Intervals of the same length

start

end Longliving Objects

(b) Properties

I

B

C

I

ei

Intersection
Query

i

i
s

s

i e

start

end

D

A

(c) IQ

B

C

I

I e

e

i

i

i
s

i
s start

end

Enclosure

Containment
Query

Query

D

A

(d) ECQ and CQ

Figure 1. Native Space and Mapping of Intervals and Queries to Parameter Space

3.1 Data Transformation

The required transformation of an interval interprets the
beginning and end of the interval as the coordinates of a
point in two dimensional space. This transformation is
called endpoint transformationand results in a parameter
space with two dimensions of equal domain.

Transformation

End Point [start,end] (start,end)

1D Interval 2D Point

Fig. 1 shows theendpoint transformationof the intervals A,
B, C and D. The horizontal axis denotes the start point of
the intervals, the vertical axis denotes the end point.

This transformation results in the following properties of
the parameter space, which are depicted in Fig. 1(b):

• the space above the main diagonal is empty, i.e., due to
s ≤ e no points are mapped to this space

• points are placed on the main diagonal, i.e.,s = e

• intervals of the same length are mapped to a diagonal,
i.e.,e = s+ length

• the bigger a interval gets the nearer it is to(min,max)

• intervals within a given range are mapped to a rect-
angular subspace, i.e., they can be clearly separated
from the rest. e.g., when indexing time intervals
we can get old data (before now) by the query box
[(min,min), (now, now)]. See also CQ in the next
section.

• temporal databases: long-living objects are mapped to
(start,max), e.g., time intervals where the end is not
known

3.2 Query Transformation

We define the universe of intervals to beU =
{[us, ue]|min ≤ us ≤ ue ≤ max}. Fig. 1(a) on page 3
shows a set of intervals{A,B,C,D}, a query point Pp
and a query interval I[is, ie].

Mapping of the basic queries to parameter space results
in 2d query boxes and can be formally defined as follows:

Exact Match Query: EMQ([is, ie]) = {[rs, re]|rs =
is ∧ re = ie} is a point query in parameter space;Intersec-
tion Query: IQ([is, ie]) = {[rs, re]|(rs ≤ ie) ∧ (is ≤ re)}
can be mapped to a query box[(min, is), (ie,max)] by
adding the lower and upper bounds of the domain. Fig. 1(c);
Point Query: PQ(p) = {[rs, re]|rs ≤ p ≤ re} is ac-
tually a special case of IQ and results in the query box
[(min, p), (p,max)]. Containment Query: CQ([is, ie])]
= {[rs, re]|(is ≤ rs ≤ ie) ∧ (is ≤ re ≤ ie)} maps to the
query box[(is, is), (ie, ie)]. Fig. 1(d); Enclosure Query:
EQ([is, ie]) = {[rs, re]|(rs ≤ is ≤ re) ∧ (rs ≤ ie ≤ re)}
can be simplified to{[rs, re]|(rs ≤ is) ∧ (ie ≤ re)} due to
rs ≤ re andis ≤ ie and extended like IQ resulting in the
query box[(min, ie), (is,max)]. Fig. 1(d).

All the necessary transformations are simple and result
in iso-oriented query boxes. This does not hold for all trans-
formation methods proposed for parameter space, e.g., the
midpoint transformation[GG98] has the problem that all
typical interval queries result in query boxes, which are
not iso-oriented and cannot be handled by standard MAMs.
Therefore, we do not consider this transformation method.

Despite the conceptual elegance, the properties of the pa-
rameter space approach and especially the following ones
have been regarded as problematic for indexing [GG98]:

1. The parameter space doubles the number of dimen-
sions, i.e., instead of indexing one object of type in-
terval, one has to index a two dimensional space



2. The data distribution in parameter space is highly
skewed

Although the parameter space doubles the number of di-
mensions the curse of dimensionality, the problem of index-
ing high dimensional spaces, can be neglected in the case of
intervals as two dimensions are handled well by all MAMs.

The data distribution in parameter space is highly
skewed, i.e., start and end of intervals are highly correlated
(i.e.,is ≤ ie) and usually the length of the intervals in a data
set is similar. Therefore, all data is below the main diagonal
and usually distributed along some diagonals (intervals of
similar length). Consequently the used MAM has to han-
dle skewed data distributions well. For example, the the
GRID-file cannot guarantee a good space utilization with
this kind of data distribution and the R-tree and its variants
cannot guarantee good query performance due to the over-
lap of bounding regions.

Due to these problems the parameter space approach has
not been considered further in the past [GG98]. However,
as we will show in the next section, the UB-Tree handles the
skewed data distribution in the parameter space well, both
with respect to storage utilization and query performance.

4 Interval Handling with the UB-Tree

In this section we shortly describe how the UB-Tree, a
MAM for point data, can be combined with the parameter
space approach to index intervals. We start with a short
introduction to the UB-Tree and then focus on the indexing
and querying of the parameter space.

4.1 The UB-Tree

The UB-Tree [Bay97, Mar99] is a clustering index for
multidimensional point data, which inherits all good proper-
ties of the B-Tree [BM72]. Logarithmic performance guar-
antees are given for the basic operations of insertion, dele-
tion and point query, and a page utilization of 50% is guar-
anteed. The UB-Tree clusters data according to a space
filling curve, namely the Z-curve [OM84] and introduces
the new idea of partitioning the data space into disjoint Z-
regions, which map to disk pages. The Z-regions are then
indexed by a B-Tree using last included Z-address as key,
which is the ordinal of a point on the Z-curve.

These Z-regions in conjunction with a sophisticated al-
gorithm for multidimensional range queries [BM97] and the
Tetris algorithm [MZB99] for sorted reading of multidimen-
sional ranges offer excellent properties [Mar99] for multi-
dimensional applications like data warehousing, archiving
systems, temporal data management, etc. Integrating the
UB-Tree into a RDBMS providing a clustering B-Tree is
simple [RMF+00].

The first commercial RDBMS with an integrated UB-
Tree is TransBase HyperCube [TAS00], which has also
been used for the measurements in this paper.

4.2 Indexing the Parameter Space

As described in section Section 3 we use the end point
transformation to map an interval to a point in two dimen-
sional space and then indexing the points by a UB-Tree. As
previously mentioned the crucial question is, how well the
UB-Tree can handle the highly skewed data distribution?

As the UB-Tree inherits the good properties of B-Trees
it guarantees a 50% page utilization and usually it will be
around 81% [Ks83, BY89]. Its Z-region partitioning adapts
to the data distribution, i.e., densely populated areas are
finer partitioned while the dead space above the main diag-
onal is covered by a few big Z-regions. Data structures like
the GRID file would partition also the dead space, because
of the fixed partitioning. Due to its disjoint Z-partitioning,
point and range queries are always limited to just one path
searches in the B-Tree index, which is not true for R-Trees
due to the overlap problem of R-Trees.

The UB-Tree adapts well to the non-uniform data distri-
bution in parameter space. The Z-regions of the UB-Tree
narrowly adapt to the data distribution without degenerat-
ing. The empty part of the parameter space is covered by
a few huge Z-Regions, but those are not empty as they oc-
cupy some populated part of the universe with a small spot.
The Z-regions cluster the intervals according to their start
and end. Therefore, it is likely that intervals within a Z-
region have a similar position and length which is a benefit
for query processing, since queries likely want to get these
intervals together.

The correlation of the data, i.e.,start ≤ end, is no prob-
lem, since the query mapping fit to this. Also previous in-
vestigations [RMF+01] have shown that the UB-Tree han-
dles skewed data distributions well.

Additionally the UB-Tree is a dynamic index structure
and supports updates with logarithmic performance guaran-
tees.

4.3 Query Handling

As we have seen in Section 3.2 all basic query types (EQ,
IQ, CQ, ECQ) map to multidimensional range queries on
the parameter space. The same holds for all the 13 Allen
relations [AH85], they also map to range queries, since they
apply only constant constraints to the attributes.

As the UB-Tree is designed to perform multidimensional
range queries it is able to handle these query types effi-
ciently. Further more we need just one algorithm to deal
with all these query type and there is no further need for
specialized algorithms dealing with a specific query type.



The Z-region partitioning, which tries to maintain rect-
angular Z-regions with just a few fringes, fits perfectly to
the query profile created by the interval queries. Therefore,
the UB-Tree mainly loads those data pages from disk which
contribute to the result.

5 The RI-Tree

The conceptual structure of the RI-Tree is based on a vir-
tual binary tree of heighth which acts as a backbone over
the range[1, 2h−1] of potential interval bounds. Traversals
are performed purely arithmetically by starting at the root
value2h−1 and proceeding in positive or negative steps of
decreasing length2h−i , thus reaching any desired value of
the data space inO(h) time. This backbone structure is not
materialized, and only the root value2h is stored persis-
tently in a meta data tuple. For the relational storage of in-
tervals, the nodes of the tree are used as artificial key values:
Each interval is assigned to afork node, i.e., the first inter-
sected node when descending the tree from the root node
down to the interval location.

An instance of the RI-Tree consists of two relational in-
dexes which in an extensible indexing environment are at
best managed as index-organized tables. These indexes then
obey the relational schemalowerIndex(node, start) and
upperIndex(node, end) and store the artificialfork node
value, thestart andend of the interval. Additionally, one
can add an identifier or other attributes to the relation.

As any interval is represented by exactly one entry for
each the lower and the upper bound,O(n/b) disk blocks of
sizeb suffice to storen intervals. For inserting or deleting
intervals, the node values are determined arithmetically, and
updating the indexes requiresO(log bn) I/O operations per
interval.

For processing intersection queries we collect the nodes
of the binary tree which may contain intervals intersect-
ing the query interval[is, ie]. Theses nodes fall into three
classes:

Those nodes which are left tois and where we have to
testis ≤ re (leftnodes), those nodes which are to the right of
ie and where we have to testrs ≤ ie (rightnodes) and those
nodes included by the query interval, i.e.,is ≤ rs ≤ re ≤ ie
(contained).

Theleftnodesandrightnodeare stored in transient tables
and a SQL query is executed that joins these with the base
table while checking the predicates.

The RI-tree can be implemented by (procedural) SQL or
within the application and does not assume any lower level
interfaces. In particular, the built-in index structures of a
DBMS are used as they are, and no intrusive augmentations
or modifications of the database kernel are required.

6 Performance Analysis

For our measurements we use generated data and
queries. The data type of start and end is an integer with
the domain[0, 220 − 1] and to each tuple we add an addi-
tional payload field of 200 bytes, resulting in a tuple size of
208 bytes. With a page size of 2kB this make 9 tuples per
page. The page size is small compared to modern DBMSs,
but it allows to measure results qualitatively similar those
obtained by measuring with larger data sets.

We use a Sun Enterprise Server 450 with two Sparc-
Ultra4 248 MHz CPUs and 512MB RAM. The secondary
storage medium is an external 90 GB RAID system. The
database system is TransBase HyperCube, which offers a
product strength implementation of the UB-Tree.

In order to get an insight view and understanding of the
measured indexing techniques we use four different data
sets and two different query sets.

6.1 Data Sets

In order to reflect different applications scenarios we use
four data distributions. The start position is always uniform
distributed on the interval domain, while the length was var-
ied. We used data set sizes of 1000, 10000, 100000 and 1
million tuples.

usul: uniformly distributed start and length

usul100k: uniformly distributed start and uniform dis-
tributed length within the range[0, 100000]

usel: uniformly distributed start and exponentially dis-
tributed length according to the exponential distribu-
tion function λe−θx where λ = 0.000476837 and
θ = 5.24288

usel100k: uniformly distributed start and exponentially
distributed length within the range[0, 100000] ac-
cording to the exponential distribution functionλe−θx

whereλ = 0.002765655 andθ = 367.0016

The uniform distribution on start and end is used as it
allows easier understanding of effects due to the availabil-
ity of a cost model for UB-Trees. The exponential distri-
bution of the length reflects most real world applications
where short intervals are more likely to occur than long in-
tervals. Further more, in real world applications there is
usually a upper bound for the interval length1 and therefore
we use also variants of the data distributions that restrict the
interval length to a given range.

1When storing transaction time intervals, they do not last forever since
transactions will be aborted after a timeout period.



6.2 Query Sets

We focus on intersection queries, since exact match
queries are trivial, i.e., they are efficiently handled by a
point query. The results for intersection queries also hold
for the containment and enclosure query, as those are a sub-
set of the intersection query.

We use two different query sets:

window scan: a set of 5000 queries sorted according to the
start point and with a length of 300. This results in
a query set covering the whole data space, while two
consecutive query intervals have an overlap of 50%.

random: 1000 random query intervals, where the intervals
have been taken from theuseldata set.

Thewindow scanquery set is used to locate performance
dependencies of the index structures which are based on the
location of the query interval. On the other hand it gives the
index structures/DBMS a chance to profit from caching and
clustering, due to the overlap of query intervals.

Therandomquery set is used to see how the index struc-
tures perform without caching. It shows how good the index
structures handle ad-hoc queries, which deteriorate caching.

6.3 Index Structures

For our comparison we have used the composite key in-
dex (B-Tree) and UB-Tree provided by TransBase and vari-
ants of the RI-Tree [KPS00, KMPS01] as a reference can-
didate for indexing techniques designed for intervals. Mul-
tiple secondary indexes are neglected as they do not provide
clustering and their performance degenerates with bigger
result sets due to random accesses on the base table, which
can been observed in test measurements.

COMP: one composite key index on(start, end)

RIS: RI-Tree with two secondary indexes, one on
(node, start) and the other on(node, end)

RIP: RI-Tree with primary composite key index on
(node, start) and a secondary index on(node, end)

UBPS: UB-Tree onstart, end

The RI-Tree was chosen, since it provides the same prac-
tically important properties as our approach: it is easy to im-
plement/integrate, uses standard DBMS methods and pro-
vides scalability, update-ability, concurrency control, space
efficiency, etc. Further more it has been proven to be su-
perior to the Window-List [Ram97], Tile Index (T-Index)
[Ora00] and IST-technique [GLOT96] and so we can trans-
fer our performance results to these indexing techniques.

Actually, we first implemented the RI-Tree as it was pre-
sented in [KPS00] with two secondary indexes and “tran-
sient” tables, but the performance was worse than that of
multiple secondary indexes. So in order to cluster the data
we replaced the secondary index on(node, start) by a clus-
tering index on(node, start) [KMS01]. Still the perfor-
mance was not as good as expected. Actually, the prob-
lem was that TransBase does not support transient tables
and the join ofleftnodesand rightnodewith the base ta-
ble is not handled as efficiently as our solution, which was
to embed theleftnodesand rightnode list as aIN clause
in the SQL statement. The maximum length of the list is
log2 (max−min) − 1 and for the data used in our mea-
surements it was 19. However, the average length was just
8 and using an array search on such a short array is more
CPU efficient than the operations caused by a join.

6.4 Qualitative Comparison of Index Structures

As we have seen before the UB-Tree handles all the dis-
cussed query types with its range query algorithm. This
is superior compared to other techniques that support just
a few or one query type, e.g., the RI-Tree as presented in
[KPS00] handles just intersection queries. In order to han-
dle other query types one has to use a combination of in-
tersection query and possibly expensive post filtering or de-
velop specific algorithms.

Furthermore, when indexing additional attributes one
may just add them as additional dimensions to the UB-Tree.
As UB-Tree clusters data symmetrically with respect to all
indexed attributes range restriction on them will also be han-
dled efficiently. When using the RI-Tree one has to add the
attributes to its composite key index or use secondary in-
dexes. However, most implementation of composite key
indexes cannot handle multidimensional range queries ef-
ficiently, i.e., they only utilize the range restriction on the
first indexed attribute, and secondary indexes do not per-
form well, since they do not cluster the data accordingly.

6.5 Results

When making performance measurements of index
structures it is important to take all operations into account
and not just the query performance. Theses are loading,
space requirements, clustering, queries, updates, locking,
archiving, etc.

We have concentrated on the following ones: Loading,
space consumption, query performance and clustering, as
updates, locking and archiving are handled well by the B-
Tree underlying the tested indexing techniques.



count COMP UBPS RIP RIS

1000 148 150 146 171
10000 1450 1471 1402 1634

100000 14486 14681 13895 16189
1000000 143626 146788 146087 161489

Table 1. Space Requirements

6.5.1 Bulk Loading Time

Loading time scales linear for all index structures. The data
was sorted according to start before loading it, since this can
usually be assumed for real world data.

COMP loads fastest since it requires no further sorting of
the input data. RIS follows as it only requires updates of its
indexes while just appending data to the base table. The RIP
index requires even more time due to the clustering primary
composite key index on(node, start). UBPS is faster than
RIP for smallusul data sets and follows shortly after the
RIP for all other data sets.

We have also performed bulk loading of unsorted data.
The results of this were that UBPS was fastest, since it re-
quires less sorting than COMP, which took 2.2 times longer
in average. RIS and RIS followed with times longer by a
factor of 2.32 and 2.35, due to their more expensive index
maintainance and complex sorting.

6.5.2 Size of the Tables and Indexes

The overall size of the measured indexes is fairly the same
and grows linearly with the data volume as shown in Table
1. The extra attributenoteof the RI-Tree has only a minor
influence, since four extra bytes do not contribute much to
a tuple size of 208 bytes. However, it should be considered
that tuples of the form(start, end) would result in 50%
higher space requirements, due to the extranode attribute.

In general COMP and RIP requires least pages, followed
by UB-Tree and RIS. UBPS requires slightly more pages
compared to COMP and RIP, because compression of UB-
Tree data pages has not been implemented in TransBase Hy-
perCube yet. However, the differences can be neglected as
they are minimal. The page utilization of the different tech-
niques is usually between 77% and 90% and varies with the
scaling factor and no best indexing technique can be recog-
nized.

At the maximum scaling factor of 1 million tuples the
DB size was around 290 MB in average and UBPS requires
2% more pages than COMP while RIP/RIS require around
1% more pages than COMP in average.

0

100

200

300

400

500

600

700

800

0 200000 400000 600000 800000 1e+06

T
im

e 
in

 m
s

Start Position

COMP
RIP
RIS

UBPS

(a) Timeusul100k

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200000 400000 600000 800000 1e+06

T
im

e 
in

 m
s

Start Position

RIP
RIS

UBPS

(b) Timeusel

Figure 2. Measurement: homogenquery

6.5.3 Query Performance

We use a data base size of 10000 tuples for the measure-
ments. Test measurements with bigger data sets have shown
the similar qualitative results as those presented here. First
we want to consider thewindow scanquery set.

Fig. 2(a) shows the times for measuring theusul100k
data set. All the measurements plots are sampled to fewer
measurement points in order to be easier to distinguish.

RIS is not a clustering index and we clearly see peaks
which mark the nodes of the binary tree. When the scan
window reaches a new node it causes random page accesses
to disk pages containing tuples of that node. After that these
pages remain in cache and therefore the performance gets
better until the query window reaches the next node.



COMP reflects the fact that such an index is only able to
exploit the range restriction on the first attributestart, but
not the range restriction on the second attributeend. Due to
the mapping of the IQ, an IQ at the beginning of the domain
has a selective restriction onstart and no restriction onend.
As the query window shifts towards the end of the domain
the restriction onstartdecreases while the restriction onend
increases. Finally, onlyendwill be restricted.

As we have seen in Fig. 2(a), the times for COMP and
RIS are not only related to the result set size but they also
show a high relationship between the position of the query
window and the response time. We refer to this aspositional
dependency. RIP and UBPS show a better performance and
the response time reflects no positional dependencies, but
it is linear to the result set sizes (plot omitted). As there
are less intervals at the beginning and end of the interval
domain they are faster there.

The rations between COMP/UBPS, RIS/UBPS and
RIP/UBPS. In average RIP requires 46% more time that
UBPS and in the worst case RIP required nearly 8 times
longer than UBPS. In general one can say, UB-Tree outper-
forms RIP for small result sets.

The measurements with theusel100kdata set had simi-
lar results, due to this we omit them in this paper. In general
the response times have been shorter as the result set sizes
are smaller, because there are more shorter intervals in com-
parison to the data sets which do not restrict the length of
the intervals. Due to this there are also more intervals as-
signed to lower nodes of the binary tree of RIS/RIP and RIS
shows more peaks, but not so big ones. This holds also for
RIP, while UBPS maintains its behavior.

Fig. 2(b) shows the measurement for RIP and UBPS with
theuseldata set. The results are similar as before, however
the difference between RIP and UBPS becomes less. In this
measurement RIP requires 30% more time in average and
RIS was three times slower than UBPS. Again RIS shows
the positional dependency. As before these results are also
qualitatively observed fro theusul data set.

As the performance of COMP depends on the position
of the query interval we do not consider it further, but we
focus on RIP and UBPS which perform linear to the result
set size. Further more we also show for completeness RIS.

The random query set has performed as follows. With
small result set sizes UBPS is up to five times faster than
RIP and 8 times faster than RIS. RIS shows again the un-
predictable varying response times due to missing cluster-
ing. With growing result set size RIS and RIP become bet-
ter and finally RIP is even 5% faster than UB-Tree, which
comes from the better page utilization of the composite key
index which is used for RIP. In average UBPS performs just
2% better than RIP.

6.6 Clustering

In order to get a better understanding on the differences
between UBPS and RIP it is crucial to investigate their clus-
tering and how it differs.

(a) UBPS

(b) RIP

Figure 3. Clustering and Page Partitioning

Fig. 3 shows the region partitioning (and also disk page
clustering) for the UB-Tree and the RI-Tree with a cluster-
ing composite index on (node,start,end)2. The domain for
this picture is[0, 14] and we assume a uniform distribution
on start and length of the intervals. Aend-withinquery
(all intervals that end at a given range) is also depicted and

2Taking endnot into account for the clustering of the RI-Tree would
add random jumps to the space filling curve of the RI-Tree, since there
would not be an order onend.



the pages which have to be loaded are filled with a striped
pattern. In this case the RI-Tree has to load twice the data
pages (6) of the UB-Tree (3).

The UB-Tree clusters the data symmetrically, i.e., it
treatsstart andend of an interval equally. This results in
clustering intervals with respect to their position and length
at the same time. The RI-Tree with a primary index on
(node, start, end) clusters according node and then to the
composite key order resulting in a stripe like partitioning.
With growing data volume the UB-Tree would adapt its re-
gions by making them smaller and more rectangular like.
The RI-Tree will get even more strip like and a query like
presented here will cut it like a puff-pasty, while the UB-
Tree provides a good approximation for the query.

Therefore, themeets, left-overlaps, left-coversrelations
[AH85] are not handled well by a RI-Tree with the pri-
mary index on(node, start) resp.met by, right-overlaps,
left-coveredare not handled well by a RI-Tree with the
primary index on(node, end). The reason for this is that
those queries restrict just thestart resp.endcannot be pro-
cessed well by a clustering index on the not restricted at-
tribute. Using the secondary index results in random page
accesses and depending on the DBMS even multiple page
accesses. Therefore, an index scan on the clustering index
is usually more efficient, but it results in a complete scan of
all affected nodes. Compared to this, the UB-Tree Z-region
space partitioning allows for reading a good approximation
of the subspace which contains intervals contributing to the
result. With more data the UB-Tree will become even better
compared to the RI-Tree.

However, a query restricting just start can be processed
more efficiently by a RI-Tree on(node, start), but also the
UB-Tree can perform these queries and the RI-Tree is not
able to outperform the UB-Tree by orders of magnitude.

6.6.1 Measurements

We use ausul data set with 100000 tuples for this measure-
ment and move a restriction onend with length 10000 in
steps of 10591 from the start of the domain to the end of
it. Caching was enabled for this measurement. We also in-
cluded the plots for multiple secondary indexes on a table
without a specific sort order.

For the RI-Tree we used a modified version of the IQ
query algorithm collecting just those nodes that might con-
tribute tuples to the result, i.e., it works like the intersection
query for intervals which are points, but is has to traverses
only one path. This was done by traversing the virtual bi-
nary tree and collecting all those nodes with intervals which
may contain thestart resp.endpoint.

Fig. 4(a) shows the results for a query restricting just
the end position. By shifting the restriction to the end of
the domain the number of result tuples grows as shown in

Fig. 4(a), since there are more longer intervals. UBPS times
reflects the linear dependency to the result set sizes. RIP
starts similar to UBPS, but the further the restriction moves
the more nodes containing more tuples have to be scanned
for results. Again we see the phenomenon of peaks we have
only seen for RIS before. Whenever, the restriction shifts
over a new node the data base has to fetch all the intervals
corresponding to that node. The first two levels of the bi-
nary tree are clearly visible at 50% for the first level (root
node) and 25% and 75% for the second level. At 50% there
is the highest peak, since suddenly the root node has to be
processed, which was not cached so far. Additionally also
pages from the nodes before the root node are affected by
this query. COMP on (start,end) has to perform an index
scan since its implementation does not support a range re-
striction on end only. Its slightly increase comes from the
growing amount of tuples which have to be transfered to the
application. Fig. 4(a) depicts the linear relation between re-
sponse times and number of loaded pages. MULT performs
really bad. It loads fewer pages than COMP, but it has to
fetch them by random accesses and therefore it is not able
to exploit prefetching as COMP does, further more it has
to load more pages than UBPS or RIP due to the lack of
clustering. Speaking in averages, MULT is nearly 13 time
slower than UBPS, COMP is 9 times slower than UBPS,
where RIP is 4 times slower.

The results for a query restricting juststart in the same
way asendwas restricted before are depicted in Fig. 4(b).
As expected COMP performs best, since its clustering is
perfect for this restriction. It performs linear to the result
set size. RIP is only a bit slower, but again with peaks
at the places where the query window covers new nodes.
UBPS follows again performing linear to there result set
size. MULT is again bad for the same reasons as before.
Speaking in averages, MULT is nearly 12 time slower than
UBPS, while COMP takes 67% and RIP 75% of the time
UBPS required.

Finally speaking RIP requiring 400% of UBPSs time
for ends inqueries and 75% forstarts inqueries, therefore
UBPS is better in the overall average.

7 DBMS integration

The parameter space technique can be implemented by
embedding it into an application or building a middle ware
using a underlying RDBMS with integrated UB-Tree. The
UB-Tree adds efficient query processing by indexing the pa-
rameter space. It would also be possible to integrate it into
a DBMS providing a procedural query language without
modifying the database kernel. However, a DBMS integra-
tion is best, as this reduces programming overhead on the
application side, allows for easy use and minimizes DBMS
maintenance while maximizing the performance.



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

T
im

e 
in

 m
s

N
um

be
r 

of
 r

es
ul

t t
up

le
s

Start position in %

MULT
COMP

RIP
UBPS

result size

(a)Ends Withinquery: times

0

500

1000

1500

2000

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r 

of
 lo

ad
ed

 d
at

a 
pa

ge
s

Start position in %

MULT
UBPS

RIP
COMP

(b) Starts Withinquery: logical Pages I/Os

Figure 4. Ends Withinand Starts Withinquery

Both, the UB-Tree and the necessary parameter space
transformations are straight forward approaches and they
are easy to implement and robust to be used in large-scale
applications. Additionally they can be integrated with min-
imum impact to existing parts of a RDBMS, as long as it
supports a clustering B-Tree.

Only minor changes to the existing code of a RDBMS
are necessary, i.e., there has to be a new data type for in-
tervals in order to allow for the recognition of the required
parameter space transformations. With this we need just
a new kernel module handling all the transformations of
DDL statements, insert/update/delete statements and inter-
val queries.

The DDL statement for creating a interval rela-
tion “CREATE TABLE t(i INTERVAL(INTEGER),
...) ” is transformed to “CREATE TABLE t(istart
INTEGER, iend INTEGER, ...) ”.

With this the query “SELCT * FROM t WHERE
i INTERSECTS [is, ie]” maps to the SQL statement
“SELECT * FROM t WHERE istart BETWEEN
mininteger AND ie AND iend BETWEENis AND
maxinteger”.

8 Summary and Outlook

We have presented a hybrid method to manage and query
intervals efficiently. It transforms intervals to a two dimen-
sional space (parameter space) and indexes that space with
a UB-Tree. Queries on intervals are transformed to query
boxes in parameter space which are handled well by the
UB-Tree range query algorithm. The required transforma-

tions of intervals and queries to parameter space are simple,
efficient and independent of other DBMS functionality.

Further more, this technique is dynamic, i.e., it allows
updates and deletes, it is superior compared to prior tech-
niques with respect to query performance as well as the
supported query types. Finally, it allows for indexing ad-
ditional dimensions symmetrically and thus also provides
efficient access to these.

In our further research we will investigate the usability
and performance of the described approach with real world
data from data warehouses and spatial objects approximated
by a space filling curve.

In addition, the parameter space technique can be gen-
eralized to index bounding boxes of higher dimensional
objects, thus enabling indexing spatial objects (e.g., GIS
data) in two/three dimensional space with the UB-Tree. For
two/three dimensional objects we expect good performance,
since earlier measurements [Mar99] have proven that the
performance of the UB-Tree is also excellent for the num-
ber of dimensions (4 for 2d objects and 6 for 3d objects)
required here.

References

[AH85] J.F. Allen and P.J. Hayes. A common-sense the-
ory of time. InProceedings of the 9th International
Joint Conference on Artificial Intelligence, volume 9.,
pages 528–531, 1985.

[Bay97] Rudolf Bayer. The universal B-Tree for multidimen-
sional Indexing: General Concepts. InWorld-Wide
Computing and its Applications ’97 (WWCA ’97),



Lecture Notes on Computer Science. Springer Verlag,
1997. Tsukuba, Japan.

[BG94] Gabriele Blankenagel and Ralf Hartmut Gting. Ex-
ternal segment trees. InAlgorithmica, volume 12(6),
pages 498–532, 1994.

[BKK99] Christian Böhm, Gerald Klump, and Hans-Peter
Kriegel. XZ-Ordering: A space-filling curve for ob-
jects with spatial extension. InProceedings of Ad-
vances in Spatial Databases, 6th International Sym-
posium, SSD’99, Hong Kong, China, July 20-23,
1999, volume 1651 ofLecture Notes in Computer Sci-
ence, pages 75–90. Springer, 1999.

[BM72] Rudolf Bayer and E. McCreight. Organization and
Maintainance of large ordered Indexes. InActa Infor-
matica 1, pages 173–189, 1972.

[BM97] Rudolf Bayer and Volker Markl. The UB-Tree: Per-
formance of Multidimensional Range Queries. Tech-
nical Report TUM-I9814, Institut fr Informatik, TU
Mnchen, 1997.

[Boz98] Toga Bozkaya.Index Structures For Temporal And
Multimedia Databases. PhD thesis, Department of
Computer Engineering and Science Case Western Re-
serve University, 1998.

[BY89] Ricardo A. Baeza-Yates. The Expected Behaviour of
B+-Trees. InActa Informatica 26(5), pages 439–471,
1989.

[FR89] Christos Faloutsos and Shari Roseman. Fractals
for secondary key retrieval. InProceedings of the
Eighth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, March 29-31,
1989, Philadelphia, Pennsylvania, pages 247–252.
ACM Press, 1989.

[GG98] Volker Gaede and Oliver Gnther. Multidimensional
Access Methods. InComputing Surveys 30(2), pages
170–231. ACM Press, 1998.

[GLOT96] Cheng Hian Goh, Hongjun Lu, Beng Chin Ooi, and
Kian-Lee Tan. Indexing temporal data using existing
b+-trees. InData & Knowledge Engineering, volume
18(2), pages 147–165, 1996.

[KMPS01] Hans-Peter Kriegel, Andreas Müller, Marco P̈otke,
and Thomas Seidl. Spatial data management for com-
puter aided design. InProceedings of SIGMOD’01,
Santa Barbara. ACM Press, 2001.

[KMS01] H.-P. Kriegel, M. Ptke M., and T. Seidl. Interval Se-
quences: An Object-Relational Approach to Manage
Spatial Data. InProc. 7th Int. Symp. on Spatial and
Temporal Databases (SSTD’01), Redondo Beach, CA,
2001., 2001.

[KPS00] Hans-Peter Kriegel, Marco Pötke, and Thomas Seidl.
Managing intervals efficiently in object-relational
databases. InProceedings of 26th International Con-
ference on Very Large Data Bases, September 10-14,
2000, Cairo, Egypt, pages 407–418. Morgan Kauf-
mann, 2000.

[Ks83] Klaus Kspert. Storage Utilization in B∗-Trees with a
Generalized Overflow Technique. InActa Informat-
ica 19, pages 35–55, 1983.

[KS91] Curtis P. Kolovson and Michael Stonebraker. Seg-
ment indexes: Dynamic indexing techniques for
multi-dimensional interval data. In James Clifford
and Roger King, editors,Proceedings of the 1991
ACM SIGMOD International Conference on Manage-
ment of Data, Denver, Colorado, May 29-31, 1991,
pages 138–147. ACM Press, 1991.

[Mar99] Volker Markl. Processing Relational Queries using
a Multidimensional Access Technique. PhD thesis,
DISDBIS, Band 59, Infix Verlag, 1999.

[MTT00] Y. Manolopoulos, Y. Theodoridis, and V.J. Tsotras.
Chapter 4: Access methods for intervals. InAdvanced
Database Indexing, Boston, MA: Kluwer, 2000.

[MZB99] Volker Markl, Martin Zirkel, and Rudolf Bayer.
Processing Operations with Restrictions in RDBMS
without External Sorting: The Tetris Algorithm. In
Proceedings of the 15th International Conference on
Data Engineering, 23-26 March 1999, Sydney, Austri-
alia, pages 562–571. IEEE Computer Society, 1999.

[OM84] Jack A. Orenstein and T. H. Merrett. A Class of Data
Structures for Associative Searching. InProceed-
ings of the Third ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems, April 2-4, 1984,
Waterloo, Ontario, Canada, pages 181–190. ACM,
1984.

[Ora00] Oracle.Oracle8i Data Cartridge Developers’s Guide.
Oracle Corporation, Redwood City, CA, rel. 8.1.7 edi-
tion, 2000.

[Ore90] Jack A. Orenstein. A Comparison of Spatial Query
Processing Techniques for Native and Parameter
Spaces. InProceedings of the 1990 ACM SIGMOD
International Conference on Management of Data,
Atlantic City, NJ, May 23-25, 1990, pages 343–352.
ACM Press, 1990.

[Ram97] S. Ramaswamy. Efficient indexing for constraint and
temporal databases. InProceedings of the 6th In-
ternational Conference on Database Theory (ICDT),
pages 419–431, 1997.

[RMF+00] Frank Ramsak, Volker Markl, Robert Fenk, Martin
Zirkel, Klaus Elhard, and Rudolf Bayer. Integrating
the UB-Tree into a Database System Kernel. InPro-
ceedings of International Conference on Very Large
Data Bases, 2000, Cairo, Egypt, 2000.

[RMF+01] F. Ramsak, V. Markl, R. Fenk, R. Bayer, and T. Ruf.
Interactive ROLAP on Large Databases: A Case
Study with UB-Trees. InProc. of IDEAS Conf. 2001,
Grenoble, France, 2001.

[SOL94] Han Shen, Beng Chin Ooi, and Hongjun Lu. The
tp-index: A dynamic and efficient indexing mecha-
nism for temporal databases. InProceedings of the
Tenth International Conference on Data Engineering,
February 14-18, 1994, Houston, Texas, USA, pages
274–281. IEEE Computer Society, 1994.



[TAS00] TAS. Transbase HyperCube. TransAction Software,
http://www.transaction.de, 2000.

[TCG+93] A.U. Tansel, J. Clifford, S. Gadia, S. Jajo-
dia, A. Segev, and R. Sondgrass. Temporal
Databases: Theory, Design and Implementation.
Benjamin/Cummings, Redwood City, CA, 1993.


	Introduction
	Related Work
	The Parameter Space
	Data Transformation
	Query Transformation

	Interval Handling with the UB-Tree
	The UB-Tree
	Indexing the Parameter Space
	Query Handling

	The RI-Tree
	Performance Analysis
	Data Sets
	Query Sets
	Index Structures
	Qualitative Comparison of Index Structures
	Results
	Bulk Loading Time
	Size of the Tables and Indexes
	Query Performance

	Clustering
	Measurements


	DBMS integration
	Summary and Outlook

