
Institut für Informatik

der Technischen Universität München

MISTRAL:

Processing Relational Queries using a
Multidimensional Access Technique

Volker Markl

Preface
Classical one dimensional B-trees have been the standard access method of all
commercial database systems for many years. This dissertation is a very promising
effort to introduce universal B-trees (UB-trees), the multidimensional variant of B-
trees, as a basic access method into the core of fundamental DB-technology. The
universal relevance of UB-trees is a consequence of the fact, that every relation can
be considered as a set of points in multidimensional space. UB-trees organize this
space for efficient processing of the data, resulting for many types of queries in
orders of magnitude improvement over classical methods.

The thesis lays the theoretical foundations of UB-tress, predicts their performance by
analytical models and validates these models by experiments using large real world
databases and real life applications and queries from the field of datawarehousing.
The need to sort data and intermediate results frequently is an annoying drawback
of today‘s query processing methods. In combination with the Tetris algorithm UB-
trees allow to avoid sorting in most cases, leading to dramatic improvements of
response time, storage requirement and overall query processing time.

Adding a new access method requires to consider all aspects of database systems:

- architecture of subsystems
- query optimization
- query processing
- multiuser operation and synchronization
- bulk loading
- storage requirement
- parallelism, etc.

Since UB-trees rely on classical B-trees for their implementation, all of these issues
can be solved in a satisfactory way and can be dealt with elegantly.

The performance experiments reported in this thesis were carried out with an
implementation of UB-trees as a middleware layer on top of SQL. Additional
performance improvements can be gained by integrating the UB-tree technology in
the kernel of database systems.

This thesis is a cornerstone of the MISTRAL project. MISTRAL has the goal to
introduce UB-trees as a new access method into database systems with the
fascinating vision, to extend fundamental database technology in an essential way.
MISTRAL is financially supported by SAP, Teijin, NEC, Hitachi, the European
Commission, Project MDA, TAS, Gfk and Microsoft.

Munich, July 25, 1999 Prof. Rudolf Bayer, Ph.D.

Institut für Informatik

der Technischen Universität München

MISTRAL:

Processing Relational Queries using a
Multidimensional Access Technique

Volker Markl

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. B. Brügge, Ph.D.

Prüfer der Dissertation:
1. Univ.-Prof. R. Bayer, Ph.D.

2. Univ.-Prof. J.-C. Freytag, Ph.D.,

Humboldt-Universität zu Berlin

Die Dissertation wurde am 15.3.1999 bei der Technischen Universität München eingereicht

und durch die Fakultät für Informatik am 29.6.1999 angenommen.

Title of the Thesis:

MISTRAL: Processing Relational Queries using a Multidimensional Access Technique

Author:

Dipl. Inform. Volker Markl

Supervisors:

1. Prof. Rudolf Bayer, Ph.D., Technische Universität München

2. Prof. Johann Christoph Freytag, Ph.D., Humboldt Universität Berlin

Keywords:

relational database management systems, query processing, query optimization
multidimensional access methods, indexing

data structures, B-Tree, UB-Tree
data warehousing, relational OLAP, OLTP

benchmarking, TPC-D

Abstract:

A multidimensional access method offering significant performance increases by intelligently
partitioning the query space is applied to relational database management systems (RDBMS). We
introduce a formal model for multidimensional partitioned relations and discuss several typical query
patterns. The model identifies the significance of multidimensional range queries and sort operations.
The discussion of current access methods gives rise to the need for a multidimensional partitioning of
relations. A detailed analysis of space partitioning focussing especially on Z-ordering illustrates the
principle benefits of multidimensional indexes. After describing the UB-Tree and its standard
algorithms for insertion, deletion, point queries, and range queries, we introduce the spiral algorithm
for nearest neighbor queries with UB-Trees and the Tetris algorithm for efficient access to a table in
arbitrary sort order. We then describe the complexity of the involved algorithms and give solutions to
selected algorithmic problems for a prototype implementation of UB-Trees on top of several
RDBMSs. A cost model for sort operations with and without range restrictions is used both for
analyzing our algorithms and for comparing UB-Trees with state-of-the-art query processing.
Performance comparisons with traditional access methods practically confirm the theoretically
expected superiority of UB-Trees and our algorithms over traditional access methods: Query
processing in RDBMS is accelerated by several orders of magnitude, while the resource requirements
in main memory space and disk space are substantially reduced. Benchmarks on some queries of the
TPC-D benchmark as well as the data warehousing scenario of a fruit juice company illustrate the
potential impact of our work on relational algebra, SQL, and commercial applications. The results of
this thesis were developed by the author managing the MISTRAL project, a joint research and
development project with SAP AG (Germany), Teijin Systems Technology Ltd. (Japan), NEC (Japan),
Hitachi (Japan), Gesellschaft für Konsumforschung (Germany), and TransAction Software GmbH
(Germany).

Acknowledgements

I thank my supervisor, Prof. Rudolf Bayer, Ph.D., for his support and the many fruitful
discussions and inspirations. He helped me a lot with his ideas and his confidence, especially
in the beginning, when the feasibility of the work and the road ahead were still unclear.

My master students and interns did a large portion of the prototype implementation. In
addition they helped with analysis, and carried out many of the performance measurements. I
especially thank Nils Frielinghaus, who was the first student who dared to be supervised by
me. Our discussions produced ideas, which were crucial for the success of the MISTRAL
project. The same holds for the work of Roland Pieringer, who helped to prove the practical
benefits of our approach by porting our pilot implementation to Oracle and doing
performance measurements at SAP in Walldorf.

When the MISTRAL project grew, I was not alone anymore: My team members Robert Fenk,
Frank Ramsak, Stefan Sixl, and Martin Zirkel worked on the project with the same
enthusiasm as I did. We had numerous inspiring discussions. For this thesis, my colleagues
also did a lot of proofreading, which certainly improved the quality of the work.

For funding the research work I thank Karl-Heinz Hess and Klaus Majenz from SAP AG,
Ichiro Arima, Shuichi Osaki and Toshishiro Satomi from Teijin Systems Technology, Japan,
Kunitoshi Tsuruoka from NEC’s C&C Research Lab, Japan, Kazuo Masai and Shunichi Torii
from Hitachi Ltd., Japan, Dr. Klaus Elhardt and Dr. Christian Roth from TransAction
Software, and Dr. habil Thomas Ruf from GfK. I especially thank Klaus Majenz from SAP,
Dr. Klaus Elhardt and Dr. habil Thomas Ruf for the discussions at our project meetings,
which raised and answered many theoretical and practical questions. In addition, these
discussions provided insight in database implementation and the practical demands of
database users.

I also thank many further students, colleagues and friends for discussions, ideas and
proofreading of the thesis. Here I especially thank Markus Blaschka, Bernd Deifel, Prof. Dr.
Wolfgang Kowarschick, Peter Müller, Carsten Sapia, Michael Walther, and Wolfgang
Wohner. Many thanks also to Prof. Johann Christoph Freytag, Ph.D., whose comments and
ideas were a valuable contribution to my work.

Thanks also to my family and friends for helping me to forget my work, whenever I was stuck
and needed some time to relax. I also thank Andrea for the 0.5l tea mug which was a good
companion during some long nights in the office.

Last but not least I thank the Deutsche Bahn (German Rail), since the solution to many
algorithmic problems (like the range query algorithm, multidimensional hierarchical
clustering) and many new ideas (like the names MISTRAL and Tetris) were invented on the
tracks.

TABLE OF CONTENTS i

Table of Contents

INTRODUCTION.. 3

1.1 MOTIVATION... 4
1.1.1 Data Warehousing Applications .. 4
1.1.2 Non-Standard DBMS ... 6
1.1.3 Relational DBMS and DBMS in General .. 6

1.2 OBJECTIVE .. 7
1.3 RELATED WORK ... 8

1.3.1 RDBMS and Query Processing.. 8
1.3.2 Multidimensional Access Methods... 9

1.4 OUTLINE ... 11
1.5 HOW TO READ THE THESIS.. 12

TERMINOLOGY AND BASIC CONCEPTS... 15

2.1 THE MULTIDIMENSIONAL SPACE: DUALITY OF POINTS AND TUPLES............................ 16
2.1.1 Relations, Tuples, Attributes and the Multidimensional Space 16
2.1.2 Intervals ... 18
2.1.3 Volumes.. 19
2.1.4 Statistical Functions... 20
2.1.5 Partitioned Relations ... 20

2.2 QUERY TYPES ... 21
2.2.1 Partial Match Query .. 25
2.2.2 Range Queries.. 26
2.2.3 Range Query Sets and Arbitrary Query Spaces... 27
2.2.4 Nearest Neighbor Queries ... 28
2.2.5 Further Queries.. 29
2.2.6 Query Processing... 31

2.3 ACCESS METHODS .. 31
2.3.1 Characteristics of Secondary Storage.. 32
2.3.2 Clustering... 33
2.3.3 Non-Clustering Indexes.. 37

2.4 ANSWERING RANGE QUERIES IN PRESENT RDBMS.. 38
2.4.1 Compound B-Trees .. 38
2.4.2 Multiple Secondary B-Trees or Bitmap Indexes .. 38
2.4.3 Indexes for Processing Range Queries used in Present RDBMS 40

MULTIDIMENSIONAL SPACE PARTITIONING.. 41

3.1 SPACE FILLING CURVES AND TOTAL MULTIDIMENSIONAL ORDERINGS........................ 42
3.2 PROPERTIES OF SPACE FILLING CURVES ... 46
3.3 SYMMETRY OF SPACE FILLING CURVES .. 47
3.4 REGIONS COVERED BY SPACE FILLING CURVES .. 55
3.5 DISCONNECTED Z-REGIONS .. 57

ii TABLE OF CONTENTS

3.6 GEOMETRIC VIEW OF Z-REGION PARTITIONING ... 59
3.6.1 Address Representation.. 62
3.6.2 Volumes of Z-Areas and Z-Regions ... 68

3.7 INDEPENDENT DIMENSIONS... 69
3.7.1 Uniformly Distributed Data ... 70
3.7.2 Gaussian Distributed Data .. 71
3.7.3 Idealized Uniform Partitioning.. 71

3.8 DEPENDENT DIMENSIONS.. 72
3.8.1 Linear Dependency .. 72
3.8.2 Further Dependencies.. 73

3.9 HIGH DIMENSIONALITIES .. 74
3.10 UTILIZATION OF THE MULTIDIMENSIONAL SPACE ... 75

THE UB-TREE .. 83

4.1 CONCEPT OF THE UB-TREE... 84
4.2 INSERTION INTO UB-TREES... 85
4.3 THE POINT QUERY ALGORITHM.. 86
4.4 DELETION FROM UB-TREES.. 87
4.5 THE RANGE QUERY ALGORITHM .. 87
4.6 THE SPIRAL ALGORITHM FOR NEAREST-NEIGHBOR QUERIES....................................... 91
4.7 THE TETRIS ALGORITHM FOR SORTED PROCESSING OF QUERY BOXES......................... 92

PROTOTYPE IMPLEMENTATION.. 97

5.1 OVERVIEW OF THE PROTOTYPE... 98
5.2 BASIC IMPLEMENTATION CONCEPTS... 100
5.3 IMPLEMENTING THE ADDRESS CALCULATION... 102

5.3.1 Bit-Interleaving .. 103
5.3.2 Address Calculation for Arbitrary Data Types.. 105
5.3.3 Dealing with low Cardinality Domains: Enumeration Types............................ 106
5.3.4 Multidimensional Hierarchical Clustering.. 108
5.3.5 Dealing with non-uniformly distributed Data with Quantiles 116

5.4 IMPLEMENTING THE INSERTION ALGORITHM .. 121
5.5 IMPLEMENTING THE DELETION ALGORITHM... 122
5.6 IMPLEMENTING THE POINT-QUERY ALGORITHM... 122
5.7 IMPLEMENTATION OF THE RANGE QUERY ALGORITHM .. 123

5.7.1 Determining the next Intersection.. 124
5.7.2 Dealing with Sets of Query Boxes.. 125

5.8 THE UB-TREE LIBRARY.. 126

PERFORMANCE ANALYSIS... 129

6.1 THE COST OF UB-TREE RANGE QUERIES.. 130
6.1.1 A Cost-Function for Perfect Idealized Uniform Partitioning 130
6.1.2 A Cost Function for Semi-perfect Idealized Uniform Partitioning.................... 132
6.1.3 A Cost Function for Probabilistic Idealized Uniform Partioning 134
6.1.4 Cost Function and Selectivity .. 135

TABLE OF CONTENTS iii

6.1.5 The Cost Function: Theory and Practice... 135
6.2 A COST MODEL .. 137
6.3 THE COST OF RANGE QUERIES.. 138

6.3.1 Cost Functions ... 139
6.3.2 Simulation Results.. 141

6.4 THE COST OF RANGE QUERIES WITH SORT OPERATIONS .. 142
6.4.1 Cost Functions for Secondary Storage .. 142
6.4.2 Cost Functions for Response Time... 143
6.4.3 Cost Functions for Interactive Response Times... 143
6.4.4 Simulation Results.. 144

6.5 SUMMARY: COST ANALYSIS ... 145

PERFORMANCE MEASUREMENTS... 147

7.1 INSERT PERFORMANCE.. 148
7.2 EXACT MATCH QUERY PERFORMANCE... 149
7.3 STORAGE REQUIREMENTS... 150
7.4 RANGE QUERY PERFORMANCE ... 151

7.4.1 Types of Measurements .. 153
7.4.2 Comparative Performance Measurements... 156
7.4.3 Partial Range Queries ... 159

IMPACTS ON RELATIONAL QUERY PROCESSING.. 161

8.1 RELATIONAL OPERATIONS WITH UB-TREES AND THE TETRIS-ALGORITHM................ 162
8.1.1 Asymptotic complexity of the UB-Tree Range Query Algorithm 162
8.1.2 Asymptotic complexity of the Tetris Algorithm.. 163
8.1.3 Asymptotic complexity of Operations of Relational Query Processing 164

8.2 COMPLEX QUERIES ON GENERATED DATA: THE TPC-D BENCHMARK 167
8.2.1 Joins and Restrictions .. 167
8.2.2 Joins, Grouping, and Restrictions.. 170
8.2.3 Multi-attribute Restrictions.. 172
8.2.4 Summary: TPC-D Performance Measurements .. 174

8.3 A REAL WORLD DATA WAREHOUSE: THE JUICE & MORE BENCHMARK 175
8.3.1 Queries on the ‘Juice & More’ Schema... 176
8.3.2 Data Distribution ... 177
8.3.3 Multidimensional Hierarchical Clustering of ‘Juice & More’ 181
8.3.4 Performance Measurements .. 183
8.3.5 Summary: Data Warehouse Performance Measurements 186

SUMMARY .. 187

9.1 CONCLUSIONS ... 188
9.2 FUTURE WORK.. 189

REFERENCES... 193

INDEX... 211

iv TABLE OF CONTENTS

Part I

Preliminaries

CHAPTER 1: INTRODUCTION 3

Of course a film should have a
beginning, a middle and an end.
But not necessarily in that order.

 (Jean-Luc Godard)

Chapter 1

Introduction

ultidimensional access methods are useful for a broad range of database
applications, e.g., data warehousing, geographical information systems,
data mining, archiving systems, lifecycle management databases. In
general these access methods are beneficial, if queries define (and thus
process) some part of a large data set by restrictions with respect to
several categories (e.g., the sales for one year for a certain product, all

cities near Munich with a population larger than 100.000 people). We focus on using
multidimensional indexes for query processing in relational database management systems
(DBMS). This introduction defines the scope and objective of the thesis. The applicability of
multidimensional access methods for query processing is motivated by examples from data
warehousing, non-standard DBMS applications and relational databases in general. The
introduction also surveys related work in the fields of multidimensional access methods,
relational DBMS and query processing, data warehousing and benchmarking. The chapter is
concluded by giving a roadmap on the following chapters of the thesis.

M

4 CHAPTER 1: INTRODUCTION

1.1 Motivation

Complex business applications like SAP R/3 [SAP99], data warehousing (DW) and data
mining as well as non-standard DBMS applications like geographical information systems
(GIS) and statistical databases have created a strong demand for efficient processing of
complex queries on huge databases. These complex queries set new requirements on the
query processing and access method algorithms of a DBMS.

The main reason of indexing a table of a database is to accelerate query execution. This is
achieved by utilizing the restrictions imposed by a query in order to reduce the number of disk
accesses. We focus on using multidimensional indexes to organize any table of a database. In
the following we use the terminology of relational DBMS because of their commercial
importance. Since access methods are relevant to any DBMS regardless of the DBMS
paradigm, the methodology described in this thesis can also be used to accelerate deductive
DBMS (DDBMS, e.g., [Ull89, Spe91]), object-oriented DBMS (OODBMS, e.g., [BDK92])
or multidimensional DBMS (MDBMS, e.g., [PDF+98]).

We consider each tuple of a table to be a point in multidimensional space. Then a table
describes a certain subspace of a multidimensional space defined by the cross product of the
domains of all attributes. We use a multidimensional access method to organize that
multidimensional space, which allows to cluster the data with respect to multiple attributes at
the same time. As we will show, this multidimensional organization of a relational table is in
many cases superior to one-dimensional clustering (i.e., organizing the data on disk for
efficient access with respect to one attribute). However, current commercial DBMS do either
not support multidimensional indexes at all or only use them as an add-on in the context of
geo-spatial applications [Ora97, IBM97].

In the following we describe how data warehousing, non-standard DBMS as well as standard
DBMS may benefit from the techniques described in this thesis.

1.1.1 Data Warehousing Applications

Data-warehousing applications [Inm96, Kim96, Dev97] cope with enormous amounts of data
ranging in Gigabytes and Terabytes. While transactional (OLTP, online transaction
processing) DBMS like bank applications usually use simple query patterns to retrieve a very
small part of a database (usually one record) by a primary key access, data processing in data
warehousing (OLAP, online analytical processing) involves complex queries that usually
access a large portion of the database [CD97, WB97, GBL+96].

On the conceptual level a multidimensional (MD) view on the data models has been
established by academia and the industry for OLAP applications [CD97]. In the MD model
the numeric (quantitative) data (measures) (e.g., sales, cost), which is the focus of the
analysis, is organized along multiple dimensions. The dimensions provide categorical

SECTION 1.1: MOTIVATION 5

(qualitative) data (e.g., container size of a product), which determines the context of the
measures. Therefore the measures can be seen as a value in a multidimensional space – one
often refers to this model as a multidimensional cube. An important concept of OLAP data
models is the notion of dimension hierarchies. Hierarchies are used to provide structure to the
otherwise flat dimensions. Often the data in the dimensions can be categorized/classified
according to some additional characteristics (e.g., shops could be classified according to their
location). Usually OLAP users are not interested in the single measures but in some form of
summarized data (e.g., sales in a certain area). Hierarchies provide an appropriate method of
describing the level of aggregation for a dimension.

Data processing in DW applications retrieves aggregated measures organized or classified
according to several dimensions or hierarchies over the dimensions (e.g., the total sales for all
coffee shops in Bavaria in 1999). For this reason multidimensional data models [BSH+98],
multidimensional query languages (e.g., MDX [MS98b] or the OLAP Council approach
[OLA98]) and even multidimensional DBMS (MDBMS) have been developed by the
research community and implemented as commercial products. Typical OLAP operations are
drill-down, roll-up and slice-and-dice [Kim96] and usually multiple dimensions are restricted
at the same time. In general one can state that these operations in a MD model lead to range
restrictions on the lowest hierarchy level of each dimension [Sar97].

To a large extent, relational DBMS are used for decision support applications, since these
systems are well researched and are reported to provide more efficiency for huge databases
than MDBMS. Regardless whether a multidimensional or relational paradigm is used to
model and query OLAP data, queries result in multidimensional range restrictions in
combination with sort operations and aggregations. Therefore any DBMS storing OLAP data
must efficiently handle this typical query pattern.

Pre-computation, clustering and indexing are common techniques to speed up query
processing. Pre-computation results in the best query response time at the expense of load
performance and secondary storage space. For DW applications, pre-computation is mostly
discussed for aggregation operations [CD97]. However, one requirement of DW is to effi-
ciently deal with ad-hoc queries. Deciding which queries to pre-compute becomes extremely
difficult then. Pre-computation also leads to a view maintenance problem.

In Section 8.2 we will illustrate the applicability of our technique to OLAP scenarios by using
a multidimensional index to cluster the data cube of a data warehouse in order to efficiently
process OLAP queries. We present a methodology to cluster data organized along multiple
hierarchical dimensions. For clustering the fact table of a relational OLAP implementation we
present performance measurements for a fruit juice company using a star schema with a fact
table of 26 million records (an overall size of 7 GB). On this real-world data we experienced a
performance increase up to a factor of ten compared to traditional techniques.

6 CHAPTER 1: INTRODUCTION

1.1.2 Non-Standard DBMS

Non-standard DBMS deal with complex objects which usually are not simply stored in tables
or relations due to their interaction, relationship or size. Typical examples of non-standard
DBMS are multimedia DBMS, CAD/CAM DBMS or geographical information systems
(GIS). The systems usually aim towards specific applications, like similarity search, for
example searching a picture or sound similar to an example picture/sound specified by a
query. In many application areas like CAD [BKK97], computer vision [Jag91], multimedia
archives [SH94], medical imaging [KSF+96], molecular biology [AGM+90] or time sequence
analysis [AFS93], these problems can usually be reduced to search problems by feature
transformation. However, often feature transformation results in high-dimensional data space
which should be indexed with index structures specifically designed for these data spaces
[Böh98, WSB98].

This thesis does not deal with high dimensional data spaces (see [Böh98] for a survey on
indexing methods on high dimensional spaces). However, often proper data modeling allows
to reduce dimensionality to below 10 dimensions. In this case, the methods described in this
thesis may also be applied to non-standard DBMS applications. Moreover, since we aim to
integrate our approach into standard DBMS, our technology may enable standard DBMS to
deal with some subset of non-standard applications.

1.1.3 Relational DBMS and DBMS in General

Since tuples in a relation and points in multidimensional space are merely two different views
on a data set, the data stored in databases can be considered to be of multidimensional nature.
The expressiveness of query languages allows to write complex queries which mostly deal
with more than one attribute. SQL queries, for instance, often involve multi-attribute
restrictions and aggregations. These restrictions usually map onto ranges in several
dimensions. In Section 2.1.4 we will show some SQL range queries against a database
schema which is typical for decision support applications. Numeric attributes and time values
are prime candidates to be restricted to ranges. Yet also restrictions in hierarchical data types
will map onto ranges, if the data modeling of Section 5.3.4 is used. The index structures used
in present commercial database systems are mostly based on B-Trees, which do not support
multidimensional range queries efficiently. In Chapters 7 and 8 we will show the benefit of
multidimensional index structures for processing complex queries with multi-attribute
restrictions.

A sort operator utilizing multi-attribute restrictions is one of the most important operations for
the physical layer of a DBMS, since sorting is required for an efficient implementation of
most operations of the relational algebra (like for ordering a table, for grouping and
aggregation, for projection as well as for sort-merge joins of several tables). In Section 4.7 we
describe a single operator for efficiently processing sort operations with multi-attribute
restrictions, the so-called Tetris algorithm [MB98]. The Tetris algorithm is a generalization of
a multidimensional range query algorithm that efficiently combines sort operations with the

SECTION 1.2: OBJECTIVE 7

evaluation of multi-attribute restrictions. The basic idea is to use the partial sort order
imposed by a multidimensional partitioning in order to process a table in some total sort
order. With the Tetris algorithm a multidimensional index can reduce resource requirements
for virtually any operation of the relational algebra. Compared to the native access methods of
a commercial DBMS, our prototype implementation of the Tetris algorithm shows significant
speedups for queries of the TPC-D benchmark. In addition, temporary storage requirements
for the sorting process are reduced and first results of a sort operation are available much
earlier for further processing. In Section 6.4 we will see how multidimensional index
structures and the Tetris algorithm can be used to accelerate virtually any operation of the
relational algebra.

Sort operations and multi-attribute restrictions are not only useful for RDBMS
implementation, but for DBMS in general. Query processing in OODBMS, DDBMS or
MDBMS also relies on efficient access to data in some sort order (e.g., for duplicate
elimination or set operations). Thus the results of this thesis are applicable to any DBMS.

1.2 Objective

The goal of this work is to show the potential of integrating multidimensional indexes as first
class indexes into the kernel of a database system. We intend to provide a deeper insight into
the problems and chances of multidimensional indexing. Therefore this thesis includes two
analytical chapters: Chapter 3 studies multidimensional space partitioning and Chapter 6
derives a cost model for range queries with and without sort operations. This cost model is
further used to analyze the range query performance in order to have a benchmark to judge
our practical measurements.

Another objective is to show the practical feasibility of our approach. We therefore describe
the main challenges of our prototype implementation in Chapter 4 and give real performance
figures for both artificial and real-world data in Chapters 6 and 7. In order to illustrate further
work in this area and give hints for further reading we survey related work in Section 1.3.

In addition we aim at introducing two new technologies, which were developed by the author
during his work on the thesis, namely:

• the Tetris algorithm for processing queries with multi-attribute restrictions and sort
operations (see Section 4.7)

• multidimensional hierarchical clustering for clustering data organized according to
multiple hierarchical dimensions (see Section 5.3.4)

These techniques may significantly speed up query processing and DBMS and therefore may
be of great commercial value. While the Tetris algorithm is a technique which extends the
already patented UB-cache idea [Bay97b], a patent application for multidimensional
hierarchical clustering is planned by the author and his supervisor.

8 CHAPTER 1: INTRODUCTION

Many literature has been published about surveying or comparing multidimensional access
methods. We just briefly describe the main papers and main approaches in the next section.
Instead, our focus is to study the impact of multidimensional index structures on relational
query processing. For performance comparisons of multidimensional indexes we also refer to
the related work listed in Section 1.3.

1.3 Related Work

In the following we survey related work in the field of multidimensional access methods,
relational DBMS and query processing, which may be used for reference or further reading.

1.3.1 RDBMS and Query Processing

An important task of query processing in RDBMS is to efficiently implement algorithms for
the basic operations of the relational algebra [Cod70]. Usually, these algorithms apply to
particular storage structures or access methods. [Gra93] gives a concise survey of query
processing. The selection operation is either implemented by a table scan, or, if an index is
available, by an index scan.

Indexing is used to efficiently process a query if the result set defined by the query restrictions
is fairly small. Most OLTP applications use B-Trees [BM72, Com79] as their standard
indexing scheme. For point-restrictions it is also possible to use hash indexes [FNP+79,].Fa-
voring retrieval response time over update response time allows to build several indexes on
one table or data cube of a DW. Bitmap indexes (e.g., [OQ97, CI98, WB98]) are widely
discussed as an improvement over B-Trees for DW applications, since they efficiently evalu-
ate queries with multi-attribute restrictions. However, the overall result set still must be
relatively small. This is a major drawback of bitmap indexes, since usually a relatively large
part of a cube must be accessed in order to calculate aggregated measures.

Clustering places data that is likely to be accessed together physically close to each other. The
goal of clustering is to limit the number of disk accesses required to process a query by
increasing the likelihood that query results have already been cached. Clustering has been
well researched in the field of file structures and access methods (e.g., [Sal88, GR97, Sto94].
B-Trees, for instance, provide one-dimensional clustering. Multidimensional clustering has
been discussed in the field of multidimensional access methods (e.g., [GG97, Sam90]

A great deal of research has been done in the field of access methods and access path se-
lection. Especially for DW environments, specialized access methods have been proposed
[Inf97, OQ97]. Often several indexes are created on one table in order to speed up query
processing [Lum70, Mul71, MHW+90, Red97, GHR+97].

If the selection condition specifies a range in a single attribute, a clustering index greatly
speeds up query processing. Conjunctive selection conditions are efficiently processed by

SECTION 1.3: RELATED WORK 9

composite indexes, intersection of record pointers or multidimensional indexes. We will
investigate processing of multi-attribute restrictions in more detail in Section 2.4 and Chapter
6.

One of the most important operations in RDBMS is the join operation, which is used to
combine several relation which were normalized during data modeling. The join operation is
usually implemented by nested loop algorithms, join indexes, sort-merge algorithms, or hash
algorithms. [ME92] surveys join processing in relational databases.

The relational operations of projection, union, intersection and set difference are efficiently
implemented by processing a relation in some sort order and then either use an index scan or
merge-sort algorithm [Gra93]. Efficient sort operations and the use of restrictions to limit
result sets are crucial to many query processing algorithms. Very often queries combine
several operations of the relational algebra like join and restriction.

1.3.2 Multidimensional Access Methods

Multidimensional access methods are well researched in the field of spatial databases. [GG97]
and [Sam90] provide excellent surveys of almost all of these methods. Multidimensional
indexes are used to utilize spatial restrictions (e.g., range restrictions, intersection, overlap)
and to efficiently compute spatial joins [Rot91, Gün93, BKS93]. Multidimensional data
structures are usually classified as point access methods storing points in multidimensional
space and spatial access methods storing multidimensional extended objects of arbitrary
volume, e.g., boxes, spheres, etc. Usually one also distinguishes between main memory
structures, which are used to manage multidimensional data in main memory, and secondary
storage structures, which are used for efficiently accessing large multidimensional databases
on secondary storage.

Thus, a lot of effort has been put into indexing spatial data. It is argued that these data
structures can also be used to index point data. However, point data has special properties that
should be exploited by a multidimensional index. The most important property is that the
multidimensional space can be partitioned into disjoint subspaces without introducing
redundancy when storing objects. Thus redundancy considerations as required for
multidimensional extended objects [Ore89] are not necessary. A disjoint partitioning of a
multidimensional space is very desirable since it enables to give logarithmic performance
guarantees for insertion, deletion and exact match queries [Bay96]. Furthermore, any
relational table in a RDBMS stores multidimensional point data. Therefore this type of data is
of great commercial interest. So multidimensional indexes for point data are useful in a large
market segment. Therefore in this thesis we focus on indexing multidimensional point data.

[GG97] distinguishes three categories of multidimensional point access methods: Techniques
based on hashing (grid files [NHS84], EXCELL [Tam82], multi-level grid files [Hin85], twin
grid files [HSW88b] and multidimensional hashing [Fal85, Fal88]), hierarchical access
methods (K-D-B-Tree [Rob81], LSD-Tree [HSW89], Buddy Tree [SK90], BANG File

10 CHAPTER 1: INTRODUCTION

[Fre87], hB-Tree [LS90], R-Trees [Gut84, SRF87, BKS+90, BKK96]) and space filling
curves in combination with one-dimensional access methods [TH81, OM84, Jag90, AS83,
FR89]. Yet another access technique is to use a combination of several one-dimensional
access methods like inverted files [Lum70, MHW+90] or bitmap index intersection [OQ97].

We just briefly sketch the problems of the main approaches here. A detailed description is
found in the original papers, a detailed comparison is found in [GG97].

Grid-files give a two-access-guarantee for retrieval, but have an extremely bad worst-case
behavior for updates: Inserting a point may result in a non-local split of the grid and thus
require a reorganization of the grid-file. Furthermore, grid files have problems with
dependencies in the multidimensional data distribution. For linearly dependent data the grid
may require more storage than the tuples stored in the grid.

k-d-B-Trees exhibit a forced split effect, which does not allow one to give any space
utilization guarantees. In worst case a large amount of pages may be completely empty.

hB-Trees have a complex organization and extremely difficult algorithms, since they are a
hybrid data structure. In addition hB-Trees may store several references of a node to the same
child node, which may result in a superlinear growth of the index nodes with respect to the
number of regions in space.

R-Trees cannot give any performance guarantee for the basic operations, since they do not
partition the multidimensional space in disjoint parts, but allow overlapping rectangles.
Successors of the R-Tree like the R*-Tree [BKS+90] and the X-Tree [BKK96] use
complicated algorithms or even introduce buckets of varying size to minimize overlaps.
However, complicated algorithms cannot overcome this problem in general. Introducing
buckets of varying size may cause the index to degenerate. So the basic problem of R-Trees
still remains.

Yet a very promising approach to store multidimensional point data is to map the data onto a
one-dimensional space filling curve [Sag94] like the Z-curve or the Hilbert curve and use the
properties of this curve for efficient retrieval. The biggest advantage of space-filling curves
over the techniques described before is that they allow a disjoint partitioning of the
multidimensional space. In addition the storage requirements do not degenerate for any data
distribution. Well known one-dimensional indexing methods can be applied and
multidimensional search problems are reduced to linear search problems. Hence
multidimensional insertion, deletion and point query algorithms inherit the complexities of the
corresponding one-dimensional access method. Using B-Trees as one-dimensional access
method allows to give logarithmic performance guarantees for the basic operations of
insertion, deletion and point queries.

Our approach also relies on space filling curves. Our pilot implementation has some similarity
to the zkd-B-Tree approach described in [OM84]. We also use the Z-curve to to transform

SECTION 1.4: OUTLINE 11

multidimensional point data into one-dimensional data. In contrast to zkd-B-Trees, we do not
store tuples in Z-representation, but only use Z-addresses to define a partitioning concept for
the multidimensional space. This yields a better space partitioning: Our approach has more
freedom of choice to pick a suitable split-point for the partitioning. In addition it allows more
efficient tuple extraction algorithms, since it is not necessary to store the Z-representation of
every tuple.

The major problem of multidimensional index methods in general is the curse of
dimensionality (e.g., [WSB98]), since the number of possible partitionings explodes
exponentially with the number of dimensions. This dimensional curse forbids clustering of
high-dimensional data. However, often problems that seem high-dimensional at first glance
have a reduced dimensionality, if proper data modeling is used. In data warehousing
applications one seldom has more then 10 independent dimensions, usually even much fewer.
If a data warehouse utilizes more dimensions, there are usually some dependencies between
the dimensions. Customers, for example, tend to buy the same product. In the same way,
many customers exist only for a certain time. If a data structure is to organize the
multidimensional space, it would be beneficial if those dependencies are taken into account in
order to limit the number of partitions.

1.4 Outline

This thesis is divided into three parts. Part One consists of the first three chapters and
describes preliminaries of our work. The second part describes our approach to relational
query processing with multidimensional indexes. In the third part we investigate our
technique of Part Two both theoretically by a cost analysis and practically by examples and
performance measurements. In the following we briefly sketch the contents of each chapter.

Chapter 2 gives basic definitions which will be used throughout the thesis. In addition we
provide an overview on query processing concepts with a special focus on multidimensional
range queries.

Chapter 3 gives a detailed analysis of multidimensional space partitioning. We identify space
filling curves to create a linear ordering of a multidimensional space. Relying on one special
kind of space filling curve, namely the Z-curve, we then introduce the concept of Z-regions to
define a partitioning of the multidimensional space. We investigate and prove several
important properties of Z-regions, especially their local proximity and connection in space.
We also investigate the limitations of our approach to multidimensional space partitioning
with respect to data distributions and increasing dimensionality.

The UB-Tree, a multidimensional index based on space filling curves and B-Trees, is
described in Chapter 4 together with its basic algorithms for insertion, deletion, point queries
and range queries. In addition we introduce two new algorithms for UB-Trees in this chapter,
namely the spiral algorithm for the evaluation of nearest neighbor queries and the Tetris
algorithm for processing sort-operations with multi-attribute restrictions.

12 CHAPTER 1: INTRODUCTION

Chapter 5 describes selected algorithmic problems of our prototype implementation on top of
several commercial RDBMS. In this chapter we also investigate how to deal with various data
types and data distributions. We especially consider how to organize a multidimensional
space, whose dimensions can be organized hierarchically. This concept of multidimensional
hierarchical clustering is especially applicable to data warehousing applications. In Chapter 8
it is used to cluster the fact table of a relational data warehouse.

In Chapter 6 we derive a cost function for multi-attribute restrictions in multidimensionally
partitioned universes. We further define a cost model and cost functions for the techniques
that prevail in current RDBMS for the processing of multi-attribute restrictions. We then
analyze the performance of the range query algorithm and the Tetris algorithm for UB-Trees
and compare it to other access methods that prevail in present RDBMS.

Performance measurements in a laboratory environment with generated, uniformly distributed
test data are presented in Chapter 7. Although we mainly investigate the range query
performance, we also briefly sketch point queries and insertion there. This chapter is more of
analytical interest and is aimed at providing a better practical understanding of the effects of
multidimensional clustering. In addition, by actual performance measurements it undermines
the correctness of the results that were derived in Chapter 6 using our cost model.

Chapter 8 describes the impact of our approach on query processing. We list transformation
rules which may be used to implement the basic relational operators (selection, projection,
ordering, grouping and aggregation, equi-join, set operations) with UB-Trees. We used these
transformation rules to apply our multidimensional query processing techniques in two real
world applications scenarios, the TPC-D benchmark and a star schema data warehouse.
Performance measurements and comparisons for the TPC-D schema with 2 GB of generated
data and the data warehouse with 7 GB of real world data are also presented in that chapter.

Chapter 9 concludes the thesis with a summary and an outlook on future work.

1.5 How to Read the Thesis

We tried to use well-accepted technical terms whenever possible in order to avoid confusion
with other research work in the field of multidimensional indexes and RDBMS. Thus
experienced readers may skip most of Chapter 2, which essentially gives basic mathematical
definitions as well as a quick overview of the state of the art in query processing and defines a
basic terminology. However, in order to fully judge our approach of multidimensional
clustering we recommend to read Section 2.3 in any case.

Chapter 3 is mainly relevant to the mathematically interested reader, who wants to get a
deeper insight into the field of space filling curves and their relevance to multidimensional
data processing. It is also helpful to judge the chances and limitations of multidimensional
indexing.

SECTION 1.5: HOW TO READ THE THESIS 13

Chapter 4 is to understand how UB-Trees and query processing with UB-Trees work. UB-
Trees are defined via space filling curves in this thesis. Therefore it might be helpful to have
read the sections 3.1 and 3.4 before reading Chapter 4.

Chapter 5 describes some pitfalls that occurred when implementing a prototype of the UB-
Tree access method on top of several RDBMS. This chapter might also be useful to anyone
wanting to apply UB-Trees for a specific database schema, since it also introduces the
concept of transformation functions, which in the case of variable UB-Trees and
multidimensional hierarchical clustering has relevance to physical data modeling.

In Chapter 6 the mathematically interested reader finds a formal treatment of range query
performance. Readers with a special focus on the field of query processing and query
optimization might also have a look at this chapter, since it defines and analyzes a cost model
for UB-Trees as well as other access structures,

The performance measurements of Chapters 7 and 8 are of interest to anybody wanting to
evaluate the quality of our approach. Chapter 7 is to undermine the correctness of our cost
model laid out in Chapter 6. The performance figures and query processing proposals of
Chapter 8 are especially relevant to practitioners in the field of RDBMS development and
RBDMS applications.

CHAPTER 2: TERMINOLOGY AND BASIC CONCEPTS 15

Every science, like a recurring
decimal, has a beginning and no
end.

 (Anton Chekov)

Chapter 2

Terminology and Basic Concepts

n relational database schemas, tables often bear composite primary keys
concatenated of several attributes. For efficient query processing this
composite key is used as primary index to physically organize the table on
secondary storage. In the same way, secondary indexes for a table often
consist of a concatenation of attributes. This thesis investigates the usability
of a multidimensional access method for multi-attribute keys. This chapter

introduces the duality of points in multidimensional space and tuples of a relation. We explain
our terminology and give basic definitions which will be used in the following chapters of this
thesis. We also provide a classification for query types common in today’s database
applications. We address the problem of indexing in general and look on range queries more
closely.

I

16 CHAPTER 2: TERMINOLOGY AND BASIC CONCEPTS

2.1 The Multidimensional Space: Duality of Points and

Tuples

Relational database management systems (RDBMS) have a large market share for
commercial applications. Although the techniques described in this thesis are very well
applicable to speed up database management systems in general (e.g., hierarchical databases,
CODASYL databases, or object oriented databases, see e.g., [Ull88]), we use the terminology
of RDBMS in the following. In the relational world data is stored in a set of relations. We use
the term table synonymously to relation. Each table is organized into rows and columns. We
use the terms tuple synonymously to row and attribute synonymously to column. The number
and type of the attributes is fixed for each relation; thus each tuple has the same number of
typed attributes. We call this number of attributes arity of a relation. The type of each attribute
represents the set of permissible values called domain.

In this thesis we consider a tuple to be a point in multidimensional space. We use the term
universe to denote the multidimensional space defined by the domains of the attributes. Each
attribute determines one dimension. The value of an attribute of a tuple is therefore the
coordinate of a point in multidimensional space. The duality of points and tuples causes the
following terms to be used synonymously in this thesis:

• (multidimensional) domain, universe, multidimensional space
• relation, table, subset of multidimensional space
• row, tuple, point
• attribute, column, coordinate, dimension
• arity, dimensionality

In general we write |S| to denote the cardinality of any set S. For any string s we write |s| to
denote the length of s.

2.1.1 Relations, Tuples, Attributes and the Multidimensional Space

Let R be a relation having d attributes A1,..., Ad of domains 1,..., d. R is a set of tuples x =
(x1,..., xd). Let <i be a total order on i and λi resp. υi the minimum resp. maximum value of

i. We call d the arity of R. |R| is the cardinality of R, i.e., the number of tuples stored in R.

When writing tuple literals we sometimes omit the brackets and commas. For instance, we
write “ab” as abbreviation for the tuple literal “(a, b)”.

For notational convenience we define the set of dimension indices as D ={1, ..., d}.

To simplify theoretical analysis, we consider the domain i of Ai, i ∈ D to be mapped to Ωi, a
set of non-negative integer numbers. Thus, for each value xi of Ai we get:

xi ∈ Ωi = {0, ..., ri-1} ⊂ R

Thus for Ωi we get λi = 0 and υi = ri-1.

SECTION 2.1: THE MULTIDIMENSIONAL SPACE: DUALITY OF POINTS AND TUPLES 17

In addition we require ri = 2v for some arbitrary v ∈ R. This is not a restriction, since every
finite1 totally ordered domain (i = {a1,...,ar} ,<i) with r = | i| ≤ ri can be mapped
monotonically to Ωi by :

ƒ: i → Ωi, so that ƒ(aj) < ƒ(ak) aj <i ak

Definition 2-1 (multidimensional domain, Ω): The multidimensional domain� �RI�WKH�HQWLUH
relation is the cross product

Ω = Ω1 × ... × Ωd = {0,...,r1-1} ×... × {0,...,rd-1}.

We call Ω the base space of R. Thus R is a finite subset of Ω, i.e., R ⊆ Ω

The cardinality of Ω then can be calculated as:

∏ =
=Ω d

i ir1

Definition 2-2 (-order of Ω): For the multidimensional space Ω we define a partial order:
For x, y ∈ Ω

x y xi ≤ yi for all i ∈ D

x y xi < yi for all i ∈ D

In the following we use the symbol to denote a domain of values.

Definition 2-3 (<-neighbors): For any ordering relation < and an ordered domain (, <) two
values a, b ∈ are <-neighbors, if and only if, a < b and there exists no c ∈ with
a < c < b. For a ∈ define:

<-neighbors(a) = {b ∈ | b and a are <-neighbors or a and b are <-neighbors}

If the ordering relation < is obvious, we just write neighbors(a) instead of <-neighbors(a).

Lemma 2-1 (�neighbors): Two points x, y ∈ Ω with x y are �neighbors, if and only if,
there exists an index i so that xj = yj for all j ∈ D\{i} and xi and yi are <-neighbors.

Proof:

The proof is a direct consequence of Definition 2-2 and Definition 2-3.

1 Theoretically, the approach described in this thesis could also operate on infinite domains. Then one only needs
a split function which partitions an interval of the domain into two disjoint intervals (see in Section 3.6).
However, it suffices to consider finite domains, since in a computer every domain like real numbers, integer
numbers, character strings, etc. is represented by a finite domain.

18 CHAPTER 2: TERMINOLOGY AND BASIC CONCEPTS

Lemma 2-2: A point x in d-dimensional space has at most 2⋅d �neighbors.

Proof:

The proof is a direct consequence of Lemma 2-1.

Definition 2-4 (distance of two values): For any totally ordered set (, <) and a, b ∈ with
a < b we define

{ }




=
≠+<<

=<
ba

babcac
ba

,

,

0

1 |
),,distance(

We often are not interested in the specific domains of the attributes. For an easy mathematical
treatment we therefore define ^, a normalization operation of each domain to a value of the
interval [0, 1].

Definition 2-5 (scalar normalization): If a is a value in a domain = [amin, amax] ⊂ R, then
we normalize in the following way:

1

1
:ˆ

minmax

min

+−
+−

=
aa

aa
a

For any attribute value xi ∈ Ωi = {0,...,ri-1}, i ∈ D, of Ai of a tuple x ∈ Ω we get:

i

i
i r

x
x

1
:ˆ

+
=

Definition 2-6 (tuple normalization): For a tuple x∈ Ω we define)ˆ,...,ˆ(:ˆ 1 dxxx = .

2.1.2 Intervals

Definition 2-7 (one-dimensional intervals): For any totally ordered domain (, <) and a pair
of values a, b ∈ with a < b we define the one-dimensional interval:

[a, b] = {c ∈ | a ≤ c ≤ b}

If the point describing the lower bound (or the upper bound or both bounds) is not
included in the interval, we write:

]a, b] = {c ∈ | a < c ≤ b}

[a, b[= {c ∈ | a ≤ c < b}

]a, b[= {c ∈ | a < c < b}

Definition 2-8 (multi-dimensional interval): For two points y, z ∈ Ω with y z we extend
Definition 2-7 to multidimensional intervals:

[[y, z]] = [y1, z1] × ... × [yd, zd] = {(x1,...,xd) | yi ≤ xi ≤ zi for all i ∈ D}.

We define]]y, z]], [[y, z[[and]]y, z[[analogously.

SECTION 2.1: THE MULTIDIMENSIONAL SPACE: DUALITY OF POINTS AND TUPLES 19

Note that multidimensional intervals are iso-oriented with respect to all dimensions, i.e., their
faces are parallel to the coordinate axes. Because of their rectangular nature we also use the
term box to denote a multidimensional interval.

2.1.3 Volumes

We use the term volume for all dimensionalities instead of using the terms length for linear
spaces, area for two-dimensional spaces, volume for three-dimensional spaces or Jordan-
content for higher dimensional spaces. For simplicity by volume of a part of a space we mean
the normalized volume with respect to the entire space. Because of our discrete model we
consider a single value of a domain to have the volume 1/| |.

Definition 2-9 (volume of a linear interval): For a linear (one-dimensional) interval [xi, yi] ⊆
Ωi = {0,...,ri-1} we define its volume:

i
iiii r

xyyx
1

ˆˆ]),vol([+−=

The volume of the empty set is zero:

vol(∅) = 0

Thus a volume is a normalized number between 0 and 1. We generalize this one-dimensional
volume definition to multi-dimensional intervals [[x, y]]:

Definition 2-10 (volume of a multidimensional interval):

∏
=

=
d

i
ii yxyx

1

]),vol([]]),([[vol

Definition 2-11 (volume of a set of multidimensional intervals): We define the volume of a
union of k disjoint multidimensional intervals Sj, j ∈ {1 ,..., k}, as the sum of the
volumes of each interval:

U
k

j

k

j
jj SS

1 1

)vol()vol(
= =

∑=

Since each finite multi-dimensional point set can be decomposed into disjoint multi-
dimensional intervals, the volume of any finite multidimensional point-set can be calculated
by this formula.

Lemma 2-3: The volume of the difference of two point-sets S and Q ⊆ S is the difference of
the volumes of S and Q, i.e.,

vol(S\Q) = vol(S) – vol(Q).

20 CHAPTER 2: TERMINOLOGY AND BASIC CONCEPTS

Proof:

S can be decomposed into a set of disjoint multi-dimensional intervals {S1,...,Sk, Q1,...,Qj},
such that Q = Q1 ∪ ... ∪ Qj. Then, vol(S) = vol(Q1,...,Qj) + vol(S1,...,Sk) = vol(Q) + vol(S\Q).

2.1.4 Statistical Functions

Definition 2-12 (average): For any set S of numbers we define its average:

∑
∈

⋅=
Sa

a
S

S
1

)avg(

Definition 2-13 (standard deviation): For any set of numbers S we define its standard
deviation:

(){ }() ()∑
∈

−⋅=∈−=
Sa

Sa
S

SsSsS 22)avg(
||

1
 |)avg(avg)std(

2.1.5 Partitioned Relations

In the following we define the terms page and region. We use these terms to denote the
partitioning of a relation with respect to the partitioning of the corresponding base space.
Relations are physically stored on pages of the secondary storage. A page is a physical unit of
secondary storage that stores a certain capacity of tuples of a relation. A region is a subspace
of the multidimensional base space of the relation. Because of the duality of points and tuples,
a set of regions that partitions the base space Ω corresponds to a partitioning of the relation R
into a set of pages.

Definition 2-14 (region):A region is a subspace of Ω. Regions are neither required to be
rectangular nor connected. We write ρ1, ρ2, ρ3.,... for regions.

Definition 2-15 (page; page capacity): A page is a fixed size byte container to store tuples of
a relation. We write p1, p2, p3,... for pages. The capacity of a page is the maximum
number of tuples (or bytes for variable length tuples) that a page may hold. We denote
the page capacity by C.

Definition 2-16 (correspondence between pages and regions): A page p corresponds to a
region ρ (p ↔ ρ), if all tuples stored on p are located in the region ρ, i.e.,

p ↔ ρ ⇔ (x ∈ p ⇔ x ∈ ρ ∩ p)

SECTION 2.2: QUERY TYPES 21

To physically store a relation R in a DBMS, R is partitioned into PR = {p1, ..., pk}, a finite set
of disjoint pages. Each page pi, i ∈ {1, ..., k} stores a limited number of tuples.

Definition 2-17 (region partitioning): A region partitioning of Ω for a partitioned relation
PR = {p1, p2, ..., pk} is a set of regions Θ = {ρ1, ..., ρk} with

U
k

i
i

1=

Ω=ρ and ∀j,i=1,...,k and j≠ i ρi ∩ ρj = ∅ and ∀i=1,...,k pi ↔ ρi

For B-Trees as used in standard RDBMS the region partitioning usually takes place with
respect to one attribute or with respect to several attributes in some lexicographic order. Our
region partitioning is more general and will be used in Chapter 3 to define a multidimensional
partitioning of a relation.

2.2 Query Types

Relational queries are expressed by operators of the relational algebra and either deal with a
single table or combine multiple tables [Cod70]. Single table queries restrict, re-arrange or
aggregate the tuples of one relation [Ull88].

:KHQ�DVNLQJ�D�UHVWULFWLRQ�TXHU\��GHQRWHG�E\�WKH�UHODWLRQDO�RSHUDWRU� ��ZH�DUH�LQWHUHVWHG�LQ�D
subspace of a multidimensional universe. Depending on the shape and the volume of the
query space we can distinguish different types of restriction queries. A large set of these
queries can be reduced to partial range queries.

Re-arranging means

• sorting (denoted by ω),
• projecting (denoted by π) or
• grouping (denoted by γ) and aggregating (denoted by an aggregation function like sum or

count)

the tuples of a relation.

The most frequent operation to combine multiple tables is the join operation (denoted by),
mostly the natural join. In this thesis we will present a new processing technique for the
operations illustrated in Figure 2-1.

Definition 2-18 (query, result set): A query is a predicate ϕ (x) over the tuples x of a relation
R. The result set RS of a query is the subset of tuples stored in R satisfying the query
predicate:

RS(R,ϕ) = {x ∈ R | ϕ (x)}.

The result set size is the cardinality of the result set |RS(R ,ϕ)|.

22 CHAPTER 2: TERMINOLOGY AND BASIC CONCEPTS

queries

single table queries multiple table queries

partial range queries

restriction

projection

re-arrangement

grouping and aggregation

sorting

partial match query

exact match query

range query

join

natural join

Figure 2-1: Query Categories

With the duality of multidimensional points and tuples, every query predicate ϕ (x) defines a
query space ϕ (x) = Q ⊆ Ω. The result set is the set of tuples of the relation that is located in
Q, i.e., RS = {x ∈ R | x ∈ Q}. The result set size is the number of tuples of R located in Q.

Definition 2-19 (selectivity): The selectivity of a query ϕ is the number of tuples in the result
set of a query compared to the number of tuples stored in the relation:

R

R
R

) ,(RS
),y(selectivit

ϕ
ϕ =

Definition 2-20 (restriction): The query space of a query Q is defined by a restriction in
none, some or all attributes. Typical restrictions are point restrictions, interval
restrictions, restrictions depending on another attribute or restrictions depending on the
data distribution in the database.

We mostly consider independent restrictions, i.e., the restriction in one attribute does not
depend on the restrictions of the other attributes or the data distribution of the relation (see
Section 3.8 for a treatment of dependent dimensions). Independent restrictions, for instance,
are point restrictions and interval restrictions, if the points or intervals for each dimension are
independent. We model queries with independent restrictions by an interval in each attribute.
If an attribute is not restricted, we use the interval [-∞, ∞] resp. [λi, υi]. A point restriction in
an attribute is considered to be an interval with identical lower and upper bounds.

SECTION 2.2: QUERY TYPES 23

Definition 2-21 (restriction interval, query box): A restriction interval is a one-dimensional
interval defining the restriction of one attribute in a query. A query box Q is a
multidimensional interval defined by the restriction intervals of a query, i.e.,

Q = [[y, z]] = [y1, z1] × ... × [yj, zj] × ... × [yd, zd]

Without loss of generality we will use normalized restriction intervals for an easier
mathematical treatment, i.e., both the lower bound and the upper bound of the restriction
interval are values between 0 and 1. In the following we will often identify a restriction by the
volume of the corresponding restriction interval.

Definition 2-22 (index candidate, index attribute, result attribute): We call an attribute xi

of a relation R to be an index candidate of a query ϕ (x) over R, if xi is restricted and/or
ordered during the query processing of ϕ. We call an index candidate index attribute,
if it is actually indexed by some index I (cf. Section 2.3) on R. We call an attribute of
R result attribute, if it is not restricted or ordered when processing ϕ.

In this thesis the terms index candidate and index attribute denote physical concepts of a data
model (which are used to derive secondary storage structures like indexing, partitioning,
clustering or query materialization). In contrast to that the terms candidate key and key attrib-
ute as used in relational data modeling (e.g., [Ull88]) denote logical concepts of a data model.

Although result attributes are of great practical relevance, apart from increasing the size of the
tuple they often2 do not influence the behavior of a multidimensional index. Typically result
attributes are projected (without duplicate elimination) or aggregated during processing a
query. For an easier notation from now on we will omit result attributes of a tuple whenever
possible. To be more specific, we will consider d (or dR, when talking about several relations)
to be the number of the index candidates of a relation R. If a relation has additional result
attributes, we denote the arity of a relation by d’ (or d’R). The result attributes are xd+1,...,xd´.

Note that the terms index candidate and result attribute are query dependent. For some query
an attribute might be an index candidate, while it is a result attribute in another query.
However, for many application scenarios like data warehousing the set of index
candidates/attributes and the set of result attributes are constant and both sets are disjoint over
a quite large set of typical queries.

We use the star-schema of the TPC-D benchmark [TPCD97] to illustrate different categories
of queries by examples. For the examples of this section we use the ORDER and LINEITEM
relations. Figure 2-2 shows the entire schema of the TPC-D benchmark. The value SF is the
scaling factor and determines the number of tuples of each relation. The TPC-D benchmark
was mainly developed to evaluate the capabilities of RDBMS for complex queries which are
frequently found in decision support applications. Next to the schema and data distribution
definition the specification consists of 17 pre-defined queries and two update functions.

2 Besides increasing the tuple size result attributes are decisive for the performance of non-clustering indexes,
since these attributes are not stored in the index but require one additional random access to the data file. This is
analyzed in detail in Section 2.3.2.

24 CHAPTER 2: TERMINOLOGY AND BASIC CONCEPTS

For illustration purposes we define some additional queries in the next sections. We assume
that O_TOTALPRICE, O_ORDERDATE, L_SHIPDATE, L_DISCOUNT and
L_QUANTITY are index attributes which are used for the multidimensional organization of
the corresponding table. Thus dLINEITEM = 3, d’LINEITEM = 16, dORDER = 2 and d’ORDER = 9.We
state each query both in a text version and in an SQL-version.

ORDERKEY

PARTKEY

SUPPKEY

LINENUMBER

QUANTITY

EXTENDEDPRICE

DISCOUNT

TAX

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

LINEITEM (L_)
6000k*SF tuples

SUPPLIER (S_)
10k*SF tuples

SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

PARTKEY

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

PARTSUPP (PS_)
800k*SF tuples

PARTKEY

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

RETAILPRICE

COMMENT

PART (P_)
200k*SF tuples

CUSTKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

CUSTOMER (C_)
150k*SF tuples

NATIONKEY

NAME

REGIONKEY

COMMENT

NATION (N_)
25 tuples

REGIONKEY

NAME

COMMENT

REGION (R_)
5 tuples

ORDERKEY

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDERPRIORITY

CLERK

SHIPPRIORITY

COMMENT

ORDER(O_)
1500k*SF tuples

Figure 2-2: Schema of the TPC-D Benchmark

SECTION 2.2: QUERY TYPES 25

2.2.1 Partial Match Query

A partial match query restricts some dimensions to a point, while other dimensions are left
unspecified. Formally, for a given set of indices S ⊆ D and a point p ∈ Ω the result set of the
partial match query PM(p, S, R) is:

PM(p, S, R) = {x ∈ R | xi = pi for all i ∈ S}

Example 2-1a: Example 2-1b:
“list all orders of 23.12.1997”
(Figure 2-3a)

“list all parts shipped on 23.12.1997”
(Figure 2-3b)

SELECT O_ORDERKEY
 FROM ORDER
WHERE
 O_ORDERDATE = ″23.12.1997″

SELECT L_PARTKEY
 FROM LINEITEM
WHERE
 L_SHIPDATE = ″23.12.1997″

A special form of a partial match query is an exact match query (also called point query) that
restricts all dimensions to a point. The result set EM(p, R) of an exact match query defined by
a multidimensional point p ∈ Ω is:

EM(p, R) = {x ∈ R | xi = pi for all i ∈ D} = PM(p, D, R)

Exact match queries are used to retrieve the result attributes of a point defined by equality
restriction in the index attributes. These queries are often used for existence checking or
referential integrity checking.

Example 2-1c: Example 2-1d:
“list all orders of 23.12.1997 with a total price
of 10000” (Figure 2-3c)

“list all parts that have been shipped on
23.12.1997 with a quantity of 500 and a
discount of 3%” (Figure 2-3d)

SELECT O_ORDERKEY
 FROM ORDER
WHERE
 O_ORDERDATE = ″23.12.1997″ AND
 O_TOTALPRICE = 10000

SELECT L_PARTKEY
 FROM LINEITEM
WHERE
 L_SHIPDATE = ″23.12.1997″ AND
 L_DISCOUNT = 0.03 AND
 L_QUANTITY = 500

SHIPDATE

D
IS

C
O

U
N

T

QUANTIT
Y

(a) (b) (c) (d)
ORDERDATE

T
O

T
A

L
P

R
IC

E

ORDERDATE

T
O

T
A

L
P

R
IC

E

SHIPDATE

D
IS

C
O

U
N

T

QUANTIT
Y

Figure 2-3: Partial Match Queries (a, b) and exact match queries (c, d)

26 CHAPTER 2: TERMINOLOGY AND BASIC CONCEPTS

2.2.2 Range Queries

A range query restricts all index candidates to an interval. For a pair of tuples y, z ∈ Ω we
construct the query box Q = [[y, z]]. The result set RQ(Q, R) of a partial range query is:

RQ(Q, R) = {x ∈ R | (x1,...,xd) ∈ Q)}.

Note that query boxes are multidimensional intervals and therefore iso-oriented. Moreover,
the restriction in one dimension is independent of the restriction in all other dimensions.

Example 2-2a: Example 2-2b:
“return the number of orders in
1997
 with a total price between
10000
 and 20000” (Figure 2-4a)

“calculate the revenue for all shipments in 1997 with a
quantity of less then 500 parts and a discount between
3% and 5%” (Figure 2-4b)

SELECT COUNT(O_ORDERKEY)
 FROM ORDER
WHERE
 O_ORDERDATE >= ″1.1.1997″ AND
 O_ORDERDATE <= ″31.12.1997″ AND
 O_TOTALPRICE >= 10000 AND
 O_TOTALPRICE <= 20000

SELECT SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT))
 AS REVENUE
 FROM LINEITEM
WHERE
 L_SHIPDATE BETWEEN ″1.1.97″ AND ″31.12.97″
 AND L_DISCOUNT BETWEEN 0.03 AND 0.05
 AND L_QUANTITY < 500

A range query is called partial range query, if some attributes are not restricted, i.e. yi = -∞
and zi = +∞ for some i ∈ D. Since we are dealing with finite domains, it suffices to use the
maximum boundaries instead of +∞ and -∞, i.e, yi = λi and zi = υi.

Example 2-2c: Example 2-2d:
“calculate the total price of all orders
of 1997” (Figure 2-4c)

“list all shipments in May ’97 with a discount
between 3% and 5%” (Figure 2-4d)

SELECT SUM(TOTALPRICE)
FROM ORDER
WHERE
 O_ORDERDATE >= ″1.1.1997″ AND
 O_ORDERDATE <= ″31.12.1997″

SELECT L_ORDERKEY
FROM LINEITEM
WHERE
 L_SHIPDATE BETWEEN ″1.5.97″ AND ″31.5.97″ AND
 L_DISCOUNT BETWEEN 0.03 AND 0.05

(a) (b)

SHIPDATE D
IS

C
O

U
N

T

QUANTIT
Y

SHIPDATE D
IS

C
O

U
N

T

QUANTIT
Y

(c) (d)

ORDERDATE

T
O

T
A

L
P

R
IC

E

ORDERDATE

T
O

T
A

L
P

R
IC

E

Figure 2-4: Range queries (a, b) and partial range queries (c, d)

SECTION 2.2: QUERY TYPES 27

Partial match queries and exact match queries as described in Section 2.2.1 are special cases
of partial range queries. For partial match queries either yi = zi or both yi = -∞ and zi = +∞ for
all i ∈ D. For point queries yi = zi holds for all i ∈ D. Thus partial range queries can be
classified depending upon whether the restriction in each dimension is a point, an interval or
whether this dimension is left unspecified. Table 2-1 shows this classification for the different
types of partial range queries described in the previous sections, where d is the number of
dimensions and m and n are integer numbers such that m + n ≤ d.

point interval unspecified

exact match query d - -

partial match query n - d-n

range query - d -

partial range query m n d-m-n

Table 2-1: Number of dimensions restricted to points, intervals or unrestricted for several
types of partial range queries

2.2.3 Range Query Sets and Arbitrary Query Spaces

A range query set consists of a union of query boxes S = Q1 ∪ ... ∪ Qn. The result of the range
query set S is the set of tuples

RQS(S, R) = {x ∈ R | (x1,...,xd) ∈ S)}.

Range query sets can be used to model arbitrary query spaces, since every non iso-oriented
query space can be decomposed into or approximated (covered) by a set of iso-oriented query
boxes. Figure 2-5(c and d) shows such query volumes. For certain predicates, this set might
become very large. In these cases it might be useful to construct a cover consisting of a fixed
number of query boxes that include the query space.

SHIPDATE

D
IS

C
O

U
N

T

QUANTIT
Y

SHIPDATE D
IS

C
O

U
N

T

QUANTIT
Y

(a) (b) (c) (d)

ORDERDATE T
O

T
A

L
P

R
IC

E

ORDERDATE

T
O

T
A

L
P

R
IC

E

Figure 2-5: Sets of query boxes (a, b) and arbitrary query spaces (c, d)

28 CHAPTER 2: TERMINOLOGY AND BASIC CONCEPTS

Example 2-3a: Example 2-3b:
“list all orders with a total price between
10000 and 20000 in 1997 together with
all orders with a total price between
15000 and 25000 between Oct. 97 and
Sept. 98 together with all orders between
Oct. 98 and Mar. 99 with a total price
between 5000 and 15000” (Figure 2-5a)
(SQL omitted due to the length of the
statement)

“list all parts that were shipped in May 1997 with
a quantity between 1000 and 10000 pcs. per
shipment and discounted with either 3% or 5%”
(Figure 2-5b)

SELECT L_PARTKEY
FROM LINEITEM
WHERE
 L_SHIPDATE BETWEEN ″1.5.97″ AND ″31.5.97″
 AND L_DISCOUNT IN (0.03, 0.05)
 AND L_QUANTITY BETWEEN 1000 AND 10000

2.2.4 Nearest Neighbor Queries

A nearest neighbor query returns the tuples in the data base that have the least distance to a
given point with respect to a specified distance function.3 The distance function depends on
the application. Typical distance functions for geometric nearest neighbor queries include the
Euclidean distance function and the Manhattan chessboard distance. Another important
application of nearest neighbor queries are preference queries, where personal preferences are
specified by a point and one is interested to find the tuples in the database that best match our
preferences.

Formally, a nearest neighbor query for a certain distance function can be described by

NNQ(x, R) = {y ∈ R | distance(x, y) is minimal}

Nearest neighbor queries differ from the queries in the previous sections, since instead of a
query box only one point is specified as input parameter. The space that needs to be retrieved
from the database to answer such a query depends on the multi-dimensional distribution of the
data. The result set of a nearest neighbor query often is a single point and in general is much
smaller than that of range queries. However, in Section 4.4 we will show, that nearest
neighbor queries may also be efficiently answered using a range query algorithm.

A one dimensional nearest neighbor query to find the nearest neighbor to value b for attribute
A of relation R with the distance function < can be expressed in SQL by:

SELECT MIN(A) FROM
 SELECT MIN(A) FROM R WHERE A >= b
 UNION
 SELECT MAX(A) FROM R WHERE A <= b

3 Note that the neighbor concept used in the context of nearest neighbor queries differs from the neighbor
concept defined in Section 2.1.1: Whereas Section 2.1.1 defines a neighbor in space (space neighbor), here we
mean a neighbor that is actually stored in the relation (data neighbor). Only for dense relations, where each point
of the base space is actually stored as tuple in the relation, the space neighbor and the data neighbor of a tuple are
identical.

SECTION 2.2: QUERY TYPES 29

Example 2-4a: Example 2-4b:
“show the order that had a total price around
10000 and was shipped around 31.12.1998”
(Figure 2-6a)

“show the shipment that shipped a part with a
discount around 4% and a quantity of around
1000 pieces on 23.12.97.” (Figure 2-6b)

SELECT O_ORDERKEY
FROM ORDER
WHERE
O_ORDERDATE AROUND4 ″31.12.1998″
AND
O_TOTALPRICE AROUND 10000

SELECT L_ORDERKEY
FROM LINEITEM
WHERE
L_SHIPDATE = ″23.12.97″ AND
L_DISCOUNT AROUND 0.04 AND
L_QUANTITY AROUND 1000

SHIPDATE
D

IS
C

O
U

N
T

QUANTIT
Y

(a) (b)
ORDERDATE

T
O

T
A

L
P

R
IC

E

Figure 2-6: Nearest neighbor query

2.2.5 Further Queries

Especially in geometric applications, further queries are of interest, e.g., the intersection
between two sets of objects or the union of two sets of objects. For two sets of extended
objects, other examples are enclosure queries, containment queries and adjacency queries.
[GG97] argue, that determining the intersection between two sets of objects provides an
efficient filter step for answering any of these queries. Since the intersection between two sets
of extended objects can efficiently be answered by range queries taking the extended objects
as query volume, these problems can also be reduced to range queries.

Complex queries involve several tables, which are joined by some join condition. The most
frequent method of joining tables is the equi-join, where matching values of attributes of
several tables define the result of the join. Usually equi-joins are realized by sort-merge joins
or hash-joins. In multidimensional space we can easily describe the processing of a sort-
merge join: Each relation is processed in slices with respect to the join attribute. This allows
to process the tuples of each relation in sort order of the join attribute. For identical join
attributes in both tuples, the tuples are merged and the new tuple is added to the result set.

Processing a relation in sort order of any attribute is also necessary for further operations of
the relational algebra such as sorting, projection and grouping and aggregation. We will
discuss this processing method in more detail in Chapter 6.4.

4 The keyword AROUND does not exist in SQL. We just use it here for convenience as a distance function for
an attribute.

30 CHAPTER 2: TERMINOLOGY AND BASIC CONCEPTS

Example 2-5 (TPC-D Shipping Priority Query, Q3):

“This query retrieves the shipping priority and potential revenue of the orders having the
largest revenue among those that had not been shipped as of a given date” (cf. [TPC97])

SELECT L_ORDERKEY, SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,
O_ORDERDATE, O_SHIPPRIORITY

FROM CUSTOMER, ORDER, LINEITEM
WHERE

C_MKTSEGMENT = ’FOOD’ AND
C_CUSTKEY = O_CUSTKEY AND

 L_ORDERKEY = O_ORDERKEY AND
 O_ORDERDATE < ″1.5.98″ AND
 L_SHIPDATE > ″1.6.98″
GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY
ORDER BY REVENUE DESC, O_ORDERDATE

For Example 2-5 we use C_CUSTKEY, C_MKTSEGMENT, L_ORDERKEY,
L_SHIPDATE, O_ORDERKEY, O_ORDERDATE and O_SHIPDATE as index attributes.
On each of the three tables an interval restriction in one attribute is imposed by the query. We
first join CUSTOMER and ORDER via CUSTKEY by simultaneously processing the tuples
of each relation in slices in the order indicated by the arrows in Figure 2-7. Afterwards we
sort the intermediate result of CUSTOMER ORDER on ORDERKEY and join it with
LINEITEM. For each table we use the restriction to reduce the size of each slice.

O_ORDERKEY

O
_C

U
S

T
K

E
Y

O_O
RDERDATE

C_MKTSEG.

C
_C

U
S

T
K

E
Y

L_ORDERKEY

L
_S

H
IP

D
A

T
E

sort direction

CUSTOMER

ORDER

LINEITEM

1

2

Figure 2-7: Joins and range queries in multidimensional space

SECTION 2.3: ACCESS METHODS 31

2.2.6 Query Processing

An important task of query processing in RDBMS is to efficiently implement algorithms for
the basic operations of the relational algebra. Usually these algorithms apply to particular
storage structures or access methods. [Gra93] gives a concise survey of query processing. The
selection operation is either implemented by a table scan or, if an index is available, by an
index scan. Common access methods for indexes are B-Trees [BM72] and hash indexes. For
retrieval intensive environments further indexing methods like bitmap indexes have been
proposed (e.g., [OQ97], [Inf97]). If the selection condition specifies a range in a single
attribute, a clustering index greatly speeds up query processing. Conjunctive selection con-
ditions are efficiently processed by composite indexes, intersection of record pointers or
multidimensional indexes. We will investigate processing of multi-attribute restrictions in
more detail in Section 2.4 and Chapter 6.

The join operation is usually implemented by nested loop algorithms, join indexes, sort-merge
algorithms, or hash algorithms. [ME92] surveys join processing in relational databases.
Projection, union, intersection, and set difference are efficiently implemented by processing a
relation in some sort order and then either use an index scan or merge-sort algorithm.
Efficient sort operations and the use of restrictions to limit result sets are crucial to many
query processing algorithms. Very often queries combine several operations of the relational
algebra like join and restriction.

In Chapter 8 we will see how a multidimensional organization of a table will be used to
efficiently process queries with multi-attribute restrictions and sort operations.

2.3 Access Methods

In this section we briefly describe the main characteristics of access methods that may be used
to process the query types introduced in Section 2.2. Actual query processing strategies will
then be described in Section 2.4.

Access methods transfer data from secondary storage in order to answer a query on a
database. The most simple access method is a full table scan (FTS), which reads an entire
relation and for each tuple checks the predicate ϕ of the query in main memory. Indexes are
optional auxiliary data structures associated with a table. Given an index key value, the rows
that contain that value can be directly located through the index. Generally, indexes are used
to provide keyed access to rows within a table. The goal is to use the restrictions defined by a
query to reduce the number of disk pages that have to be retrieved from secondary storage. A
variety of indexes for efficient access to data stored in large databases has been implemented
in commercial database systems or is being investigated by the research community. In
commercial DBMS heap structures [Knu68, Knu73], hashing [FNP+79] and B-Trees
([BM72], [BU77], see [Com79] for a survey) are used to store tables. The most prevalent data
structure is the B-Tree family, since it gives logarithmic performance guarantees with respect

32 CHAPTER 2: TERMINOLOGY AND BASIC CONCEPTS

to the number of tuples stored in a table for the basic operations of insertion, deletion and
point queries. In addition, B-Trees efficiently process one-dimensional range queries.

2.3.1 Characteristics of Secondary Storage

Secondary storage consists of a stack of rotating disks (cf. Figure 2-8). Each disk consists of a
group of tracks, each of which consists of a number of blocks. A block is the smallest unit of
transfer of the secondary storage. Each disk has a read/write-head (R/W-head) that radially
moves over the disk. To read a page the R/W-head moves to the track containing that block.
Since the disk is spinning, a block is read when it passes the R/W-head. Typical block sizes
range from 512 Bytes to 8kB. DBMS usually define database pages each of which consists of
a constant number of consecutive disk blocks. Thus database pages can be read with a single
positioning of the R/W-head, i.e., by one random access. DBMS page sizes usually range
from 2kB to 64kB. Since tuples are often smaller than a database page, a page in general
holds more than one tuple.

disk
stack

disk

surface

track

block

Read/write
head

Figure 2-8: A hard disk

Each random access to a disk page takes some time tπ to position the R/W-head of the disk to
the corresponding page, some time tτ to transfer the page from disk to main memory and some
time tξ to extract the relevant tuples from the page. tπ consists of the track positioning time tχ,
i.e., the time to position the R/W-head to the corresponding track, and the latency time tλ, i.e.,
the time the disk needs to spin until the correct page appears under the R/W-head. tπ and tτ are
times spent for I/O, while tξ is time spent in the CPU. To distinguish between I/O-time and
CPU-time we define tI/O = tπ + tτ and tCPU = tξ. All in all we get the time to retrieve a page
from secondary storage: tPAGE = tI/O + tCPU = tπ + tτ + tξ. For current hard disks and CPUs
typical values are tπ = 10 ms, tτ = 0,6ms and tξ = 0,4ms [IBM97]. So the positioning time of a
hard disk and therefore the number of random page accesses is the limiting factor when
retrieving a tuple.

SECTION 2.3: ACCESS METHODS 33

2.3.2 Clustering

The idea of clustering is to store data that is likely to be used together, in physical proximity
to reduce the number of I/Os necessary to retrieve the data. If the physical proximity is
restricted to the tuples on a page, we speak of tuple clustering. If physical proximity in
addition also holds between pages, we speak of page clustering.

In order to speed up joins, clustering might store the join partners of two relations physically
close together. For range queries in attribute Ai, tuples should be stored in order of attribute Ai.
Then one I/O is likely to retrieve a disk page storing several tuples that are necessary to create
the result set of a query. Thus clustering reduces the number of random page accesses that are
necessary to answer a query.

Definition 2-23 (tuple clustering; page clustering): Tuple clustering stores tuples of one or
several relations on one disk page, if the tuples are likely to be used together to create
the result set of a query. If the tuples do not fit on one page, the tuples have to be
stored on several pages. Normally new pages are physically placed on disk in insertion
order. Page clustering in addition to tuple clustering also maintains physical clustering
between disk pages.

The left part of Figure 2-9 shows unclustered data, tuple clustered data, and page clustered
data. Page clustering is hardly feasible in OLTP environments, since each insertion or
deletion requires a reorganization of the entire file. Therefore page clustering only exists
statically, e.g. after mass loading process or after the reorganization of a relation.

Clustering needs a grouping function, i.e., an equivalence relation and possibly an ordering on
the equivalence classes, to arrange the data on disk. In the following we only consider
clustering the tuples of one relation. In this case clustering is useful for range restrictions. For
single attribute range queries the clustering order is defined by the sort order on the restricted
attribute. For multidimensional range queries there are several possibilities for orderings.
Here we just give some orders as examples. The specific characteristics of these orders will be
investigated in Chapter 3.

Example 2-6 (compound ordering, concatenated ordering):

We can create a multidimensional ordering of d attributes by concatenating the attributes in
some order and using a lexicographic ordering between the attributes, whereas the ordering <
of each attribute is used to compare values of this attribute. This ordering is asymmetrical,
since it favors the leftmost attributes of the concatenation. We call the ordering defined above
compound ordering (or concatenated ordering). For x1 ∈ {a,b,c,d} and x2 ∈ {a,b,c,d} the 2-
dimensional compound ordering A1°A2 (see Section 3.1 for a definition of compound
ordering) is:

aa A1°A2 ab A1°A2 ac A1°A2 ad A1°A2 ba A1°A2 bb A1°A2 bc A1°A2 bd A1°A2 ca A1°A2 cb
A1°A2 cc A1°A2 cd. A1°A2 da A1°A2 db A1°A2 dc A1°A2 dd.

34 CHAPTER 2: TERMINOLOGY AND BASIC CONCEPTS

Example 2-7 (Z-ordering):

Another way to order the two-dimensional tuples is Z-ordering (see Section 3.1 for a
definition of Z-ordering):

aa ab ba bb ac ad bc bd ca cb da db cc cd dc dd.

Z-ordering will be described and analyzed in more detail in Chapter 3.

ba,ab,ca,db

bb,aa,cb,bd

bc,ac,dd,cc

dc,ad,da,cd

cc,cd,dc,dd

ac,ad,bc,bd

ca,cb,da,db

aa,ab,ba,bb cc,cd,dc,dd

ac,ad,bc,bd

ca,cb,da,db

aa,ab,ba,bb

one-
dimen-
sional

multi-
dimen-
sional

unclustered
data

aa,ab,ac,ad

ba,bb,bc,bd

ca,cb,cc,cd

da,db,dc,ddaa,ab,ac,ad

ba,bb,bc,bd

ca,cb,cc,cd

da,db,dc,dd

page
clust-
ering

aa,ac,ad,ab

ba,bc,bd,bb

cb,cc,cd,ca

db,da,dc,ddaa,ac,ad,ab

ba,bc,bd,bb

cb,cc,cd,ca

db,da,dc,dd

compound
ordering

Z-ordering

page

li
ne

ar
 p

hy
si

ca
l s

to
ra

ge
 o

rd
er

 o
n

di
sk

tuple clustering

tuple clustering

tuple clustering

page
clust-
ering

page
clust-
ering

capacity: 4 tuples

Figure 2-9: Clustering and dimensionality

Clustering and dimensionality are illustrated in Figure 2-9. Here 16 two-dimensional tuples
{a,b,c,d} × {a,b,c,d} are stored on 4 disk pages. Each page is surrounded by a box in the
figure, the data on each page is stored in the order as read from left to right. While the data are
not ordered for unclustered data, they are at least ordered in the first attribute for one-
dimensional clustering. For compound ordering and Z-ordering the data are clustered linearly
with respect to these multidimensional orderings.

The importance of clustering can immediately be seen from the following retrieval cost
estimations (we just consider one-dimensional clustering now. We will deal with the multi-
dimensional case in the later chapters of this thesis). In accordance with [HR96] we use a cost
model that takes I/O-time for random page accesses and I/O-time and CPU-time for page
transfers into account. We assume that the prefetching strategy of the file system reads a

SECTION 2.3: ACCESS METHODS 35

physical cluster of L consecutive pages from disk with one random access into the read-ahead
cache. This takes time tπ + (tξ + tτ)⋅L. Reading k pages in consecutive order therefore takes:

cscan(k) = k/L ⋅ tπ + max(k, L)⋅ (tτ + tξ)

2.3.2.1 Non-clustered Access / Random Access

Without clustering one random access to a page is necessary for each tuple. If we do not take
caching of pages in main memory into account, each tuple requires a random access to the
disk. For each random access it is necessary to position the R/W-head, to transfer the page
and to extract the tuples from the page. Thus reading k pages with random access takes:

crandom(tπ, tτ, tξ ,k)= k ⋅ (tπ + tτ+ tξ)

If main memory cache is used, the performance of random accesses may be significantly
improved:

• One way to achieve this is to keep the data pages in cache after their retrieval. Then a page
does not need to be fetched again from disk if a further tuple of this page also has to be
retrieved. This requires a big portion of main memory whose size in worst case is
equivalent to the number of tuples in the result set multiplied with the size of a page (if
each tuple is stored on a separate page).

• Another strategy is to identify each tuple by its row identifier, which is the physical
location of the tuple on the disk. First the row ids of all tuples in the result set are
determined by the index access. Then these row ids are sorted, and the pages are retrieved
from disk in this sorted sequence of row ids. This ensures that each page is only accessed
once. This strategy requires no main memory for disk pages, but here the locations need to
be cached and sorted.

Both strategies are only applicable if the result set of the corresponding query is small.
Otherwise not enough main memory will be available and the system will start swapping.
This will lead to a performance that is worse than the time needed for scanning the entire
relation.

2.3.2.2 Tuple Clustered Access

If tuples are stored in a tuple clustered way, except for the first page and the last page all
tuples of a page do contribute to a result set specified by a range in the clustering order. If C is
the capacity of one page in tuples, tuple clustering reduces the number of random accesses by
a factor 1/C. Thus for k tuples at most k/C+1 pages need to be randomly accessed and k
tuples are extracted from these pages. Therefore the theoretical retrieval time for k pages by
tuple clustered access is:

ctuple(C , tπ , tτ, tξ ,k)= min(k/C+1, k) ⋅ (tπ +tξ + tτ)

36 CHAPTER 2: TERMINOLOGY AND BASIC CONCEPTS

Tuple clustering is used by B-Trees to speed up range queries. In this case a B-Tree is used to
physically organize a relation on secondary storage. Because of this organization such a
relation is called index organized table (IOT) in many commercial DBMS [Ora97, IBM97].
We consequently also use this term to denote a clustering B-Tree.

2.3.2.3 Page Clustered Access

If tuples are stored in a page clustered way, prefetching techniques can be used to further
reduce the number of random accesses. Each random access retrieves not only one, but L
consecutive pages and stores them in cache memory. The next L - 1 page accesses do not
require any I/O, since the data is already available in main memory. Thus the number of
random accesses gets reduced by a factor of L:

cpage(C, L, tπ, tτ,, tξ ,k) = min(k / C / L + 1, k)⋅ tπ + max(k / C, L) ⋅ (tτ + tξ)

Example 2-8:

We investigate the theoretical retrieval times for random access, tuple clustered access and
page clustered access for k = 1, 5, 10, 50, 100, 1000 and 10000 tuples. We assume a
secondary storage with an average positioning time tπ=10 ms and an average data transfer
time tτ=0.6 ms per page. We further assume that C = 50 tuples fit on one data page. In the
case of page-clustering we further assume that L = 16 pages are pre-fetched with one random
access. Figure 2-10 shows the tremendous advantage of both types of clustering over random
access. An interesting fact is that page clustered access gets CPU-bound very quickly. If we
assume that processing the tuples on a page (extraction of the tuples from the retrieved page
and transfer to the address space of the user process) takes tξ = 0,4µs, the CPU component of
the formula for page clustered access exceeds the I/O component when retrieving more than k
= 544 tuples. However, random access and tuple clustering are generally I/O-bound.

2631

641

11 11 11
53 21 21

107 22 22

533

24 24

1065

37 27

10650

273
83

106500

0

1000

2000

3000

1 R
andom

1 T
uple

1 Page

5 R
andom

5 T
upe

5 Page

10 R
andom

10 T
uple

10 Page

50 R
andom

50 T
uple

50 Page

100 R
andom

100 T
uple

100 Page

1000 R
andom

1000 T
uple

1000 Page

10000 R
andom

10000 T
uple

10000 Page
tim

e
in

 m
s

CPU
Transfer
Positioning

Figure 2-10: Theoretical performance of random access, tuple clustering and page
clustering

SECTION 2.3: ACCESS METHODS 37

Since a prefetching factor L basically means an increased page size, moving to larger page
sizes may significantly speed up retrieval of large result sets. Therefore some database
vendors offer database page sizes of up to 64kB. Exact match queries suffer from this
strategy, however, since in this case a large amount of unnecessary data needs to be
transferred to just retrieve a single tuple.

Although page clustering is hardly maintainable, it is important for one special case: A full
table scan (FTS) without using any index is done in this way. Our performance measurements
indicate that with a prefetching factor of L = 16 an FTS is about 10 times faster than an index
scan of an entire relation [Pie98]. Thus, for queries with a selectivity of more than 10% an
FTS is the best access method in a single user environment. With multiple transactions, it may
not look so bad for indexes even in this case: An FTS puts an enormous load on the system,
both in CPU time and I/O-time. In addition concurrent users may be prevented from updating
tuples during an FTS.

2.3.3 Non-Clustering Indexes

Only one physical clustering order is possible for a table on secondary storage without
introducing redundancy for storing a table several times. Secondary indexes are used for
accessing tuples, when the restricted attributes are not included in the clustering order of the
clustering primary index. Secondary indexes are a replica of a table that stores the index
attributes, i.e., a certain subset of the attributes of a table, in some clustering order together
with one additional attribute, which is a reference to the physical location of the entire tuple.
We call this reference row identifier or tuple identifier (TID). Thus, when just restricting and
retrieving index attributes, secondary indexes can also be regarded to be clustered. However,
as soon as at least one non-index attribute needs to be retrieved, a random access to a page via
the row identifier is necessary for each tuple.

Row identifiers of secondary indexes are often implemented as pointers to physical storage,
i.e., a concatenation of a page number and an offset to a tuple on that page. In most cases a
concatenation of integer numbers is sufficient to represent row ids. Oracle 8, for instance,
uses row ids of 6 Bytes, which consist of three concatenated parts: data file, page number in
file, and row number on page [Ora97].

So called “bitmap indexes” use a bitmap representation for the set of row identifiers having
the same index key value [OQ97]. Thus, one bitmap is stored together with each different
index key value and consists of as many bits as there are rows in the table. Each bit of the
bitmap corresponds to one row and is set, if the corresponding row possesses that key value.

The physical location of a tuple stored in a table organized by a clustering B-Tree (IOT) may
change because of page splits and page merges [BM72]. Therefore creating a secondary index
on an IOT prevents using physical locations for tuple identifiers. Primary keys or some
surrogate of them must be used instead. This requires one additional step of indirection (and
often one additional page access), if a secondary index on an IOT is used to retrieve a tuple.
Because of these complications some DBMS vendors do not allow to create a secondary
index on an IOT [Ora97].

38 CHAPTER 2: TERMINOLOGY AND BASIC CONCEPTS

2.4 Answering Range Queries in present RDBMS

Most commercial RDBMS [Ora97, Inf98, IBM97, TAS98] do not use multidimensional
indexes to process multi-attribute range queries. Thus we survey how traditional single-
attribute access methods can be used to answer multidimensional range queries. For almost all
commercial DBMS this means using B-Trees in combination with special query processing
strategies.

2.4.1 Compound B-Trees

Many RDBMS vendors use a concatenation of multiple attributes to create an asymmetrical
multidimensional clustering index with compound ordering (see Example 2-6). This results in
extremely unbalanced query response times, when restricting different attributes (with
restrictions of identical selectivities). The concatenation order of the attributes is a crucial
factor for the query performance, since the first attribute in the concatenation order is
preferred as the main clustering attribute. The asymmetry could only be cured by storing and
maintaining at least d, for optimal performance factorial(d) index replica, each of which has a
different attribute concatenation order. Because of its storage requirements this is hardly
feasible for d > 4, since for 4 dimensions it is already necessary to store 24 replica of the
index. So a query profile is necessary to decide which indexes to create. [GHR+97] analyzes
this very difficult index selection problem for data warehousing scenarios. In addition to the
tremendous storage requirements, it is not possible to use this approach in OLTP settings
because of the manyfold response times for tuple insertion and deletion.

This type of index is called concatenated index or compound index by Informix, Oracle, DB2,
TransBase or star index by RedBrick [Red97]. In the following we will use the term
compound B-Tree for this index type. Very often this index is used as a non-clustering index,
Oracle and TransBase may also use this type of index as an IOT to organize a relation.

2.4.2 Multiple Secondary B-Trees or Bitmap Indexes

Another approach is the so-called inverted file or multiple secondary indexes approach. Here a
non-clustering secondary index is placed on each attribute. For answering a multidimensional
range query [[y, z]] , the query is divided into d one-dimensional intervals [y1,z1], ..., [yd,zd],
one for each attribute. Each of these intervals is then answered by the corresponding
secondary index, resulting in a set of tuple identifiers (TIDs). The intersection of these d sets
of TIDs determines the answer of the range query. For each TID in the intersection the
corresponding tuple needs to be retrieved (see also Figure 2-11).

This approach has many performance problems: For d attributes, d indexes need to be
maintained. This results in enormous storage requirements and increases OLTP response
times for tuple insertion and deletion. Thus one usually selects a subset of these indexes,
which then results in a difficult index selection problem. For OLAP databases this index

SECTION 2.4: ANSWERING RANGE QUERIES IN PRESENT RDBMS 39

selection problem (in combination with materialized view selection problem) is discussed in
[GHR+97].

Moreover, intersecting tuple identifiers is a very expensive operation: If an attribute is not
very selective, the set of TIDs for this attribute is very large. Each individual set must be
stored and sorted. To make the query performance even worse: Since the data is not clustered,
for small result sets an average of one random access to secondary storage is necessary to
retrieve each tuple in the result set by its TID.

To improve the performance some database system vendors use bitmap indexes, since
bitmaps provide a more compact representation of tuple identifiers for index attributes with
low selectivity. Bitmaps avoid the sorting process, since each bitmap by definition is a list of
tuple identifiers sorted in the order of the physical storage location. However, the necessity to
access d bitmap indexes and the unclustered access to the tuples still remain as major
performance bottlenecks. In addition, the index selection and maintenance problems still
exist. When inserting a tuple, the length of each bitmap needs to be updated. This expensive
insertion operation heavily limits the usability of bitmap indexes to applications with bulk
updates.

TID Sort

Dimension 1

TID Sort

Dimension 2

TID Sort

Dimension d

. . .

TID-
Merge

secondary
B-Trees

data file

Figure 2-11: Using multiple B-Trees for answering range queries

40 CHAPTER 2: TERMINOLOGY AND BASIC CONCEPTS

2.4.3 Indexes for Processing Range Queries used in Present RDBMS

In this section we survey the access methods that, besides an FTS, commercial RDBMS use
to answer multidimensional range queries.

Oracle implements both IOTs and non-clustering B*-Tree indexes and also offers a bitmap
representation of row ids for non-clustering indexes. Bitmap indexes can also be used to index
foreign columns, i.e., columns that are not part of the table, but are somehow joined to the
table. As mentioned before, Oracle 8 does not allow one to create secondary indexes on tables
organized as an IOT. TransBase offers IOTs and non-clustering B*-Trees. All indexes can
either be used to index a single attribute or to combine several attributes in a compound B-
Tree. DB2 only allows secondary B-Trees, which are in general not clustered. Clustering in
DB2 can only be achieved statically by a reorganization tool. Although Oracle and Informix
provide extenders for spatial data relying on kd-Trees [Ben75] or R-Trees [Gut84], these are
not applicable for general indexing. Multidimensional access methods are not integrated in
the core of any of these DBMS. Table 2-2 lists the standard index types of the DBMS Oracle,
TransBase and DB2.

DBMS Oracle 8 TransBase 4.3 DB2 UDB
index type secondary

index
index
organized
table

bitmap
index

primary
index

secondary
index

secondary
index

ordering single,
compound

single,
compound

single single,
compound

single,
compound

single,
compound

clustering no5 yes no yes no5 no5

row id 6 Bytes
concatenated
integer
number

- bitmap - primary key
or integer
number

4 Bytes
concatenated
integer
number

index
concept

B*-Tree B*-Tree B*-Tree B*-Tree B*-Tree B*-Tree

Table 2-2: Indexes in present RDBMS

5 Clustering of the entire data tuple is only achieved by mass loading. This page clustering is destroyed when
inserting tuples. For an optimal performance raw devices should be used, since the clustering of the DBMS
might otherwise be destroyed by the file system. However, the index parts of the tuples are clustered in the index
nodes of the B-Tree.

CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING 41

There is no excellent beauty that
hath not some strangeness in the
proportion.

 (Francis Bacon)

Chapter 3

Multidimensional Space Partitioning

pace filling curves create a linearization of a multidimensional space and
thus can be used for multidimensional space partitioning. Each point is
indexed by its ordinal number on a space filling curve. Therefore we use
space filling curves to address each point in multidimensional space. A
special subspace (region) is constructed by intervals of these addresses. The
region concept defines a totally ordered disjunctive partitioning of Ω, which

may be used to define a clustering index for multidimensional data. In order to get a
symmetrical multidimensional index, the multidimensional clustering of spatial neighbors
should be preserved by the space filling curve. To preserve spatial proximity a space filling
curve must be self similar, i.e., a fractal curve should be used. [Jag90] investigates several
space filling curves for indexing. [Sag94] gives a concise mathematical treatment of space
filling curves. In this chapter we investigate several space filling curves and some of their
characteristics which are relevant to data processing. Since we rely on the Z-curve for our
approach of multidimensional clustering and indexing, we investigate the Z-curve and its
properties in more detail.

S

42 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

3.1 Space Filling Curves and Total Multidimensional

Orderings

In the following we define two space filling curves, the compound curve (C-curve) and the
Lebesgue curve (Z-curve). Without detailed analysis we also state some facts about the
Hilbert curve (H-curve). We then investigate the characteristics continuity and monotonicity
for one-dimensional orderings of a multidimensional space, as these properties are most
relevant to data processing.

Definition 3-1 (space filling function): We call a function f : S ⊂ R Ω a space filling
function, if f(S) = Ω is a bijective function.6

Lemma 3-1: A space filling function defines a one-dimensional ordering for a
multidimensional space.

Proof:

The multidimensional space is ordered by f(0), f(1), f(2), ...

Space filling curves are usually created by iterating some leitmotif to infinity [Sag90]. For
practical applications in computer science it suffices to consider finite iterations. We define
two curves for Ω with dimensions of identical cardinalities r = r1 = ... = rd and s =log2r by the
following formulas:

Definition 3-2 (C-value, C-address): For x ∈ Ω and the binary representation of each
attribute xi = xi,s-1xi,s-2...xi,0 we define the compound lexicographic value (C-value or
C-address) C(x):

∑∑
=

−

=

+⋅−⋅=
d

i

s

j

jsi
jixx

1

1

0

)1(
, 2)C(

Definition 3-3 (Z-value, Z-address): For x ∈ Ω and the binary representation of each
attribute xi = xi,s-1xi,s-2...xi,0 we define the Z-value (or Z-address) Z(x):

∑∑
−

= =

−+⋅⋅=
1

0 1

1
, 2)Z(

s

j

d

i

idj
jixx

Without formal definition we call the values of the Hilbert-curve H-values or H-addresses.

6 In mathematical treatments a space filling curve is the image of a continuous space filling function. We drop
this requirement for our treatment of finite iterations of space filling functions for discrete finite spaces Ω.

SECTION 3.1: SPACE FILLING CURVES AND TOTAL MULTIDIMENSIONAL ORDERINGS 43

Lemma 3-2: For a ∈ {0, ..., 2s⋅d-1} with the binary representation a = as⋅d-1...a0 the inverse
function x = C-1(a) is calculated as:

j
s

j
jdiid axxxx 2 with),...,(

1

0
)1(1 ⋅== ∑

−

=
+−⋅

Proof:

According to Definition 3-2: a = as⋅d-1...a0 = ∑∑
=

−

=

+⋅−⋅=
d

i

s

j

jsi
jixx

1

1

0

)1(
, 2)C(

Thus the dual numbers at the positions ai⋅(d-1) ... ai⋅ (d-1)+s-1 in that order form the dual numbers
(i.e., binary string) representation of attribute xi.

Therefore j
s

j
jdii ax 2

1

0
)1(⋅= ∑

−

=
+−⋅

Applying the above formula for attributes x1, ..., xd builds the inverse (x1, ..., xd) = C-1(a)

Lemma 3-3: For a ∈ {0, ..., 2s⋅d-1} with the binary representation a = as⋅d-1...a0 the inverse
function x = Z-1(a) is calculated as:

j
s

j
idjid axxxx 2 with),...,(

1

0
11 ⋅== ∑

−

=
−+⋅

Proof:

According to Definition 3-3 a = as⋅d-1...a0 = ∑∑
−

= =

−+⋅⋅=
1

0 1

1
, 2)Z(

s

j

d

i

idj
jixx

Thus the dual numbers at the positions ai-1 ad+i-1 a2⋅d+i-1 ... a(s-1)⋅d+i-1 in that order form the dual
numbers (i.e., binary string) representation of attribute xi.

Therefore j
s

j
idji ax 2

1

0
1 ⋅= ∑

−

=
−+⋅

Applying the above formula for attributes x1, ..., xd builds the inverse (x1, ..., xd) = Z-1(a)

44 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

Lemma 3-4: C(Ω) = Z(Ω) = {0, ..., 2s⋅d-1} ⊂ R

Proof:

(1) C(Ω) = {0, ..., 2s⋅d-1}

From Definition 3-2 we derive that C(0,...,0) = 0. For x ∈ Ω \ (0,...,0) the C-value C(x) is
larger than zero, since there is at least one attribute xi whose binary representation has at
least one bit set. Thus C(0,...,0) is the minimum of C(x).

With the same argument, the maximum value of C(x) is obtained for x = (r-1, ..., r-1) and
C(r-1, ..., r-1) = rd 2log2 ⋅ = 2d⋅s.

As a consequence of Lemma 3-2, C(x) is a bijective function.

Since Ω= rd = rd 2log2 ⋅ = 2d⋅s, the co-domain of C(x) consists of 2d⋅s different values.

With the minimum and maximum values for C(x) we get: C(Ω) = {0, ..., 2s⋅d-1}

(2) Z(Ω) = {0, ..., 2s⋅d-1}

In analogy to (1) we derive Z(0,...,0) = 0 and Z(r-1, ..., r-1) = 2d⋅s from Definition 3-3.
Z(x) is also bijective.

Thus we get Z(Ω) = {0, ..., 2s⋅d-1}

Definition 3-4(compound curve and Z-curve): We call the image of C-1 compound curve
(C-curve) and the image of Z-1 Lebesgue curve (Z-curve).

Universes with different cardinalities for each dimension result in a more complex formula
for C-values and Z-values. However, the basic properties of compound curves and Z-curves
remain valid in this case as well. Without loss of generality we use a universe with identical
cardinalities for all dimensions, because it is easier to understand the basic ideas and the
formulas get less complex.

Figure 3-1 shows the ordering defined by three different space filling functions, the C-curve
(a), the Z-curve (b), and the Hilbert curve (c).

(b)(a) (c)

Figure 3-1: Space filling curves

SECTION 3.1: SPACE FILLING CURVES AND TOTAL MULTIDIMENSIONAL ORDERINGS 45

Lemma 3-5: The C-curve creates the ordering Ad°...°A2°A1 on the multidimensional space Ω.

Proof:

According to Definition 3-2 C-values result in a binary representation of each attribute in the
form

C(x) = xd,s-1xd,s-2...xd,0xd-1,s-1...xd-1,0...x1,s-1..x1,0

For x∈ Ω this is identical to the binary concatenation of the attributes in the order
xd ... x2 x1. Thus, for x, y ∈ Ω

C(x) < C(y) xd ... x2 x1 < yd ... y2 y1 x xd°...°x2°x1 y

Definition 3-5 (Z-ordering,): We call the ordering of the multidimensional space defined
by Z-values Z-ordering and use to denote Z-ordering.

We call the lexicographic ordering on the steps of Z-addresses Z-ordering [OM84], since a
path through ordinal numbers in each step reflects the letter “Z” in the two-dimensional case
(see Figure 3-1b).

Lemma 3-6 (C-distance of two points): For two points x, y ∈ Ω with x A1°A2,..., °Ad y their
distance on the C-curve is:

C-distance(x ,y) = distance(x, y, A1°A2,..., °Ad) = |C(y) – C(x)|

Proof:

The proof is a direct consequence of Definition 2-4 and Lemma 3-5.

Lemma 3-7 (Z-distance of two points): For two points x, y ∈ Ω with x y their distance on
the Z-curve is:

Z-distance(x ,y) = distance(x ,y ,) = |Z(y) – Z(x)|

Proof:

The proof is a direct consequence of Definition 2-4 and Definition 3-5.

46 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

3.2 Properties of Space Filling Curves

After defining the terms continuity and monotonicity for space filling curves, we present
proof that the compound curve and the Z-curve are not continuous but monotonous.

Definition 3-6 (continuity): A linear ordering ≤ of a multidimensional space (Ω,) is
continuous, if, and only if:

for every x, y ∈ Ω:

address(x) and address(y) are ≤-neighbors x and y are -neighbors

Lemma 3-8: The compound curve and the Z-curve are not continuous.

Proof:

(1) C-Curve

For Ω = {0,..., r-1} × ... × {0,..., r-1} the C-values r-1 and r are neighboring compound
addresses. However, C-1(r-1) = (r-1, 0, ..., 0) and C-1(r) = (0, 1, 0, ..., 0) are not neighbored
in Ω.

(2) Z-Curve

The Z-addresses 1 and 2 are neighboring Z-addresses. However, Z-1(1) = (1, 0, 0, ..., 0) and
Z-1(2) = (0, 1, 0, ..., 0) are not neighbored in Ω.

Definition 3-7 (monotonicity): A one-dimensional < ordering of a multidimensional space
(Ω,) is monotonic, if and only if:

for every x, y ∈ Ω: x y address(x) � address(y)

Lemma 3-9: The compound curve and the Z-curve are monotonic.

Proof:

If x y, then for all dimensions j ∈ D either xj = yj or xj < yj. If xi < yi for dimension i, then
there exists a bit position k, so that for k < a and xi,k < yi,k and xi,a = yi,a. With Definition 3-2
this immediately yields C(x) < C(y), with Definition 3-3 we obtain Z(x) < Z(y).

SECTION 3.3: SYMMETRY OF SPACE FILLING CURVES 47

3.3 Symmetry of Space Filling Curves

The Z-curve has the important property that in many cases the spatial proximity of points is
preserved. However, sometimes the distance of two points in Z-values is shorter than the
actual spatial distance (distance shrinking).7 In other cases the Z-distance may be larger than
the spatial distance (distance enlargement).

(a) (b)

Figure 3-2: Distance shrinking and distance enlargement

Note that for the domains Ωi, i ∈ D, the distance between two neighboring values is 1.

Definition 3-8 (successor and predecessor of a value): For Ωi, i ∈ D, and a ∈ Ωi we define
the functions

succ(a) = a + 1, if a < max()

pred(a) = a - 1, if a > min()

Definition 3-9 (successor and predecessor of a tuple in one dimension): Since the domain
of each attribute of a tuple is totally ordered, for i ∈ D we can extend the definition of
successors and predecessors to multidimensional tuples x ∈ Ω:

succi(x)=(x1,..., xi-1, succ(xi), xi+1,..., xd)

predi(x)=(x1,..., xi-1, pred(xi), xi+1,..., xd)

Definition 3-10 (neighbors in one dimension of Ω): For attribute Ai, i ∈ D, of a tuple x ∈ Ω
we define:








∪
=

−=
=

otherwise,)}({succ)}(pred{

0,)}(succ{

1,)}(pred{

)(neighbors

xx

xx

rxx

x

ii

ii

iii

i

Note that � U
d

i
i xx

1

)(neighbors)neighbors(
=

= .

7 Note that distance shrinking does not occur for the Hilbert curve, since a neighbor on the Hilbert curve is
always a neighbor in multidimensional space.

48 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

Definition 3-11 (average neighbor distance for a point in one dimension): For a point x
we define average neighbor distance of a neighbor with respect to dimension i for the
compound curve resp. Z-curve:8

C-ndi(x) = avg({C-distance(x, y) | y ∈ neighborsi(x)})

resp.

Z-ndi(x)= avg({Z-distance(x, y) | y ∈ neighborsi(x)})

Lemma 3-10: For a point x the average distance of a neighbor on the C-curve with respect to
dimension i is:

C-ndi(x) = ri-1

Proof:

The proof is a direct consequence of Definition 3-2.

For the following proofs we define a notion how to extract a bit from a value or an
expression:

Definition 3-12 (bit of an expression): For any expression (e) yielding a scalar attribute we
denote the jth rightmost bit of the result of (e) by (e)j. For any expression (e) yielding a
tuple we use (e)i,j to denote the jth rightmost bit of Ai of the result of (e) for any i ∈ D
and j ∈ {0, ..., s-1}.

Example 3-1:

(2+3)2 = (1012)2 = 1

(1+1)0 = (102)0 = 0

Definition 3-13 (∆i): For multidimensional domains we define ∆i = (x1, ..., xd) with xj = 0 for
all j ∈ D\{i} and xi = 1.

Lemma 3-11: For a point x the average distance of a neighbor on the Z-curve with respect to
dimension i is

Z-ndi(x) = ()









−=

−∈⋅−−+⋅

=

−

−

=

⋅−

−

∑
1,2

}2,...,1{,2)1()1(2

0,2

1

1

0

2

1

rx

rxxx

x

i
i

i

s

j

dj
jiji

i

i
i

8 Note that according to Definition 3-10 each point has one or two neighbors per dimension, depending on
whether it meets the border with respect to that dimension or not.

SECTION 3.3: SYMMETRY OF SPACE FILLING CURVES 49

Proof:

A point x = (x1, ..., xd) has at most two neighbors in dimension i, namely the two points
x - ∆i = (x1,...,xi-1,xi-1,xi+1,...,xd) and x + ∆i = (x1,...,xi-1,xi+1,xi+1,...,xd)

If xi = 0 or xi = r-1 there is only one neighbor, otherwise two neighbors exist.

For xi = 0 only one neighbor exists. Thus we get:

Z-ndi(x) =

1

0for1

1

0
,

1

0

1

1

0

1
,

1

0

1

1

0 1

1
,

1

0 1

1
,

2

22)1(2

22)1(

22)(

)()(

−

==

−

=

⋅
−

=

⋅−

−

=

−+⋅
−

=

−+⋅

−

= =

−+⋅
−

= =

−+⋅

=

=








⋅−⋅+⋅=

=⋅−⋅+=

=⋅−⋅∆+=

=−∆+=

∑∑

∑∑

∑∑∑∑

i

x

s

j

dj
ji

s

j

dj
ji

i

s

j

idj
ji

s

j

idj
ji

s

j

d

i

idj
ji

s

j

d

i

idj
jii

i

i

xx

xx

xx

xZxZ

444444 3444444 21

Analogously, for xi = r - 1 only one neighbor with respect to dimension i exists. Thus:

Z-ndi(x) =

= Z(x) – Z(x - ∆i) =

= Z(x1, ..., xi-1, r-1, xi+1,..., xd) – Z(x1, ..., xi-1, r-2, xi+1,..., xd) =

= 2i-1

For xi ∈ {1, ..., r-2} two neighbors with respect to dimension i exist. We therefore get:

 Z-ndi(x) =

() 









⋅−−+⋅=

=









⋅−−⋅+⋅=

=









⋅∆−−⋅∆+⋅=

=
∆−−∆+

=

=
−∆++∆−−

=

∑

∑∑

∑∑∑∑

−

=

⋅−

−

=

−+⋅
−

=

−+⋅

−

= =

−+⋅
−

= =

−+⋅

1

0

2

1

0

1
1

0

1

1

0 1

1
,

1

0 1

1
,

2)1()1(2

2)1(2)1(
2

1

2)(2)(
2

1

2

)()(
2

)()()()(

s

j

dj
jiji

i

s

j

idj
ji

s

j

idj
ji

s

j

d

i

idj
jii

s

j

d

i

idj
jii

ii

ii

xx

xx

xx

xZxZ

xZxZxZxZ

50 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

Example 3-2:

Figure 3-3 (a and b) shows the C-values and Z-values of the space filling curves for the
[0, 7]×[0, 7] universe of Figure 3-1. Although we have not derived a closed formula for the
calculation of the values of the Hilbert curve, we call these values H-values and also include
them in Figure 3-3c. Next to the right border and below the lower border of Figure 3-3 (a and
b) we list the values of C-ndi(x) and Z-ndi(x). As the formulas suggest, Z-nd1(x1,x2) is
constant, when varying x2 for a fixed x1, Z-nd2(x1,x2) is constant when varying x1 for a fixed x2

and Z-nd2(x) = 2⋅Z-nd1(x). C-nd1(x) and C-nd2(x) are constant over the entire universe. If one
defined H-ndi(x) in the same way as C-ndi(x) and Z-ndi(x), H-ndi(x) is neither constant in the
sense of Z-ndi(x) nor C-ndi(x).

(b)(a) (c)

10 54 1716 2120
32 76 1918 2322
98 1312 2524 2928
1110 1413 2726 3130
3332 3736 4948 5352
3534 3938 5150 5554
4140 4544 5756 6160
4342 4746 5958 6362

80 2416 4032 5648
91 2517 4133 5749

102 2618 4234 5850
113 2719 4335 5951
124 2820 4436 6052
135 2921 4537 6153
146 3022 4638 6254
157 3123 4739 6355

10 1514 1916 2120
23 1213 1817 2223
74 118 2930 2524
65 109 2831 2627
5758 5354 3532 3736
5659 5255 3433 3839
6160 5150 4546 4140
6263 4849 4447 4243

10 32 54 76

1
0

4

2

5

3

7
6

10 32 54 76

1
0

4

2

5

3

7
6

10 32 54 76

1
0

4

2

5

3

7
6

±1
±1

±1

±1

±1

±1

±1

±22

±6
±2

±2

±2

±6
±2

±3±1 ±11±1 ±3±1 ±1±8±8 ±8±8 ±8±8 ±8

21 62 26 12
21 62 26 12
21 62 26 12
21 62 26 12
21 62 26 12
21 62 26 12
21 62 26 12
21 62 26 12

71 17 22 11
61 36 33 13
23 112 310 13
21 112 212 11
21 112 212 11
23 112 310 13
61 36 33 13
71 17 22 11

10 32 54 76

1
0

4

2

5

3

7
6

10 32 54 76

1
0

4

2

5

3

7
6

(e)

1
0

4

2

5

3

7
6

11 11 11 11
11 11 11 11
11 11 11 11
11 11 11 11
11 11 11 11
11 11 11 11
11 11 11 11
11 11 11 11

10 32 54 76

(d) (f)

22 22 22 22
44 44 44 44
44 44 44 44
1212 1212 1212 1212
1212 1212 1212 1212
44 44 44 44
44 44 44 44
22 22 22 22

13 31 11 13
32 23 67 22
31 13 67 22
2627 2223 41 66
2627 2223 41 66
31 13 67 22
32 23 67 22
13 31 11 13

10 32 54 76

1
0

4

2

5

3

7
6

10 32 54 76

1
0

4

2

5

3

7
6

(h)

1
0

4

2

5

3

7
6

88 88 88 88
88 88 88 88
88 88 88 88
88 88 88 88
88 88 88 88
88 88 88 88
88 88 88 88
88 88 88 88

10 32 54 76

(g) (i)

Hilbert curveC-curve Z-curve

ordinal
numbers

nd1(x)

nd2(x)

Figure 3-3: C-values, Z-values and H-values

SECTION 3.3: SYMMETRY OF SPACE FILLING CURVES 51

Definition 3-14 (cumulated neighbor distance for one dimension): The cumulated
neighbor distance for dimension i is

∑
Ω∈

=−
x

i xi)(nd-Z)nd(Z

resp.

∑
Ω∈

=
x

i xi)(nd-C)nd(-C

Lemma 3-12: Z-nd(i) = 





−
−+⋅⋅ −−

12

1
12 11

d

d
id r

r

Proof:

For the proof we define ∑
−

=

⋅⋅=
1

0
1 2)(

s

j

dj
jaaZ for a ∈ R

Then the average neighbor distance for the Z-curve is:

()

()

()







−
−+⋅⋅=





−
−+⋅⋅=





+⋅⋅=

=









+





−⋅⋅+⋅⋅=

=









+





−+⋅+⋅⋅=

=









+





−−⋅−+⋅−⋅+⋅⋅=

=




 +−−−+−⋅+⋅⋅=

=





+−−+⋅+⋅⋅=

=









+





⋅−−+⋅+⋅⋅=

===

−−
⋅

−−
−

=

⋅−−

−

=

⋅−−

−

=

⋅
−

=

⋅−−

−

=

⋅
−

=

⋅−−

−−

−

=

−−

−

=

−

=

⋅−−

−

=

−

=

−

=Ω∈

∑

∑

∑∑

∑∑

∑

∑ ∑

∑ ∑ ∑∑

12

1
12

12

12
12212

1222
2

1
12

1122
2

1
12

1012)2(2)1(
2

1
12

1)0()1()2()1(
2

1
12

1)1()1(
2

1
12

12)1()1(
2

1
12

),(nd-Z)(nd-Z)nd(-Z

1111
1

0

11

1

0

11

1

1

1

0

11

1

0

1

0

11

1111
11

2

1
11

11

2

1

1

0

11

1

0

1

0

1

0
1

1 2

d

d
id

d

sd
id

s

j

djid

s

j

djid

s

j

dj
s

j

djid

s

j

dj
j

s

j

dj
j

id

id

r

x
ii

id

r

x

s

j

dj
jiji

id

r

x

r

x

r

x
di

x
i

r
rrr

r

r

rrr

ZZrZrZr

xZxZr

xxr

xxxi

i

i

d

KL

52 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

Lemma 3-13: C-nd(i) = rd ⋅ ri-1

Proof:

111 ||)(nd-C)nd(-C −−

Ω∈

−

Ω∈

⋅=⋅Ω=== ∑∑ idi

x

i

x
i rrrrxi

Definition 3-15 (degree of symmetry of a space filling curve): The degree of symmetry of a
space filling curve is the negative standard deviation of the neighbor distances for each
dimension, i.e.,

C-symmetry(Ω) = -std({C-nd(i) | i ∈ D})

resp.

Z-symmetry(Ω) = -std({Z-nd(i) | i ∈ D})

Example 3-3:

The compound curve for the universe of Figure 3-1 has a cumulated neighbor distance of C-
nd(1) = 64 and C-nd(2) = 512. The Z-curve of Figure 3-1 has the following cumulated
neighbor distances: Z-nd(1) = 176 and Z-nd(2) = 352. This results in a C-symmetry of –316,8
and a Z-symmetry of –124,5. Without further analysis we list the corresponding numbers for
the Hilbert Curve: H-nd(1) = 230, H-nd(2) = 362, resulting in an H-symmetry of –93,3.

SECTION 3.3: SYMMETRY OF SPACE FILLING CURVES 53

Theorem 3-1 (symmetry theorem): For practical values for d ∈ {2, ..., 10} and r ∈ {2, ...,
109} the Z-curve has a higher degree of symmetry than the compound curve.

Proof:

With

Ψ(d, r) = 





−
−+⋅−

12

1
11

d

d
d r

r

the cumulated neighbor distance for dimension i of the Z-curve is:

Z-nd(i) = 2i-1⋅Ψ(d, r)

We calculate the average µZ and the standard deviation σZ of the cumulated neighbor distance
over all dimensions:

{ }()

{ }()

()

()

() ()











 −−−⋅⋅





−
−+⋅=











 −−−⋅⋅Ψ=












 −−−⋅Ψ=

=
















 −⋅+−⋅−⋅−−⋅Ψ=

=
















 −+⋅−⋅−⋅Ψ=

=




 −⋅Ψ−Ψ⋅⋅=

=∈−=

−⋅Ψ=∈−=

−

==

−

=

−

=

−

∑∑∑

∑

dd

r
r

dd
rd

dd

rd

d
d

dd

rd

ddd

rd

d

rd
rd

d

Dii

d
rdDii

dd

d

d
d

dd

Z

dd

d
d

dd

d

i

dd

i

i
dd

i

i

d

i

d
i

Z

d

Z

2
1

2

22

22

1

2

1

1

1

1
2

1

2

1

22

12

3

141

12

1
1

12

3

141
),(

12

3

14),(

12
12

12
2

3

14),(

12
2

12
24

),(

)12(),(
),(2

1

|)nd(Zstd

12
),(|)nd(Zavg

σ

σ

µ

54 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

The cumulated neighbor distance for dimension i of the compound curve is:

C-nd(i) = ri-1 ⋅ rd

We calculate the average µC and the standard deviation σC of the cumulated neighbor distance
over all dimensions:

{ }() ()

{ }()
()

() ()

() () ()

() () ()

()







−⋅

−−
+
+⋅

−
−⋅⋅=







−⋅

−−
+
+⋅

−
−⋅⋅=

=












−⋅
−−

−
−⋅⋅=

=












−⋅
−+

−
−⋅

−⋅
−⋅−

−
−⋅⋅=

=

















−⋅

−+⋅
−⋅

−⋅−⋅⋅=

=





−⋅

−⋅−⋅⋅=

∈−=

−⋅
−⋅=∈−=

∑∑∑

∑

==

−

=

−

=

−

)1(

1

1

1

1

11

)1(

1

1

1

1

11

)1(

1

1

11

)1(

1

1

1

)1(

1
2

1

11

)1(

1

)1(

1
2

1

)1(

11

|)(std

)1(

1
|)(avg

2

2

2

2

2
2

2

2

2

2
2

1

2

1

1

1

212

1

2

1

22

rd

r

r

r

r

r

d
r

rd

r

r

r

r

r

d
r

rd

r

r

r

d
r

rd

r

r

r

rd

r

r

r

d
r

rd

r
r

rd

r
r

d
r

rd

rr
rr

d

DiindC

rd

rr
DiindC

ddd
d

C

ddd
d

dd
d

dddd
d

d

i

dd

i

i
dd

i

id

d

i

dd
id

C

dd

C

σ

σ

µ

For all practical values of d ∈ {2, ..., 10} and r ∈ {2, ..., 109} the ratio σZ/σC is less than 1.
Due to its length, we omit the formal proof. The basic idea of the proof is, that σZ/σC shrinks
monotonously, which is proven by building the derivations. We just show the graph of σZ/σC

in Figure 3-4. The graph even suggests, that for r → ∞ σZ/σC converges to a fixed value for
each dimensionality d.

Overall, for d ∈ {2, ..., 10} and r ∈ {2, ..., 109} the degree of symmetry of the Z-curve is
higher than the degree of symmetry of the compound curve.

SECTION 3.4: REGIONS COVERED BY SPACE FILLING CURVES 55

0,2

0,4

0,6

0,8

1 10 100 1000 10000 100000 1000000 10000000 1E+08 1E+09
r (cardinality of each domain)

σ Z
/ σ

C

10 dimensions 9 dimensions 8 dimensions

7 dimensions 6 dimensions 5 dimensions

4 dimensions 3 dimensions 2 dimensions

10 102 103 104 105 106 107 108 109

Figure 3-4: Relative degree of the symmetry σz/σc

Hilbert curves are out of the scope of this thesis. Without proof we just state the following
facts: The Hilbert curve is monotonous, continuous and has a higher degree of symmetry than
the Z-curve. For our pilot implementation of the UB-Tree, we use the Z-curve, because of its
easy implementation (see Section 5.3.1). Since the Hilbert curve exhibits better properties
than the Z-curve, implementing the UB-Tree using a Hilbert curve would result in a better
space partitioning and therefore in a better performance of the multidimensional index. This
might be future work in this field. However, compared to compound clustering both the
Hilbert curve and the Z-curve are far superior because of their higher degree of symmetry.

3.4 Regions covered by Space Filling Curves

In the following we define the region concept, a concept which defines a subspace of a
multidimensional space which is covered by some part of a space filling curve.

Definition 3-16 (C-Region): A C-region [α :C β] is the space covered by an interval of the
C-curve and is defined by two C-addresses α and β.

Definition 3-17 (Z-Region): A Z-region [α :Z β] is the space covered by an interval of the Z-
curve and is defined by two Z-addresses α and β. We often write [α : β] instead of [α
:Z β], if it is clear from the context that we denote a Z-region.

For an 8×8 universe, i.e., s = 3 and d = 2, Figure 3-5a shows the C-region [7 :C 11] and Figure
3-5b shows the Z-region [4 :Z 20]. Figure 3-5c shows a C-region partitioning with 5 C-regions

56 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

[0 :C 6], [7 :C 11], [12 :C 31], [32 :C 51] and [52 :C 53]. Figure 3-5d shows a partitioning with
five Z-regions [0 :Z 3], [4 :Z 20], [21 :Z 35], [36 :Z 47] and [48 :Z 63]. Figure 3-5e shows ten
points which for page capacity of two points per page might be stored in a partitioned relation
with the C-region partitioning of Figure 3-5c or the Z-region partitioning of Figure 3-5d.

(a) (b) (e)(c) (d)

Figure 3-5: C-regions and Z-regions

Lemma 3-14: A Z-region [α : β] covers the multidimensional interval defined by the
boundaries Z-1(α) and Z-1(β) with Z-1(α) Z-1(β), i.e.,

{Z(x) | x ∈ [[Z-1(α), Z-1(β)]]} ≠ [α : β]

but

{Z(x) | x ∈ [[Z-1(α), Z-1(β)]]} ⊃ [α :β]

and thus

[[x, y]] ⊃ {Z-1(α) | α ∈ [Z (x) : Z (y)]}

Proof:

(1) {Z(x) | x ∈ [[Z-1(α), Z-1(β)]]} ≠ [α : β]

The Z-region [Z(y) : Z(z)] = [4 : 20] (Figure 3-6c) defined by y = (2,0) and z = (6,0) is a
superset of the space [[y, z]] = [2,6] × [0,0] (Figure 3-6d).

10 54 1716 2120
32 76 1918 2322
98 1312 2524 2928
1110 1514 2726 3130
3332 3736 4948 5352
3534 3938 5150 5554
4140 4544 5756 6160
4342 4746 5958 6362

10 32 54 76

1
0

4

2

5

3

7
6

(a) (b) (c) (d)

Figure 3-6: Z-regions and query spaces

SECTION 3.5: DISCONNECTED Z-REGIONS 57

(2) {Z(x) | x ∈ [[Z-1(α), Z-1(β)]]} ⊃ [α :β] and [[x, y]] ⊃ {Z-1(α) | α ∈ [Z (x) : Z (y)]]

This is a direct consequence of the monotonicity of the Z-curve in multidimensional space
(Lemma 3-9).

The above Lemma also holds for C-regions:

Lemma 3-15: A C-region [α :C β] covers the multidimensional interval defined by the
boundaries
C-1(α) and C-1(β), i.e.,

{C(x) | x ∈ [[C-1(α), C-1(β)]]} ≠ [α :C β]

but

{C(x) | x ∈ [[C-1(α), C-1(β)]]} ⊃ [α :C β]

and thus

[[x, y]] ⊃ {C-1(α) | α ∈ [C (x) :C C(y)]}

Proof:

In analogy to the proof of Lemma 3-14.

3.5 Disconnected Z-Regions

Since the Z-curve is not continuous, two neighboring points on the Z-curve may not be
neighboring points in the multidimensional space. This means that a Z-region can consist of
spatially disconnected subsets of points.

Definition 3-18 (connection in space): We call two sets of points Q and P spatially
connected, if there exists a pair of points x ∈ Q and y ∈ P that only differs in one
attribute i and the distance between xi and yi is the limit of resolution, i.e.,
distance(xi, yi) = 1.

(a) (b)

Figure 3-7: Connected and disconnected Z-regions

58 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

Theorem 3-2 (connection theorem): Any Z-region consists of at most two spatially
disconnected sets of points and such Z-regions exist.

Proof:

For this proof we use the term point and address interchangeably. This is valid since there is a
one-to-one mapping between addresses and points. We consider a Z-address to be a series of
bits, whereby αi denotes the ith bit of address α read from left to right.

If a Z-region consists of disconnected sets of points, we can group the Z-addresses belonging
to that Z-region into intervals each of which only contains a connected set of points. For i
connected sets we consequently obtain i of these intervals.

We assume that a Z-region [α : γ∗] consists of three not connected sets of points. By
introducing the addresses β and γ, we obtain three spatially disconnected intervals [α : α∗],
[β : β∗], [γ : γ∗] with β = α* + 1 and γ = β* + 1. For Zs-addresses with length k the interval
bounds are uniquely represented by α*= β1 ... βj 01 ... 1, β= β1 ... βj 10 ... 0 and γ = γ1 ... γk.

Now we distinguish two cases:

1. β1 ... βj = γ1 ... γj: Since γ β, there exists a position a > j + 1, so that γa = 1 and βa = 0.
%\�VXEWUDFWLQJ� �IURP�WKH�DWWULEXWH�EHORQJLQJ�WR�ELW�SRVLWLRQ�a of the tuple cartesian(γ), we
obtain a Z-address smaller than γ. However, by the subtraction we never reset a bit in a
position greater than a. Since a > j, the resulting Z-address is always less then γ, but larger
than β. Thus we always obtain Z-addresses in the interval [β, β*]. This in contradiction to
the assumption means that [β : β*] and [γ : γ*] are spatially connected.

2. β1 ... βj ≠ γ1 ... γj: This means that β* β1 ... βj 1 ... 1. So every Z-address with the prefix
β1 ... βj 1 is contained in [β : β* @��$GGLQJ� �WR�WKH�DWWULEXWH�EHORQJLQJ�WR�ELW�SRVLWLRQ�j+1
of the tuple cartesian(α*) sets bit j+1 of the Z-address of that tuple (and possibly resets
some of the bits with a position greater than j + 1). This results in a Z-address greater than
or equal to β, which has the prefix β1 ... βj 1. This Z-address is contained in the interval
[β, β*]. This in contradiction to the assumption means that [α : α*] and [β : β*] are
spatially connected.

Summing up, the assumption of three disconnected sets of points in a Z-region is false for
both cases. Combining this with Figure 3-7 proves the lemma.

Spatial connection is an important property of Z-regions, since it guarantees spatial proximity
independently of the dimensionality. This allows a Z-region partitioning to organize the
multi-dimensional space while preserving multidimensional neighborship of data even for
skewed data distributions. It enables to construct efficient algorithms for range queries and
sorted reading.

SECTION 3.6: GEOMETRIC VIEW OF Z-REGION PARTITIONING 59

3.6 Geometric View of Z-Region Partitioning

In Section 3.1 we algorithmically defined Z-region partitioning. Z-region partitioning can also
be defined geometrically by the concepts of Z-areas and Z-regions [Bay96]. In this section we
present this different view on Z-regions and prove the equivalence to the Z-region partitioning
defined in Section 3.1. We therefore introduce a second notation of Z-addresses
complementing the standard notation (Zs-address, Z-address) as defined in Section 3.1. For
the geometric view we define the concept of increment Z-addresses (Zi-address). In addition
we introduce the notion of step and length of a Z-address as well as the terms volume of Z-
areas and Z-regions.

Definition 3-19 (Z-area; increment Z-address (Zi-address)): We iteratively define a Z-area
Λ as a special subspace of a d-dimensional cube as follows: Split the cube with respect
to every dimension in the middle, resulting in 2d subcubes numbered from 1 to 2d. A
Z-area Λ1 of level 1 is the union of the first α1 closed subcubes. α1 determines Λ1

uniquely. We call α1 the Z-address of Λ1 and write Λ1 = area(α1). The empty Z-area
has the address εi. area(εi) = ∅. To enlarge a Z-area, we iteratively add a Z-area with
Z-address α2 ∈{0,1,...,2d-1} of the next subcube with number α1+1. The Z-address of
this enlarged Z-area Λ2 is α1.α2, which is lexicographically larger then the address α1

of area Λ1. Next we may enlarge Λ2 by adding an Z-area of the next subcube α2+1 of
α2, etc.

We call the Z-address representation defined by this schema increment representation and
append a subscripted “i” to address literals to denote that the literals are in increment
representation. We write Zi-address to denote a Z-address in increment representation.9 In
Section 3.6.1 we will define a standard representation for Z-addresses. If a distinction of
standard representation and increment representation is not necessary in our explanations, we
will use the term Z-address. Otherwise we will use Zi-address or Zs-address to denote a Z-
address in increment representation respectively standard representation.

Example 3-4:

The left part of Figure 3-8 shows four Z-areas area(0.0.1i), area(1.3.2i), area(2.1i), and area(3i)
of a two-dimensional universe. The shaded subcubes of the two-dimensional universe belong
to the corresponding Z-area. area(0.0.1i) consists of 0 subcubes of the first level, 0 subcubes
of the second level and 1 subcube of the third level. area(1.3.2i) consists of 1 subcube of the
first subdivision level, 3 subcubes of the second subdivision level and 2 subcubes of the third
subdivision level. In the same way area(2.1i) consists of 2 subcubes of the first subdivision
level and 1 subcube of the second subdivision level. area(3i) merely consists of 3 subcubes of
the first subdivision level.

9 Actually the Z-addresses must be constructed depending on the multidimensional domain. That is, the Z-
address representation depends on the data type (rational, irrational, complex, etc.). However, in practical
computer systems irrational domains do not exist, but any data type can be mapped to a finite set of natural
numbers. Thus it suffices to consider Z-addresses with integer numbers for each level.

60 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

area(0.0.1)

area(3)

area(1.3.2)

area(2.1)

Z-regions

Point Data

1 3 2

 1

2
1 3

Figure 3-8: Z-areas and Z-regions

In the following we suppress trailing zeros of Zi-addresses and denote Z-addresses by α,β,γ

Definition 3-20 (step and length of a Zi-address): We call αj the jth step of the Zi-address
α = α1.α2. αk.. We call k the length of Zi-address α. By αj,i we mean the ith bit of
the jth step of α in binary representation.

Note that the volume of a subcube decreases exponentially with its step number. We therefore
obtain a fine partitioning of the multidimensional space with relatively short Zi-addresses.

For the following Lemma we loosen the definition of Zi-addresses and allow the value of 2d to
occur in the last step of an Zi-address. In this case some Z-areas have two Zi-addresses.

Lemma 3-16: If for any i > 0 αi ≠ 2d, the Zi-addresses α = α1. ... αi+1 and α* = α1.αi.2
d

define the same area.

Proof:

The union of the 2d subcubes at subdivision level i+1 equals the αi+1th subcube at level i.
Since the previous steps of α and α* are identical and thus describe the same area, the overall
area is identical.

Lemma 3-16 means that we can add steps to each Zi-address until we reach the limit of
resolution without changing the Z-area defined by this Zi-address. The Zi-addresses 2.1i and 3i

in Figure 3-8 are merely a short form of the addresses 2.0.4i. and 2.3.4i respectively.
Removing trailing 2d subcube numbers can be thought of like an overflow arithmetic in
addresses taking place upon the completion of an entire subcube of the previous subdivision
level when enlarging an area. Note that it is not possible to add steps to εi. We will use this
relaxed Zi-address definition as an auxiliary construct in some proofs of this chapter.

SECTION 3.6: GEOMETRIC VIEW OF Z-REGION PARTITIONING 61

Lemma 3-17: The lexicographic ordering of Z-addresses (denoted by
) and set
containment of areas in space (denoted by ⊆) are isomorphic:

area(α) ⊆ area(β) ⇔ α
 β

Proof:

If and only if α = β, then the same subcubes are added to area(α) and area(β) at each step.
This results in area(α) = area(β).

(1) area(α)⊂ area(β) ⇐ α
 β

If α
 β, then there exists an index i so that αj = βj for all j < i and αi < βi. At subdivision
point i we therefore add more subcubes to area(β1. βi-1) than to area(α1. αi-1). All
subcubes that are added to α at later subdivision points are a subset of the subcube defined by
βi. Overall we get area(α) ⊂ area(β).

(2) area(α)⊂ area(β) ⇒ α
 β

If area(α) ⊂ area(β) there is a subdivision level j such that area(α1.αj-1) = area(β1. βj-1)
and area(α1.αj) ⊂ area(β1. βj). Thus a subdivision level j area(β1. βj) must consist
of more subcubes than area(α1.αj). Because of the subcube numbering βj then must be
larger than αj. Overall we get α
 β.

Definition 3-21 (tuple, Z-address of a tuple): A tuple (or pixel) is a smallest possible
subcube at the limit of the resolution, but the resolution may be chosen as fine as
desired. The Z-address of a tuple is identical to the Z-address of the area defined by
including the tuple as the last and smallest subcube contained in this area.

Theorem 3-3 (mapping between tuples and addresses): There exists a one-to-one map
between Cartesian coordinates of a tuple and Z-addresses.

Proof:

The one-to-one mapping between Cartesian coordinates (x1,x2, ..., xd) of a d-dimensional tuple
and its Z-address α is defined by the addressing scheme of Definition 3-19. As stated in
Definition 3-21, a tuple is identified by the area containing the tuple as the last point. The
mapping from tuples to Z-addresses can directly be derived from Definition 3-19.

Similarly, the area corresponding to α and its last point x are calculated by building the union
of subcubes for Z-address α according to Definition 3-19. These two algorithms define the
functions of the one-to-one map between Z-addresses and tuples.

62 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

Definition 3-22 (mapping between tuples and addresses): We use the following notations
for the mapping between a d-dimensional tuple x = (x1, ... ,xd) and its Z-address α:

Z-address(x) = α and cartesian(α) = x

Lemma 3-18: Since the two maps are inverses of each other we get:

cartesian(Z-address(x)) = x and Z-address(cartesian(α)) = α

Definition 3-23 (Z-region): A Z-region is the difference between two Z-areas: If α
 β then
we define the Z-region between α and β as:]α : β] := area(β) \ area(α), where "\"
means "set difference".

Note that Z-regions as defined by Definition 3-23 are open below and closed above. Thus a
set of ordered Zi-addresses {α1, ..., αn} builds a set of Z-regions {]α1 : α2], ...,] αn-1 : αn]}.
These Z-regions are disjoint and therefore partition – or tile – the universe.

Example 3-5:

The areas in Figure 3-8 are used to create five Z-regions:]εi : 0.0.1i],]0.0.1i : 1.3.2i],
]1.3.2i : 2.1i],]2.1i : 3i],]3i : 4i]. Each Z-region is shaded with a different gray.

Note that the lower bound address α of a Z-region]α : β] represents a point cart(α) that does
not belong to]α : β], i.e., α ∉]α : β] and β ∈]α : β]. Thus a Z-region can be regarded to be
a one-dimensional interval of Z-addresses with respect to the Z-ordering
:

]α : β] =]α, β]

Thus a Z-region represents the space corresponding to all points located in the Z-interval
]α, β].

3.6.1 Address Representation

The subcube enumeration defined in the previous section creates variable length Zi-addresses,
where the length of the address denotes the number of subdivisions. This address
representation is useful when storing Z-addresses, since fewer subdivisions result in shorter
addresses and thus in a better memory utilization. For address calculation and theoretical
considerations, however, a different Z-address representation, the so-called standard
representation of Z-addresses, is desirable:

To calculate the Zs-address for a tuple x the address calculation has to proceed as follows: For
each dimension i ∈ D and each subdivision step s ∈ {1, ..., log2ri} the current splitpoint ri/2

s

must be compared with xi. The comparison is a binary decision between xi < ri/2
s and xi ≥

ri/2
s. It is sufficient to use one bit to store each of these decisions in the address. If xi ≥ ri/2

s,
ri/2

s must be subtracted from xi to correctly process the next step of the subdivision. The

SECTION 3.6: GEOMETRIC VIEW OF Z-REGION PARTITIONING 63

subdivision process continues up to the limit of resolution in each attribute. A Zs-address then
consists of a sequence of subdivision steps, each of which consists of one bit for each
dimension.

It is easy to incorporate varying attribute lengths, i.e., attributes with different resolutions, into
this algorithm: When the limit of the resolution in one attribute is reached at a certain
subdivision step, this attribute is not used for the subdivision any further. The number of bits
in each further step is reduced in this case.

Definition 3-24 (number of steps for an attribute): The number of steps for attribute Ai of a
domain with cardinality10 ri is determined by its resolution:

steps(i) = log2ri

Definition 3-25 (length of a step): The number of dimensions in step k (i.e., the length of
step k in bits) is:

steplength(k) = |{steps(i) | steps(i) ≥ k and i ∈ D}|

Definition 3-26 (standard representation of a Z-address (Zs-address)): We call the
representation of Z-addresses obtained by Algorithm 3-1 standard representation and
append a subscripted “s” to address literals to denote that the standard representation is
used. We write Zs-addresss to denote addresses in standard representation. Each pass
through the outer loop of the algorithm defines a step of a Zs-address.

 Input: x = (x
1
, ..., x

d
): d-dimensional tuple

 r = (r
1
, ..., r

d
): cardinality vector for the

 domain of the tuple
 Output: α: Z-address(x) in standard representation

 // the algorithm requires the dimensions to be
 // sorted according to their resolution
 // in descending order
 for s = 1 to steps(1)
 for i = steplength(s) to 1
 if x

i
 < r

i
/2s then

 α
s,d-i

 = 0
 else
 α

s,d-i
 = 1

 x
i
 = x

i
 – r

i
/2 s

 end if
 end for
 end for

Algorithm 3-1: Zs-address calculation by subdivision

10 Note that we defined ri to be 2v for some v ∈ R

64 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

Note that steps of a Z-address are numbered beginning with 1 from left to right in this thesis,
whereas the bits of a step are numbered beginning with 0 from right to left. So the leftmost bit
of a step corresponds to the rightmost dimension in the order of dimensions.

Zs-addresses always describe an area with positive volume, i.e., at least the point at the limit
of the resolution must be included in the Z-area. Thus the empty Z-area ∅ does not have a Zs-
address, i.e., there is no counterpart to εi.

Example 3-6:

For a 3d-universe with r1 = 4, r2 = 4, r3 = 8 we obtain steps(1) = 2, steps(2) = 2 and steps(3) =
3. The length of the steps are: steplength(1) = 3, steplength(2) = 3 and steplength(3) = 1.
Calculating the address for the tuple (x1, x2, x3) = (3, 1, 7) yields the split-point (2, 2, 4) for
step 1. Thus the first step of the Zs-address consists of the three bits 1012. The next split-point
(1, 1, 2) compared to the modified p’ = (1, 1, 3) yields 1112. At this step the resolution of
dimension 2 and 3 is exhausted. Thus the third step just consists of one dimension (i.e., one
bit). The split-point (1) compared to the modified and now one-dimensional tuple p” = (1)
results in 12 for step 3. The entire Zs-address is Z-address(p) = 1012.1112.12s = 5.7.1s.

Definition 3-27 (contribution of a dimension to a Zs-address): The contribution contribi(α)
of dimension i to a Zs-address α is:

∑
=

−⋅=
)steps(

1

)steps(
, 2)(contrib

i

j

ji
iji αα

Example 3-7:

The contributions for α = Z-address(p) of Example 3-6 are contrib1(α) = 112 = 3, contrib2(α)
= 012 = 1 and contrib3(α) = 1112 = 7.

Lemma 3-19: For Zs-addresses the contribution of an attribute is just the attribute itself.

Proof:

According to Algorithm 3-1 bit cj of the contribution c = contribi(α) = csteps(i)-1...c0 represents a
binary decision between less than or equal or greater than with respect to the split-point
2steps(i)-1-j. Summing up all bits of the contribution from right to left and weighting each bit j
with the value of its position 2j then results in attribute Ai with xi = cartesian(α)i.

However, in Section 5.3.5 we will describe a variant of the address calculation, where
contribi(α) ≠ xi.

Lemma 3-20 (domain of a step of a standard address): Zs-addresses result in a subcube
numbering between 0 and 2d-1.

SECTION 3.6: GEOMETRIC VIEW OF Z-REGION PARTITIONING 65

Proof:

Each subdivision step of the Zs-address calculation consists of d binary decisions, one for
each dimension. Since each decision divides the space in the middle, after d decisions the
space got divided in every dimension. We thus have obtained a subcube of the
multidimensional space. By storing the binary decision of each dimension in a bit, we obtain a
bit string with d bits. Each combination of bits denotes a different subcube. With d bits 2d

subcubes numbered from 0 to 2d-1 exist.

Lemma 3-21 (length of a Zs-address): The length in bits of Zs-addresses is identical for each
tuple of a given universe. If the domain of dimension i consists of ri distinct values,
this length is calculated as:11

∑∑
==

==Ω
)1steps(

11

)(steplength)steps()gth(addresslen
j

d

i

ji

Proof:

For each dimension Algorithm 3-1 divides the domain in the middle until the limit of
resolution is reached. Each of these subdivisions is represented by one bit. To reach the limit
of resolution for a domain consisting of ri distinct values, steps(i) = log2ri subdivisions are

necessary. Doing this for all dimensions results in ∑ =

d

i
i

1
)steps(subdivisions, each of which is

reflected by one bit of the address. This proves the first part of the equation. According to the
definition of Zs-addresses the second part of the formula describes the length in bits as the
sum of the length of the steps of the address in bits.

Example 3-8:

The 3d-universe of Example 3-6 with r1 = 4, r2 = 4, r3 = 8 yields the number of bits for each
dimension: log2r1 = 2, log2r2 = 2 and log2r3 = 3. Thus Zs-addresses for this universe have a
length of 7 bits.

Definition 3-28 (address incrementation and decrementation): For a Z-address α we
define the Z-addresses α 1 (and α 1) as follows: Consider α as a bit string and
add to α (or subtract from α) the binary number 1. The resulting bit string is then split
into steps again and thereby defines the incremented Z-address α 1 (or decremented
Z-address α 1).

Example 3-9:

Incrementing and decrementing α = Z-address(p) = 5.7.1s of Example 3-6 yields:

• α 1 = 5.7.1s 1 = 10111112 + 1 = 11000002 = 6.0.0s

• α 1 = 5.7.1s 1 =10111112 – 1 = 10111102 = 5.7.0s

11 Since Z-addresses are calculated with dimensions sorted in descending order of their resolution, steps(1)
denotes the number of steps of a Z-address.

66 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

Theorem 3-4 (isomorphism between Zs-addresses and Zi-addresses): For Z-addresses ≠ εi

the standard representation and the increment representation of Z-addresses are
isomorphic.

Proof:

For this proof it is important to remember that Zi-addresses can be enlarged to the length of
Zs-addresses (Lemma 3-16). Since there exists no counterpart to εi in Zs-addresses, we must
exclude εi from the proof. The subcubes of a Z-area defined by a Zi-address are then
numbered from 1 to 2d, whereas the subcubes of Zs-addresses are numbered from 0 to 2d-1.
The fundamental difference between standard representation and increment representation is
that, with respect to further subdivision steps, in standard representation a subcube number
denotes the upper left corner of a subcube, whereas the lower right corner of the subcube is
denoted in increment representation. In order to address points which are (in Z-ordering) less
than the lower right corner, the subcube number has to be decremented by 1 in increment
representation. Therefore the domain of the subcube numbers of Zi-addresses must be
enhanced by an additional subcube number zero for each but the last subdivision step (at the
limit of resolution no further subdivisions take place, thus a step number of zero is not
possible for the last step of a Zi-address).This is illustrated in Figure 3-9.

Considering the area containment up to the last subdivision step there is no difference
between standard representation and increment representation, since by adding the additional
subcube number zero both representations denote the same subcube by the same number.
Because of the different subcube numberings at the limit of resolution (i.e., for the last step)
the subcube number in increment representation is by one larger than the subcube number in
standard representation.

1 2

3 4

0 1

2 3

0.1

0.3

0.2

0.4

1.1

1.3

1.2

1.4

2.1

2.3

2.2

2.4

3.1

3.3

3.2

3.4

0.0

0.2

0.1

0.3

1.0

1.2

1.1

1.3

2.0

2.2

2.1

2.3

3.0

3.2

3.1

3.3

(a) standard representation (b) increment representation
Figure 3-9: Address representation

The proof of Theorem 3-4 immediately yields a bijective function to switch between Zi-
addresses and Zs-addresses: If we enlarge the Zi-address to the length of the Zs-address and
write it as a binary string:

 αincrement = αstandard 1.

In the same way, we calculate:

αstandard = αincrement 1.

SECTION 3.6: GEOMETRIC VIEW OF Z-REGION PARTITIONING 67

Note that in increment representation the very first step consists of d+1 bits, since it must be
possible to represent the number 2d in this step.

Example 3-10:

The point p = (3,1,7) of Example 3-6 has the Zs-address 5.7.1s, which yields the binary string
(0)10111112. Binary incrementing this Zs-address by 1, yields the string (0)11000002.
Splitting this binary string in steps yields (0)1102.0002.02. Removing trailing zeroes yields the
Zi-address 6i.

Example 3-11:

In the same way we calculate the Zs-addresses for the Z-areas area(0.0.1i), area(1.3.2i),
area(2.1i) , area(3i) and area(4i) of the two-dimensional universe with resolution 8 of Figure
3-8:

Zi-address bitstring decremented bits splitting in steps Zs-address

0.0.1i (0)0000012 (0)0000002 (0)002.002.002 0.0.0s

1.3.2i (0)0111102 (0)0111012 (0)012.112.012 1.3.1s

2.1.0i (0)1001002 (0)1000112 (0)102.002.112 2.0.3s

3.0.0i (0)1100002 (0)1011112 (0)102.112.112 2.3.3s

4.0.0i (1)0000002 (0)1111112 (0)112.112.112 3.3.3s

Table 3-1: Transformation from Zi-addresses to Zs-addresses

Lemma 3-22 (open regions and closed regions):] α : β] = [α 1 : β]

Proof:

] α : β] denotes the space area(β) \ area(α). This is the subspace of multidimensional space
covered by the Z-address interval] α , β]. The point corresponding to the Z-address α 1 is
included in] α : β], i.e.,] α , β] = [α 1, β]. Thus the Z-region [α 1 : β] as defined in
Section 3.4 is identical to the Z-region] α : β] as defined in this section.

Lemma 3-23: The ordering of Z-values of Section 3.1 is identical to the ordering

defined by Algorithm 3-1.

Proof:

Algorithm 3-1 calculates the ordinal numbers for by storing the result of a binary decision
between xi’ < 2d-j-1 and xi’ ≥ 2d-j-1 for each dimension i ∈ D in bit αj⋅d+i-1 of the binary
representation of the address α = αs⋅d-1...α0. According to Definition 3-3 Z(x) is calculated
exactly in the same way. Therefore Z-values are merely another interpretation of the
addresses calculated by Algorithm 3-1.

68 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

3.6.2 Volumes of Z-Areas and Z-Regions

The volume of a Z-area Λ is the percentage of the entire space that is covered by Λ. Since
area(εi)= ∅, vol(area(εi)) = 0. If a Z-area has a positive volume, this volume can easily be
calculated from the Zs-address of the Z-area:

Lemma 3-24: If β1...βk is the bit-sequence of a Zs-address numbered from left to right, the
volume of the corresponding area is calculated as

∑
=

− ⋅+=
k

i
ii

k
kareavol

1
1

2

1
2))...((βββ

Proof:

According to the definition of Zs-addresses, each bit βi of a standard address represents a
decision between two parts of space with equal volume. If βi is set, the first half of the space
is completely contained in the area. Otherwise, only a part of the first half of the space is
contained in the area. This part is described by the following bits of the address. Since each
subdivision step divides the previous subspace into two spaces of equal volume, βi describes a
binary decision in a subspace with a volume of 2-i: If βi is set, a subspace with volume 2-i is
included in the area. Thus βi⋅2-i describes the contribution of the subspace of the volume 2-i to
the overall volume of area(β). At the limit of resolution either one or two subcubes with
volume 2-k are included. If βk is zero, only the first subcube is included, otherwise both
subcubes are included. We immediately get the above formula by weighting each set bit by
the volume of the corresponding subspace and adding up these volumes and correctively
adding 2-k for the last step.

Example 3-12:

The volumes of the Z-areas in Figure 3-8 are:

• vol(area(εi)) = 0

• vol(area(0.0.1i)) = vol(area(002.002.002s)) = 1/64

• vol(area(1.3.2i)) = vol(area(012.112.012s)) = ¼+ 1/8 + 1/16 + 1/64 + 1/64 = 30/64

• vol(area(2.1i)) = vol(area(102.002.112s)) = ½ + 1/32 + 1/64 + 1/64 = 36/64

• vol(area(3i)) = vol(area(102.112.112s)) = ½+1/8+1/16+1/32+1/64+1/64= 48/64

• vol(area(4i)) = vol(area(112.112.112s)) = ½+1/4+1/8+1/16+1/32+1/64+1/64 = 1

SECTION 3.7: INDEPENDENT DIMENSIONS 69

Lemma 3-25: If α1...αk and β1...βk are the bit sequences of the addresses α and β, the volume
of the Z-region]α : β] is calculated as

∑
=

−=−=
k

i
iii

1 2

1
)())vol(area())vol(area(]): vol(] αβαββα

Proof:

]α : β] = area(β) \ area(α). Applying Lemma 2-3 and Lemma 3-24 immediately yields the
proof.

Example 3-13:

The volumes of the Z-regions in Figure 3-8 are:

• vol(]εi : 0.0.1i]) = vol(area(0.0.1i)) – vol(area(εi)) = 1/64 – 0 = 1/64
• vol(]0.0.1i : 1.3.2i]) = vol(area(1.3.2i)) – vol area(0.0.1i) = 30/64 – 1/64 = 29/64
• vol(]1.3.2i : 2.1i]) = 6/64
• vol(]2.1i : 3i]) = 12/64
• vol(]3i : 4i] = 16/64

3.7 Independent Dimensions

In the following we consider multidimensional universes which are partitioned into Z-regions
by point data which is distributed independently in each dimension.

Definition 3-29 (dependence and independence of dimensions): We call two dimensions xi

and xj of a multidimensional data distribution dependent, if there exists a mapping f
such that f(xi) = xj. Otherwise we call xi and xj independent.

In the following P(x) is the probability of the occurrence of a tuple x ∈ Ω in the relation R. By
Pi(xi), i ∈ D, we denote the probability of the occurrence of the attribute value xi ∈ {1,...,ri}.
By Fi(xi) we denote the cumulated distribution for the attribute value xi ∈ {1,...,ri} of
dimension i, i.e.,

∑
=

=
ix

c
iii cx

1

)(P)(F

For independent data distributions of each attribute the probability P(x1,...,xd)) is the product
of the probabilities Pi(xi), i.e.,

∏
=

=
d

i
iid xxx

1
1)(P),...,P(

70 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

In the following we consider several cases of independent data distributions for each
dimension, namely uniformly distributed data, Gaussian distributed data and combinations of
both.

3.7.1 Uniformly Distributed Data

The most simple data distribution for a domain is uniformly distributed data. For uniformly
distributed data the probability of the occurence of a specific value is constant and identical
for each value, i.e.,

Pi(xi) = 1/| i|

Uniform distribution is in general only an approximation for computer generated data. Real-
world applications seldom create uniformly distributed data. Nevertheless, this type of
distribution is interesting from a theoretical point of view: If the data distribution of an
attribute is unknown, it is often useful to assume uniform distribution in order to not disfavor
a certain value. In addition the theoretical analysis is greatly simplified by the assumption of
uniformly distributed data.

(a) (b) (c)

Figure 3-10: Uniformly and Gaussian distributed data

Figure 3-10a shows the point and Z-region distribution for a partitioned relation with 5000
points stored on about 200 disk pages (i.e., about 200 Z-regions), where the values of both
dimensions are distributed uniformly in the corresponding domain.

SECTION 3.7: INDEPENDENT DIMENSIONS 71

3.7.2 Gaussian Distributed Data

A very frequent data distribution for practical applications is the Gaussian distribution (or
normal distribution). The distribution function of the Gaussian distribution is:

duexx

ex

i

i

x u

iii

x

ii

∫
∞−

⋅
−−

⋅
−

−

⋅
⋅⋅

=Φ=

⋅
⋅⋅

=

2

2

2

2

2

)(

,

2

)(

2

1
)()(F

2

1
)(P

σ
µ

σµ

σ
µ

πσ

πσ

Gaussian distributed data is located around the average value µ with a standard deviation of σ.
Therefore the data is clustered around the center µ. Figure 3-10b shows a multidimensional
data distribution, where both dimensions are independently Gaussian distributed, and the
corresponding region partitioning of the multidimensional space. Figure 3-10c shows a
multidimensional data distribution, where the horizontal dimension is Gaussian distributed
and the vertical dimension is uniformly distributed.

These pictures show an underlying principle of Z-region partitioning: Z-region partitioning
adapts to the density of the data, while trying to preserve locality in the partitions (=regions).

3.7.3 Idealized Uniform Partitioning

In this section we investigate a special case of uniformly distributed data, namely an idealized
uniformly partitioned universe.

Definition 3-30 (idealized uniform partitioning): A set of P addresses is idealized uniformly
distributed, if all of these addresses only differ in the log2P leftmost bits, whereby all
possible combinations of the log2P leftmost bits exist and all bits with a position
greater than log2P are set. We call the partitioning of the multidimensional space
introduced by the sequence of these Z-addresses idealized uniform partitioning.

An idealized uniform partitioning produces rectangular regions, where each region has either
the shape of a subspace with volume  P2log2− or consists of two of these subspaces. An
idealized uniform partitioning for the data of Figure 3-11a is illustrated in Figure 3-11b. If
further data is inserted, the idealized uniform partitioning consists of even more quadratic Z-
regions (Figure 3-11c). This continues, until log2P = log2P. Then the partitioning consists of
a complete “chessboard”; further insertion then halves the quadratic regions.

72 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

(a) (b) (c)

Figure 3-11: Idealized uniform partitioning

Independent and uniformly distributed key attributes are not very common in practice.
However, the concept of Variable UB-Trees as described in Section 5.3.5 allows to create a
uniform partitioning of independently distributed dimensions regardless of their data
distribution. Many of the observations derived for uniformly partitioned data also hold for
Variable UB-Trees.

3.8 Dependent Dimensions

Dependencies or correlations between attributes often occur in practical applications. The
salary, for instance, is very often related to the age of a person, the horse powers of a car’s
engine are normally related to the price of the car. In the following sections we investigate
several types of dependent data distributions.

3.8.1 Linear Dependency

Definition 3-31 (linear dependency): Two dimensions i and j are linearly dependent, if the
value of xi is a linear function of the value of xj, i.e., for m ≠ 0 and an arbitrary value
c ∈ o:

xi = m⋅xj + c

Linearly dependent dimensions can cause a dependence of particular bits of the values bi of xi

and bj of xj. This restricts the number of bit combinations possible for addresses and therefore
reduces the number of splits that are necessary to entirely subdivide the universe.

Figure 3-12a and Figure 3-12b show two special cases of linear dependency, namely the
identity (m = 1, c = 0) and the inverse identity (m = -1, c = 0).

SECTION 3.8: DEPENDENT DIMENSIONS 73

(a) (b) (c)

Figure 3-12: Dependent dimensions

3.8.2 Further Dependencies

We use sine dependency to illustrate the behavior of Z-region splits for non-linear
dependencies. Sine dependencies occur, if one dimension is periodically growing and
shrinking. This is true for construction workers during summer and winter, for stocks rates,
etc.

Definition 3-32 (sine dependency): Two dimensions i and j are sine dependent, if the value
of xi can be calculated by a sine function of the value of xj, i.e., for f ≠ 0, a ≠ 0:

xi = a⋅sin f⋅xj

As with linear dependencies sine dependency causes correlations between some bits of the
attributes. This again means that one split of a Z-region partitions the universe with respect to
several attributes. For more complicated dependencies this effect may not be as powerful as
for the simple cases of sine dependency and linear dependency, since it might not occur
globally in the entire universe, but locally constrained to some part of the universe.

Figure 3-12c shows sine dependency and the corresponding Z-region partitioning for a = 1
and f = 1.

74 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

3.9 High Dimensionalities

Preserving spatial proximity becomes increasingly difficult with increasing dimensionality. In
d-dimensional space each point that is not situated on some border of the universe has 2⋅d
neighbors. When recursively partitioning a d-dimensional space s times in each dimension,
2s⋅d partitions are created. Since the Z-regions of a Z-region partitioning correspond to
database pages, each additional partitioning level requires an exponential increase in the
database size.

Definition 3-33 (total split depth; ideal split depth per dimension): We call the number of
completed recursive splits of a Z-region partitioning its total split depth l↓. For a Z-
region partitioning consisting of P idealized uniformly distributed Z-regions, the total
split depth is calculated as:

l↓(P) = log2P

l↓(P)/d then is the lower bound for the ideal split depth per dimension. The rightmost12 l↓(P)
mod d dimensions have one additional completed split level. Thus the upper bound of the
ideal split depth per dimension is l↓(P)/d + 1.Therefore we can calculate the ideal split depth
for dimension i as:

 
 


 −>+

=
↓

↓
↓

otherwise,

mod)(,1
)(

)(

)(

d
Pl

d
Pl

i

iddPl
Pl

Figure 3-13 displays the ideal split depth per dimension for Z-region partitionings with 1 up
to 20 dimensions. The figure shows that dimensionalities larger than 6 result in an ideal split
depth of at most 5 for tables of 80 GB. However, an ideal split depth of 5 means 25 = 32
subdivisions in each dimension. Dimensionalities larger than 12 never exceed an ideal split
depth of 3 for even huge databases. According to the Figure dimensionalities larger than 20
almost forever consist of only one split level for each dimension and for dimensionalities
larger than 32 one can expect that many of these dimensions will not be split at all and thus do
not contribute to the space partitioning.

This means that for average to large sized tables the Z-region partitioning yields a suitable
space partitioning for dimensionalities less than or equal to 6. The multidimensional space
partitioning deteriorates exponentially with increasing dimensionality, since the table size
needs to grow exponentially to compensate an increase in dimensionality.

12 We have defined the address calculation to use the order d, d-1, d-2, ..., 2, 1 of dimensions to calculate
addresses. Therefore the rightmost dimensions are subdivided first.

SECTION 3.10: UTILIZATION OF THE MULTIDIMENSIONAL SPACE 75

0

5

10

15

20

25

30

1 10 100 1000 10000 100000 1E+06 1E+07 1E+08 1E+09

table size in pages resp. Bytes for 8kB pages

sp
li

t d
ep

th

1 dimension 2 dimensions
3 dimensions 4 dimensions
5 dimensions 6 dimensions
7 dimensions 8 dimensions
9 dimensions 10 dimensions
12 dimensions 14 dimensions
16 dimensions 18 dimensions
20 dimensions

 8kB 80kB 800kB 8MB 80MB 800MB 8GB 80GB 800GB 8TB

 1 10 102 103 104 105 106 107 108 109

Figure 3-13: Split depth per dimension for idealized uniformly distributed regions

3.10 Utilization of the multidimensional Space

Definition 3-34 (actual domain of a dimension): For a relation R(x1,...,xd), xi ∈ i for all i ∈
D, the actual domain i of dimension i is:

i = {xi ∈ i | (x1, ...,xi-1, xi, xi+1, ...,xd) ∈ R}

In most cases, the actual domain of an attribute and the data distribution in that domain are
not known in advance. In real world applications, usually i i, since not all anticipated
values exist in the database. On the other hand one easily runs into problems when the
specified domain is too small, e.g., the currently very much discussed year-2000-problem,
where i = [0, 99] and soon i ⊃ i.

Definition 3-35 (partition of an actual domain): For i ∈ D, s ∈ {0, 1, ..., log2ri} and k ∈
{1,...,2s} we define the k,i,s-partition of the actual domain i as the values of the
actual i which are located between (k-1)⋅2-s % and k⋅2-s % of the domain i.

partitioni,s(k) = {xi ∈ i | ix̂ ∈](k-1)⋅2-s, k⋅2-s] for xi ∈ i}

Definition 3-36 (prefix length of a partition): The prefix length of a partition of an actual
domain is the length of the common prefix of the partition in binary representation,
i.e., the number of common bits of all values in the partition:

prefix-lengthi,s(k) = |common-prefix(partitioni,s(k))|, if partitioni,s(k) ≠ ∅

76 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

Example 3-14:

For the domains 1 = 2 = 3 = [0, 7] we assume the actual domains of the relation R to be

• 1 = {0002,0012,0102,0112,1002,1012,1102,1112},
• 2 = {0002,0012,0102,0112},
• 3 = {0002,0012}

This yields the following partitions:

• partition1,0(1) = 1

• partition1,1(1) = {0002,0012,0102,0112}, partition1,1(2) = {1002,1012,1102,1112}
• partition1,2(1) = {0002,0012}, partition1,2(2) = {0102,0112}, partition1,2(3) = {1002,1012},

partition1,2(4) = {1102,1112}

• partition2,0(1) = 2

• partition2,1(1) = {0002,0012,0102,0112} = 2, partition2,1(2) = ∅
• partition2,2(1) = {0002,0012}, partition2,2(2) = {0102,0112}, partition2,2(3) = ∅,

partition2,2(4) = ∅

• partition3,0(1) = 3

• partition3,1(1) = {0002,0012} = 3, partition3,1(2) = ∅
• partition3,2(1) = {0002,0012} = 3, partition3,2(2) = ∅, partition3,2(3) = ∅,

partition3,2(4) = ∅

Thus while the space partitioning of the domain yields a full partitioning of the actual domain
for dimension 1, the actual domain of dimension 2 is unevenly partitioned. The actual domain
of dimension 3 is not partitioned at all. In this case we get the following binary prefix lengths:

• prefix-length1,0(1) = 0, prefix-length1,1(k) = 1 for k ∈ {1,2} and prefix-length1,2(k) = 2 for
k ∈ {1,2,3,4}

• prefix-length2,0(1) = 1, prefix-length2,1(1) = 1 and prefix-length2,2(k)= 2 for k ∈ {1,2}
• prefix-length3,0(1) = 2, prefix-length3,1(1) = 2 and prefix-length3,2(1) = 2
• All other prefix lengths are undefined (= ⊥)

Definition 3-37 (actual split depth): The actual split depth l*
i for a dimension is the number

of bits of Ai which are used for the space partitioning of the UB-Tree.

If for any fixed i ∈ D and s < log2ri prefix-lengthi,s(k) is either constant or undefined for every
k ∈ {1,...,2s}, the actual split depth for each dimension can be calculated by Algorithm 3-2.

SECTION 3.10: UTILIZATION OF THE MULTIDIMENSIONAL SPACE 77

Input: p : number of pages
 d : number of dimensions
 prefix_length

i,j
: length of the common prefix of the first

 j bits of the actual domain of attribute i
 r : cardinality of the domain of each attribute
Output: l

1
,...,l

d
 : actual split depths

l
1

* = ... = l
d

* = 0
s = l↓(p)
i = 1
j = 0
repeat

if prefix_length
i,j
 <= j then

l
i

* := l
i

* + 1
s := s – 1

end if
if i < d then

i := i + 1
else

i := 1
j := j + 1

end if
until s = 0 or j > log

2
r

Algorithm 3-2: Calculation of the actual split depth

Providing unused extra values at some border of the domain or not using all intermediate
values causes an imperfect domain exhaustion for an attribute. Since the Z-region partitioning
performs a recursive subdivision in the middle for each step, this may result in a lower actual
split depth for some dimensions.

Example 3-15:

For P = 32 the actual split depths of Example 3-14 for P = 32 are l1
* = 3, l2

* = 2 and l3
* = 1.

This means that the first partitioning in dimension 3 takes place after three subdivision steps
in dimension 1 and two subdivision steps in dimension 2. This yields exactly the same
multidimensional ordering as the compound ordering x1°x2°x3. Moreover, if the table size is
not large enough to split 6 times, i.e., P < 32, the partitioning in dimension 3 is not reflected
by the Z-region partitioning at all.

Definition 3-38 (normalized actual split depth per dimension and normalized actual split
depth): We define the normalized actual split depth for dimension i as:





 =

= ∈

otherwise,

log,max
*

i2
**

’

i

ij
Dj

i
l

Vll
l

The normalized actual split depth is defined as:

∑
∈

↓ =
Dj

jll ’’

78 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

The normalized actual split depth normalizes the actual split depth for universes of different
resolutions per dimension. If one attribute is partitioned entirely, its split depth is increased to
the maximum actual split depth over all dimensions. This yields identical normalized split
depth, if all dimensions are partitioned completely.

Different actual split depths mean that the actual domains do not partition the universe evenly.
This causes a layered multidimensional partitioning that reminds us of a puff pastry. We
therefore call this effect of the incomplete domain utilization puff pastry effect.

Definition 3-39 (puff pastry, puff pastry degree): If for a Z-region partitioning of a relation
R the normalized actual split depths are not identical for all dimensions i ∈ D, we call
the partitioning to be a puff pastry. The degree of the puff pastry is measured as the
normalized standard deviation of the normalized actual split depths:

puff-pastry-degree(R) = std({li �l ↓ | i ∈ D})⋅d

The puff pastry degree is a measure for the asymmetry of a Z-region partitioning. The
normalized actual split depth li � LV� XVHG� WR� WDNH� GLPHQVLRQV� ZLWK� YDULDEOH� FDUGLQDOLW\� LQWR
account. The value of the puff pastry degree is a number between 0 and 1, whereby 0 means a
perfect Z-region partitioning without any puff pastry. If splits only take place with respect to
one dimension, the most extreme puff pastry degree of 1 is achieved.

Example 3-16:

For P = 24 = 16 the relation R of Example 3-14 has a puff pastry degree of 0,75, for P = 25 =
32 the puff pastry degree is 0.00. The data of Figure 3-10a and Figure 3-10b as well as the
data of Figure 3-12a and Figure 3-12b also have a puff pastry degree of 0,00. Figure 3-10c
has actual split depth of l1

* = 2 and l1
* = 6, resulting in a puff pastry degree of 0.5.

Figure 3-14 shows three examples of multidimensional space utilization. Figure 3-14a and
Figure 3-14b show data, which is distributed uniformly in the vertical dimension and
Gaussian with a very small standard deviation in the horizontal dimension. In Figure 3-14a
the average is exactly the center of the universe. Thus, for 50% of the values in the horizontal
dimension the leftmost bit is set and for 50% of the value the leftmost bit is cleared. This
results in an actual split depth of 1 in the first dimension versus an actual split depth of 4 for
the second dimension, yielding a puff pastry degree of 0.6. In Figure 3-14b the average is
slightly shifted to the left. Now all values of the horizontal dimension have the same prefix.
Therefore the split depth in the horizontal dimension is reduced to zero, i.e., no subdivision
with respect to this dimension has taken place. Figure 3-14b therefore shows a real puff pastry
with a puff pastry degree of 1.00. The Z-region partitioning of Figure 3-14c is filled with data
of 5 two-dimensional Gaussian distributions with different average values. Here five puff
pastries for five data clusters superimpose each other. Since four of these clusters are in
different parts of the universe, which result in different prefixes for the first two bits of the Z-
region addresses, the overall puff pastry degree is not as strong as in Figure 3-14b.

’’

SECTION 3.10: UTILIZATION OF THE MULTIDIMENSIONAL SPACE 79

(a) (b) (c)

Figure 3-14: Utilization of the multidimensional space

In extreme cases as in Figure 3-14b the puff pastry effect results in a splitting similar to
compound ordering. Thus the puff pastry effect seriously influences the multidimensional
behavior of a Z-region partitioning and may in worst case totally destroy the
multidimensional ordering. Therefore it is important to restrict domains as far as possible.
Together with reorganization algorithms this strategy can avoid the puff pastry effect. If the
data distribution of all dimensions is known in advance, the Z-region partitioning can take
these data distributions into account and thereby avoid the puff pastry effect. This is achieved
by the so-called Variable UB-Tree, which is described in more detail in Chapter 6.4.

Part II

Our Approach To Query Processing with
Multidimensional Indexes

CHAPTER 4: THE UB-TREE 83

With information we can go
anywhere in the world, we are like
turtles, our houses always on our
backs.

 (John Le Carré)

Chapter 4

The UB-Tree

he totally ordered addresses of a region partitioning created by a space fill-
ing curve can be stored in any variant of a B-Tree. This allows to create a
multidimensional index for a universe partitioned into regions. For our pro-
totype implementation we use Z-region partitioning, which is implemented
easily while showing beneficial properties for multidimensional clustering
of tuples (see Chapter 3). First we introduce the basic concepts of the uni-

versal B-Tree (UB-Tree). Then we describe algorithms for insertion and deletion. The algo-
rithm for exact match queries is derived from the corresponding algorithm for exact match
queries in B-Trees. Range queries are performed by determining the smallest set of Z-regions
of the multidimensional partitioned relation that builds a cover for the query box. The inser-
tion, deletion, point-query, and range query algorithms were first described in [Bay96]. In ad-
dition to these algorithm we introduce two further algorithms in this thesis: Nearest neighbor
queries are efficiently handled by the Spiral algorithm, a refinement of the range query algo-
rithm which just retrieves Z-regions that store a nearest neighbor candidate. Our second
algorithm is the Tetris algorithm, a technique to process a multidimensionally partitioned re-
lation in the sort order of any attribute.

T

84 CHAPTER 4: THE UB-TREE

4.1 Concept of the UB-Tree

The UB-Tree [Bay96] uses a space filling curve to create a partitioning of a multidimensional
universe while preserving multidimensional clustering. Using the Lebesgue-curve (Z-curve) it
is a variant of the zkd-B-Tree [OM84]. The UB-Tree utilizes a B*-Tree to store the Z-
addresses of a Z-region partitioning of the multidimensional space. Each Z-region is mapped
onto one disk page. At insertion time a full Z-region [α : β] is split into two Z-regions by
introducing a new Z-address γ with α γ β . γ is chosen so that the first half (in Z-order)
of the tuples stored on Z-region [α : β] is distributed to [α : γ] and the second half is stored
on [γ 1: β]. Thus a worst case storage utilization of 50% is guaranteed. There is some
freedom of choice for the Z-region split. For optimal query performance the split algorithm
for UB-Trees tries to maintain rectangular regions and minimize fringes whenever possible.
The UB-Tree requires logarithmic time (in the cardinality of the partitioned relation) for the
basic operations of insertion, point retrieval, and deletion.

We write page(α : β) for the page corresponding to the Z-region [α : β]. Depending on the
context we also use the notion page and notation page(α:β) for the set of tuples stored in Z-
region [α : β]. By count(α : β) we denote the number of objects located on page(α : β).

Definition 4-1 (UB-Tree): A UB-Tree is any variant of a B-Tree in which the keys are Z-
addresses of Z-regions ordered by . Since we get γ = β 1 for two neighboring Z-
regions [α : β] and [γ : δ], it suffices to store the upper address of each Z-region in
the B-Tree. Each leaf page holds the tuples belonging to the corresponding Z-region.
For secondary UB-Trees only tuple identifiers are stored on the corresponding leaf
page (see Figure 4-1).

UB-index

UB-file

B-Tree node storing region
addresses of Z-regions

B-Tree leaf storing tuples belonging to one Z-region

Figure 4-1: The UB-Tree

Example 4-1:

The five Z-regions in Figure 3-8 build a UB-Tree for the point data displayed in the lower
right corner of Figure 3-8. Although Z-regions differ in volume, each Z-region stores about
the same number of tuples because of the storage utilization guarantees of UB-Trees. Both the
upper left corner and the lower right quarter of the universe contain five points, although the
size (volume) of the region covering the lower right quarter of the universe is 16 times larger.

SECTION 4.2: INSERTION INTO UB-TREES 85

4.2 Insertion into UB-Trees

A tuple x to be inserted into the relation R is specified by its coordinates (x1 ,x2, ..., xd) with Z-
address ξ = Z(x1, x2, ..., xd). x belongs to the unique Z-region [α:γ] satisfying α ξ γ.
Note that ξ must be computed only to a precision which is sufficient to determine the proper
Z-region. x is inserted into the leaf-page corresponding to that Z-region, which is found by a
point query. Since pages can store only a maximum number C of points, pages may overflow
and be split like in B-trees. [α : γ] is split by introducing a new Z-area with Z-address β such
that α β γ. The Z-region [α : γ] is partitioned by β into [α : β] and [β 1 : γ]. The
objects on page(α : γ) are distributed onto page(α : β) and page(β 1 : γ) accordingly. β is
constructed by increasing area(α) as follows: Add to area α subcubes from [α : γ] in
increasing order until the number of the objects in [α : β] is between ½ C - ε and ½ C + ε .
If the next subcube in this process contains too many objects, it is recursively subdivided until
the condition can be met. The parameter ε is used to get shorter split addresses, i.e., a better
space partitioning. Section 5.4 shows how the parameter ε is used to reduce the number of Z-
regions that overlap a query box and thus improves the performance of range queries in UB-
Trees.

Input: x : tuple to store in the UB-Tree
Output: none

ξ = Z(x)
find [α :γ] in the UB-Tree, such that α ξ γ
retrieve page(α :γ)
insert x into page(α:γ)
if count(α :γ) > C

choose β ∈[α :γ], so that ½ C - ε ≤ count(α :β) ≤ ½ C + ε
split page(α :γ) into page(α :β) and page(β �1 : γ)

end if

Algorithm 4-1: Insertion algorithm for tuple x

The algorithm relies on the B-Tree operations to find the correct region. For n tuples stored in
the database it inherits the I/O-complexity of O(logC n). The CPU-complexity is also similar
to that of B-Trees. The only difference is the address transformation, which is a very small
amount of CPU time. We give performance figures for Z-address calculation in Section 5.3.1.

Figure 4-2 shows the insertion process into a UB-Tree. First the entire universe is stored on
one disk page, the corresponding multidimensional space is represented by one Z-region
(Figure 4-2a). After repeated insertion of tuples that page will overflow and is split. The
multidimensional space is split into two Z-regions (Figure 4-2b). After further insertions the
upper Z-region of Figure 4-2b indicated by the black arrow is split (Figure 4-2c). After further
insertions an additional split takes place (Figure 4-2d). Figure 4-2e shows the universe after
several further splits. The Z-region split in Figure 4-2f illustrates that splits in UB-Trees are
local operations. Other regions are not affected by a split.

86 CHAPTER 4: THE UB-TREE

(a) (b) (c)

(d) (e) (f)

split

split

split

split

Figure 4-2: Insertion into UB-Trees

4.3 The Point Query Algorithm

To find a tuple x = (x1 ,x2, ..., xd) we compute its address ξ := Z(x1,x2, ..., xd) with sufficient
precision to find the unique region [α : β] with the property α ξ β and fetch page(α : β)
from the UB-file. This is achieved by searching the UB-index, using address ξ as the search
key. page(α : β) must contain x with the additional information or the row id of x.

Input: x : tuple, only index attributes are specified
Output: x : tuple, all attributes are specified

ξ = Z (x)
find [α:β] in the UB-Tree, such that α ξ β
retrieve page(α:β) into main memory
search content of page(α:β) to find x

Algorithm 4-2: Point query algorithm to find tuple x

This algorithm inherits the complexity of the underlying access structure for storing the
addresses. The only additional overhead is the address calculation algorithm. An efficient
implementation with a CPU-complexity linear in the tuple size is described in Section 5.3.

SECTION 4.4: DELETION FROM UB-TREES 87

4.4 Deletion from UB-Trees

When tuples are deleted from [α :β], they are removed from page(α :β). If after this deletion
page(α :β) contains less than ½ C - ε elements, then page(α :β) is merged with the
following page(β 1 : γ) and the Z-region [β 1 : γ] disappears. If the resulting
page(α : γ) overflows, it is split again "in the middle" by introducing a new Z-area with
address δ and the regions [α :δ] and [δ 1 : γ] with the corresponding pages page(α : δ)
and page(δ 1 : γ). This final split of regions and pages is analogous to the underflow
technique between pages of B-trees [BM72].

Input: x : tuple to delete from the UB-Tree
Output: none
// for easy illustration the algorithm does not handle the special
// case of the tuple being stored on the root page or last leaf

ξ = Z(x)
search [α :β]in the UB-Tree, such that α ξ β
retrieve page(α : β)
delete x from page(α : β)
if count(α : β) < ½ C - ε

merge page(α : β) with the neighboring page(β 1 : γ)
into page(α : γ)
if count(α : γ) > C

choose δ ∈[α: γ] with count(α : δ) ≤ ½ C - ε
 and count(δ 1 :γ) ≤ ½ C - ε

split page(α : γ) into page(α : δ) and page(δ 1: γ)
 end if
end if

Algorithm 4-3: Deletion algorithm for a tuple x

The complexity considerations of insertion also apply to the deletion algorithm. For T tuples
stored in the database the I/O-complexity is O(logC T). The CPU-complexity is also similar to
that of B-Trees.

4.5 The Range Query Algorithm
To answer a range query, only those Z-regions, which properly intersect the query box, must
be fetched from the database and thus from the disk [Bay96]. Initially the range query
algorithm calculates and retrieves the first Z-region that is overlapped by the query-box. Then
the next intersecting Z-region is calculated and retrieved. This is repeated until a minimal
cover for the query box has been constructed, i.e., the region that contains the ending point of
the query box has been retrieved.

Definition 4-2 (subcube of an address): For any Zi-address α = α1.αk we define
subcube(α), the hypercube-shaped multidimensional interval, which has Z-1(α) as its
end point and a normalized length of 2-k in each dimension:

()}. . Z)1.0. .0).1.(.(Z|{)subcube(1
1

1
1

k

kr

k xax αααα K<<43421KK −

−

− −Ω∈=

88 CHAPTER 4: THE UB-TREE

Input: y,z : tuples that define a query box with Z(y) Z(z)
Output: X : result set of the range query

ξ = Z(y); ω = Z(z); X = ∅
repeat

find [α:β] in the UB-Tree, such that α ξ �β
X = X ∪ {(x

1
,...,x

d’
) ∈ [α:β] | (x

1
, ..., x

d
) ∈ [[y, z]]}

ξ = Z-address of the first point intersecting the query box
with ξ β

until ξ �ω
Algorithm 4-4: Range query algorithm for a query box [[y, z]]

It is important to note that for any Z-region the calculation of the next point intersecting the
query box is performed solely in main memory. [Bay96] describes an algorithm that for a Z-
region [α : β] and a query box Q calculates the largest Z-address γ ∈ [α : β] so that sub-
cube(γ) ∩ Q ≠ ∅. The algorithm then traverses all subcubes with greater Z-addresses, until
one of these subcubes intersects Q. The smallest intersecting point p in Z-order then defines
the next relevant Z-region, which is retrieved by a point query. Note that because of Lemma
3-16 the next subcube to subcube(ξ1.ξj.2

d) is subcube (ξ1.ξj+1), which allows a more
efficient traversal through the multidimensional space. However, the algorithm still has a
CPU complexity which is exponential in the number of dimensions of the UB-Tree, which
limits this algorithm to dimensionalities below 4. In Section 5.7.1 we sketch the implementa-
tion idea of a linear algorithm that solely operates on a binary representation of Z-addresses.

(a) (b) (c)

(d) (e) (f)

Figure 4-3: Processing a range query

SECTION 4.5: THE RANGE QUERY ALGORITHM 89

Figure 4-3 illustrates the order in which the range query algorithm calculates and retrieves Z-
regions for the range query illustrated by the black-bordered query box. For this example we
use the notation]α : β] for [α 1 : β]. The Z-regions overlapping the query box are
shaded. Initially the algorithm uses the coordinate y of the query box Q = [[y, z]] for a point
query and thereby retrieves the Z-region]0.0.0.1.3.2i : 0.0.3.3.1.0.2i] from the UB-index.
Then the next Z-region that overlaps the query box must be determined (see also Figure 4-4a):
The last subcube of]0.0.0.1.3.2i : 0.0.3.3.1.0.2i] overlapping the query box is
subcube(0.0.3.3.1i), which contains the point x1 as the last intersecting point with respect to Z-
ordering. The next subcube, subcube(0.0.3.3.2i), has an intersection with Q. The first
intersecting point is p1. A point query with p1 yields the Z-region]0.0.3.3.1.0.2i : 0.1.1.1.0.2i].
Thus this Z-region may contain tuples, which are part of the result set of the range query.
Finding the next Z-region works in the same way: The last intersecting subcube of
]0.0.3.3.1.0.2i : 0.1.1.1.0.2i] is subcube(0.1i). The next intersecting subcube is subcube(0.2i).
The corresponding point query retrieves the Z-region]0.1.1.1.0.2i : 0.1.3.0.1i], which again
may contain tuples of the result set. For determining the next Z-region (see also Figure 4-4b)
the algorithm starts with subcube(0.1.3i). subcube(0.1.4i) has no intersection with the query
box. The next subcube with a larger Z-address is subcube(0.3i), which has an intersection with
the query box in p2. The point query then retrieves the Z-region]0.2.0.2.3.2i : 0.2.2.1.1.2i].
Here we already see that the algorithm skipped Z-region]0.1.3.0.1i : 0.2.0.2.3.2i], since this
Z-region does not overlap the query box. In the same way the algorithm calculates and
retrieves the Z-regions]0.2.2.1.1.2i : 0.3.0.0.2.3i] and]0.3.0.0.2.3i : 0.3.2.1i].

subcube(0.1.3i) subcube(0.1.4i)

subcube(0.3i)

subcube(0.0.3.3.2i)subcube(0.0.3.3.1i)

x1 x2
p1 p2

(a) (b)

Figure 4-4: Zoom into Figure 4-3

90 CHAPTER 4: THE UB-TREE

The visualization already shows the principle benefit of the UB-Tree for multidimensional
range queries: Only Z-regions that may contribute to the result set of a range query need to be
retrieved from disk in order to answer the query. Thus in contrast to one-dimensional access
methods as described in Section 2.4 the number of disk accesses of the UB-Tree range query
algorithm is correlated to restrictions defined by all dimensions, not just to restriction in one
dimension. We will analyze the theoretical and practical behavior of the range query
algorithm in Chapters 6 and 7 and compare it to one-dimensional access methods.

Two strategies for returning the tuples of a query box are possible:

• immediate tuple delivery: As soon as a Z-region ρ is retrieved from the UB-index, the
corresponding page(ρ) is retrieved from the UB-file. The tuples on page(ρ) are then
extracted immediately and the tuples in the query box are returned. This strategy allows
shorter response times and does not require any caching.

• deferred tuple delivery: After the upper Z-address of Z-region ρ has been retrieved from
the UB-index, it is stored in a region result set. After all Z-addresses have been retrieved,
the tuples of the entire region result set are materialized. This separation of UB-index ac-
cess and UB-file access allows one to predict the tuple retrieval time before actually doing
the retrieval. This may especially be useful for large result sets, where after retrieving the
regions the user might be asked whether he really wants to materialize the result set.

Theorem 4-1 (range query theorem): The range query algorithm transforms the
multidimensional interval [[y, z]] into a set of one-dimensional address intervals
{]α, β],]β, γ], ...}, which with respect to the given region partitioning is the smallest
cover for [[y, z]].

Proof: The proof is a direct consequence of Algorithm 4-4 and the fact that Z-regions are
one-dimensional intervals.

multidimensional space

Z-address space

0.0.1.3.2i 0.1.3.0.1i 0.2.0.2.3.2i 0.3.2.1i

Q

Figure 4-5: Transforming a query box into a set of Z-intervals

SECTION 4.6: THE SPIRAL ALGORITHM FOR NEAREST-NEIGHBOR QUERIES 91

Very often some of these one-dimensional intervals are connected and therefore might be
merged to larger one-dimensional intervals consisting of several regions. For instance, the six
Z-regions overlapped by the query box of Figure 4-3 are six one-dimensional intervals, which
could be merged into the two intervals]0.0.1.3.2i, 0.1.3.0.1i] and]0.2.0.2.3.2i, 0.3.2.1i], each
of which consists of three Z-regions (see Figure 4-5). This merging could reduce the number
of I/Os necessary to retrieve the pages of a query box, since for page clustered data only two
random accesses are necessary versus six random accesses for tuple clustered data.

4.6 The Spiral Algorithm for Nearest-Neighbor Queries

For UB-Trees nearest neighbor queries can efficiently be processed in the following way: To
find the nearest neighbor of point x we first retrieve the Z-region ρ where x would be located.
Then we investigate all nearest neighbors to x that are stored on ρ. We have found a nearest
neighbor, if the nearest neighbor z on ρ is closer to x than any point on the Z-region border of
ρ. Otherwise we call z to be a nearest neighbor candidate. We now have to retrieve the closest
not retrieved Z-region, since this Z-region might contain a point z’ with a lower distance to x
than z. This process must be iterated until no point on a border of the retrieved Z-regions has a
distance to x less then the distance of the current nearest neighbor candidate.

We call this algorithm spiral algorithm because of the order that is used to retrieve the Z-
regions in order to find the nearest neighbor.

Input: x : tuple, for which the nearest neighbor is wanted
Output: N : set of tuples containing the nearest neighbors to x

ξ = Z(x)
find [α:β] in the UB-Tree, such that α ξ �β
N = nearest neighbors of [α:β]to x
R = [α:β]
while there is a point y beyond the border of R such that

for some z ∈ N: distance(x,z) > distance(x,y)
retrieve the Z-region [γ:δ] bordering R,

which has a point on its border
that has the least distance to x

N = nearest neighbors of ([γ:δ] ∪ N) to x
R = R ∪ [γ:δ]

end while
return the nearest neighbors of N to x

Algorithm 4-5: Spiral algorithm to find the nearest neighbor to a point x

Example 4-2:

Two nearest neighbor queries are illustrated in Figure 4-6a. To find the nearest neighbor to
point x1 Z-region ρ1 is retrieved. The two points y1 and z1 are the nearest neighbors to x1 on ρ1.
Since no point on the border of ρ1 has a distance less than the distance of y1 or z1, we already

92 CHAPTER 4: THE UB-TREE

have found the nearest neighbors. To find the nearest neighbor to point x2 we first retrieve Z-
region ρ3. On ρ3 we find the nearest neighbor y2. Since a point of the border of ρ2 has a closer
distance to x2 than y2, we have to retrieve ρ2. Since no point of ρ2 has a closer distance than y2

and no further border of a region has a closer distance to x2 than y2, we have found the nearest
neighbor.

(a) (b)

x1

x2

y1 z1

y2

ρ1

ρ2

ρ3

x

y

z

ρ1

ρ2

a1

a2

Figure 4-6: Three nearest neighbor queries

To find the nearest neighbor to point x in the UB-Tree of Figure 4-6b, initially the Z-region ρ1

is retrieved, yielding the nearest neighbor y. Since points on the border of ρ2 have a distance
to x that is less than the distance of y, next the region ρ2 is retrieved. ρ2 contains the point z,
which has the distance a2 to x, which is less than the distance a1 of y. Therefore the nearest
neighbor candidate now is z. Since no points on the border of not retrieved Z-regions have a
lower distance to x than z, the algorithm terminates with z as the nearest neighbor.

Implementation and further analysis of the spiral algorithm is performed by a master student
supervised by the author [Str99]. Detailed analysis of the algorithm can be found there. We
just stress that the algorithm in worst case results in a range query. The query box of that
range query is determined by the covering square to a circle around x. The radius of the circle
is defined by the distance of the nearest neighbor to x.

4.7 The Tetris Algorithm for Sorted Processing of Query

Boxes

Tables organized by a UB-Tree can be read in any sort order in O(n) disk accesses where n is
the number of pages of the table or the minimal number of regions covering a query box.
[Bay97] proposes to partition the universe in a number of equally sized slices. Algorithm 4-4

SECTION 4.7: THE TETRIS ALGORITHM FOR SORTED PROCESSING OF QUERY BOXES 93

is used to retrieve each slice. After retrieval a slice is sorted and returned to the caller of the
sort operation.

For non-uniformly distributed universes we propose a modification of the range query
algorithm and a caching technique, the so called ”Tetris-Algorithm”. The Tetris algorithm is a
generalization of the multidimensional range query algorithm (cf. Section 4.4) that efficiently
combines sort operations with the evaluation of multi-attribute restrictions. The basic idea is
to use the partial sort order imposed by a multidimensional partitioning in order to process a
table in some total sort order. Essentially a plane sweep [PS85] over a query space defined by
restrictions on a multidimensionally partitioned table is performed. The direction of the sweep
is determined by the sort attribute. Initially the algorithm calculates the first Z-region that is
overlapped by the query box, retrieves it and caches it in main memory. Then it continues to
read and cache the next Z-regions with respect to the requested sort order, until a complete
thinnest possible slice of the query box (in the sorting dimension) has been read. Then the
cached tuples of this slice are sorted in main memory, returned in sort order to the caller and
removed from cache. The algorithm proceeds reading the next slice, until all Z-regions
intersecting the query box have been processed. Only disk pages overlapping the query space
are accessed. With sufficient, but modest, cache memory each disk page is accessed only
once: To sort 50% of a 1.3 GB relation, the Tetris algorithm just requires a cache of 2.6 MB,
whereas a standard merge-sort algorithm needs a cache of 750 MB (see sections 6.4.1 and
8.2.1).

Input: y,z : tuples defining a query box with Z(y) Z(z)
 i : sorting dimension
Output: stream of tuples in [[y, z]] sorted according to dimension
i

ξ = Z(y); ω = Z(z)
repeat

search [α:β] in the UB-Tree, such that α ξ β
store all tuples from page(α:β) in the cache
if a new slice in dimension i is completed

s = endpoint of the slice dimension i
sort all cached tuples
output all cached tuples x where x

i
 ≤ s

remove all cached tuples x where x
i
 ≤ s from cache

end if
ξ = Z-address of the next point intersecting the querybox
with respect to dimension i

until ξ ω

Algorithm 4-6: Tetris algorithm for a query box [[y, z]]

94 CHAPTER 4: THE UB-TREE

Thus the Tetris-Algorithm works similar to the range-query algorithm. The only difference is
that the calculation of the next intersecting Z-region does not return a Z-region according to
Z-ordering, but according to the specified sort order (Tetris order): Initially the algorithm
calculates the first Z-region that is overlapped by the query-box, retrieves it and caches it in
main memory. Then it continues to read and cache the next Z-regions with respect to the sort
order, until a complete thinnest possible slice of the query box has been read. Then the cached
tuples of this slice are sorted in main memory, returned in sort order to the caller and removed
from cache. The algorithm proceeds reading the next slice, until all Z-regions which intersect
the query box have been retrieved and output.

An example of sorted reading with the Tetris-Algorithm is illustrated in Figure 4-7, where the
entire universe is sorted according to the vertical dimension, i.e., from bottom to top. The part
of each region from which tuples are cached is shaded in this Figure. Note that a large volume
of a cached region does not mean that a lot of cache memory is needed: The maximum
number of tuples in each region and thus maximum cache size for each cached region is C
tuples. The current sweep line is denoted by a thin white line. Thus the current slice processed
by the Tetris algorithm is the shaded area up to the white line. The algorithm starts by
retrieving the Z-region in the very left corner (Figure 4-7a). Successive Z-regions are
retrieved and cached (Figure 4-7b) until the first vertical slice is completed (Figure 4-7c). The
tuples of this slice are then sorted in main memory. All tuples up to the end coordinate of the
slice in the sorting dimension are output in sort order and removed from cache. The Z-regions
of this slice can not be removed from cache completely at this point since each Z-region still
might have some tuples that have not been output yet. However, not the entire Z-regions are
cached. Caching is only necessary for those tuples that have not been output yet. In Figure
4-7d one additional Z-region has been read to complete the second slice. Then eight more Z-
regions are read and cached until the third slice is completed (Figure 4-7e). The Tetris-
Algorithm continues processing in this way until the last slice of the query box has been read
(Figure 4-7f), i.e., the complete universe has been read in the desired sort order.

The visualization also gives a hint why we named this algorithm Tetris algorithm: The
caching order of the regions reminds us of the Tetris computer game. Regions are cached,
until a slice in the sorting direction has been completed. Upon completion the slice is removed
from cache.

SECTION 4.7: THE TETRIS ALGORITHM FOR SORTED PROCESSING OF QUERY BOXES 95

(a)

1

(b)

1 2 3 4 5 6 7

(c)

(d) (e) (f)

Figure 4-7: Sorted reading with the Tetris algorithm

Figure 4-8 shows the first three vertical slices that occur while the Tetris algorithm reads the
thick bordered query box in sort order according to the vertical dimension. The cached Z-re-
gions for each slice are shaded, the slices are emphasized by white borders.

(a) (b) (c)

Figure 4-8: Reading a query box in sort order

The caching strategy of this algorithm can be improved even further. Figure 4-8 shows some
Z-regions that might cache data outside the query box. Of course it is not necessary to cache
this data allowing for an even smaller cache size.

96 CHAPTER 4: THE UB-TREE

Both the Tetris algorithm and the range query algorithm determine the set of Z-regions
overlapping a query box. The only difference is the order in which the Z-regions are
produced. While the range query algorithm delivers the Z-regions in Z-order, the Tetris
algorithm uses an order which depends on the sort attribute Aj. We call this order Tetris order
Tj [MZB99]. Formally, Tetris ordering produces a compound ordering from a Z-ordering by
extracting the bits of the sort attribute from the Z-address and concatenating them to the
remaining Z-address, i.e., for sorting with respect to attribute Aj the ordinal number Tj(a) for a
Z-address α is computed as:

Tj(a) = (Z-1(α))j Z((Z-1(α))1, ..., Z
-1(α))j-1, Z

-1(α))j-1 ,..., Z
-1(α))d)

The ordinal number Tj(x) for Cartesian tuple x is computed respectively:

Tj(x) = xj Z(x1, ..., xj-1,xj+1,...,xd)

10 32 54 76

1
0

4

2

5

3

7
6

A
2

A
1

0

63

10 32 54 76

1
0

4

2

5

3

7
6

A
2

A
1

0

63

10 32 54 76 A
2

A
1

Figure 4-9: Z-Ordering / Tetris Ordering

Figure 4-9 shows the Tetris orderings T1 and T2 created from a Z-ordered 8×8 universe.
Although Tetris ordering looks like a compound ordering in the Figure, this is only true for
the two-dimensional case. In general, Tetris ordering is a concatenation of one attribute with
the Z-address of a tuple reduced by one attribute.

Although the idea of the Tetris algorithm has been developed by the author, implementation
and a detailed analysis are beyond the scope of this thesis. Some very basic performance
considerations are given in Chapters 5 and 7. We give a more detailed description of the
Tetris algorithm in [MZB99].

CHAPTER 5: PROTOTYPE IMPLEMENTATION 97

Errors, like straws, upon the
surface flow; he who would search
for pearls must dive below.

 (John Dryden)

Chapter 5

Prototype Implementation

elying on the built-in B-Tree of a DBMS, the UB-Tree is easily
implemented on top of that DBMS. In this chapter we give an overview of
the prototype implementation of UB-Trees. We describe basic
implementation concepts and specifically illustrate the calculation of Z-
addresses, since this calculation is crucial to both flexibility and
performance of our algorithms. Next to the basic bit-interleaving algorithm,

we illustrate how Z-addresses for arbitrary data types are calculated by the concept of
transformation functions. Then we give examples for three transformation functions: For
signed integer numbers it suffices to invert the sign bit to use bit-interleaving. To deal with
independently distributed dimensions the concept of Variable UB-Trees (VUB-Trees) is
introduced. Multidimensional hierarchical clustering (MHC) is useful for clustering a
universe where hierarchies are built over the domain of each dimension. After the concept of
transformation functions we address specific algorithmic problems that we had to solve when
implementing the insertion, deletion, point- and range query algorithms. Finally we describe
the functionality that is provided by the UB-Tree library, a C-library offering UB-Tree
functionality.

R

98 CHAPTER 5: PROTOTYPE IMPLEMENTATION

5.1 Overview of the Prototype

To practically evaluate the performance of the UB-Tree, a basic C-library providing the
algorithms described in this thesis was implemented by the author. Several master students
and interns supervised by the author implemented applications on top of the C-library:

• create – a program to fill a database with generated test data of various data distributions,
dimensionality, and size [Fri97]

• rtest – a benchmark program to measure the query performance of UB-Trees and various
other indexes [Fri97]

• regvis – a program to visualize the region partitioning of UB-Trees [Fri97]

• load – a mass loading tool to build large databases quickly [Bau97]

Several master students and interns enhanced the C-library [Sch98, Bau98, Fen98] and helped
to port the original TransBase/Solaris code to further RDBMS and operating systems [Pie97,
Ova99, Pfa99].

The prototype implementation of the UB-Tree was performed on top of the RDBMS
TransBase on Solaris. The current version of the UB-Tree library supports the RDBMSs
TransBase, Oracle 8 [Pie97] and DB2 [Ova99], and the operating systems Solaris 2.6,
Windows NT [Pie97], and Linux [Bau98]. In addition the library was ported to Informix
Universal Server [Pfa99]. The complexity of the library can be seen from the module
hierarchy of Figure 5-1.

The entire system is implemented in ANSI C and ESQL and relies on the GNU tools gcc and
gmake for code generation. The Oracle version relies on the Oracle Call Interface (OCI, see
[Ora97]) and the DB2 version uses CLI [IBM97] to communicate with the DBMS server.
Automated documentation generation is enabled by using doc++ [WZ98]. cvs [CVS98] is
used for version management.

SECTION 5.1: OVERVIEW OF THE PROTOTYPE 99

address calculation

UB API

operators

create

range query test

mass loading

visualization

data types

global

constants

error handling

defines

templates

performance measurement

utilities

operating system

Solaris

NT

Linux

date time operations

bit operations

time measurement

byte order conversion

DBMS

TransBase

Oracle

Informix

DB2

database

schema handling

page handling

tuple handling

B-Tree

UB-Tree

benchmark

testsuite

transformation

split point trees

bit interleaving

integerfloat character

high level interface

intermediate level interface

application

low level interface

Figure 5-1: Architecture of the pilot implementation

100 CHAPTER 5: PROTOTYPE IMPLEMENTATION

5.2 Basic Implementation Concepts

The UB-Tree is realized on top of a relational DBMS by utilizing the B*-Tree of that
RDBMS. To show the easy portability of the UB-Tree library, we ported the initial TransBase
5.4 implementation to Oracle 8, DB2 UDB V5, and Informix Universal Server.

Each UB-Tree is a logical construct, which is physically realized by a relational table. We call
that relational table from now on UB-Tree index table. A UB-Tree index table contains one
tuple for each page of the UB-Tree. As listed in Table 5-1, each tuple of the UB-Tree index
table stores the Z-address of the corresponding Z-region, the number of tuples stored on the
data page corresponding to that Z-region, and the content of the page corresponding to that Z-
region. The primary key of this table is the Z-address.

Note that the tuples stored in a UB-Tree do not correspond to the tuples stored in a UB-Tree
index table: the number of tuples in the UB-Tree index table rather is the number of data
pages of the UB-Tree. In the remainder of this chapter a tuple of the UB-Tree index table is
called UB-page, whereas UB-tuple denotes a tuple that is stored in the UB-Tree, i.e., a tuple
that is stored on a UB-page.13

attribute data type description

Z-address bit data upper Z-address of the Z-region corresponding to that UB-

page

number of tuples number number of tuples stored on that UB-page

data page content bit data content of the UB-page

Table 5-1: Schema of a UB-Tree index table

The DBA has to ensure that each UB-page (i.e., each tuple of the UB-Tree index table) is
stored on a separate physical disk page. This is achieved by choosing the size of each UB-
page (size of the attributes Z-address, number of tuples, data page content plus some DBMS
storage overhead) to be exactly the size of a physical database page. For some DBMS
additional settings have to be done to ensure the physical correspondence of DBMS pages and
UB-pages [Pie97, Ova98]. The physical correspondence allows one to implement the UB-
Tree on top of a RDBMS while obtaining the I/O-behavior identical to a kernel
implementation of UB-Trees. However, significantly higher CPU- and inter-process
communication cost and an impedance mismatch are the price that must be paid for this
simple implementation approach:

13 A straightforward idea for an implementation of the UB-Tree index table is to enhance each tuple of a relation
with one additional column, namely its Z-address. The Z-address as primary key then leads to a
multidimensional clustering [OM84]. However, this approach does not offer control over region boundaries
during a page split; the region boundaries are defined by the tuples in this case. Our approach offers complete
control over the choice of the region boundary during a Z-region split. We also preferred this approach since the
UB-Tree is easier to integrate into a RDBMS kernel with this implementation.

SECTION 5.2: BASIC IMPLEMENTATION CONCEPTS 101

• The UB-tuples on each UB-page must be extracted and set by special functions provided
by the API of the UB-Tree library (UBAPI). The standard SQL functionality of the
DBMS cannot be used to achieve that.

• Each query or update operation requires two interprocess communications and ESQL
parsing operations for each UB-page that needs to be accessed by the operation.

• The performance of the prototype implementation heavily relies on the optimizer of the
underlying DBMS, since SQL statements are used to access UB-pages.

The UB-Tree algorithms require an efficient access to the Z-addresses stored in the UB-Tree.
Therefore, a secondary B-Tree on Z-address is created and builds the UB-index part of Figure
4-1. The UB-Tree index table builds the UB-file illustrated in that figure.

Table 5-2 lists the prototype implementation concepts and compares their implementation in
TransBase 4.3, Oracle 8, and a DBMS kernel implementation.

UB-Tree

concept

TransBase 4.3 implementation Oracle 8 implementation DBMS Kernel

Implementation

UB-Tree index

table

relation relation clustering primary

index

UB-page tuple with the size of a physical

page

tuple with the size of a physical

page

physical DBMS

page

UB-tuple substring of the data page

content attribute of the UB-Tree

index table

substring of the data page

content attribute of the UB-Tree

index table

DBMS tuple

Z-region defined by the Z-address

attribute of the UB-Tree index

table

defined by the Z-address

attribute of the UB-Tree index

table

binary string

UB-index additional table storing the Z-

address attribute of the UB-

Tree index table

secondary index on the Z-

address attribute of the UB-

Tree index table

B-Tree node

pages

UB-file relation storing the UB-Tree

index table

relation storing the UB-Tree

index table

B-Tree leaf pages

Table 5-2: Prototype implementation concepts

102 CHAPTER 5: PROTOTYPE IMPLEMENTATION

In TransBase it is necessary to use an IOT on the Z-address to implement the UB-Tree index
table, since TransBase always clusters the data according to the primary key. Since UB-pages
are physical DBMS pages, TransBase needs to perform a random leaf page access on the IOT
to retrieve a Z-address. An efficient retrieval of a range of Z-addresses is not possible via the
UB-Tree index table, since it is not possible to create a secondary index on a primary key
attribute. Therefore the TransBase implementation introduces a new concept, a UB-Tree
secondary index table, which stores only the Z-addresses of the UB-Tree index table. This
allows an efficient access to a range of Z-addresses: While only one Z-address is stored on a
leaf page of the UB-Tree index table, a set of Z-addresses in consecutive order is stored on a
leaf page of a UB-Tree secondary index table. This greatly reduces the number of random
page accesses and significantly improves the range query and Tetris performance of the
prototype implementation on TransBase. However, a larger cache requirement is the price for
this implementation. The upper nodes of both the UB-Tree index table and the UB-Tree
secondary index table need to be cached in main memory (see Figure 5-2a). In contrast to that
the Oracle implementation just caches the UB-Tree index table (see Figure 5-2b). This is the
reason for performance gain of 12% of our prototype implementation on Oracle for tables
larger than one 1GB [Pie98].

...

cache cache

(a) with UB-Tree secondary index table

...

cache

(b) without secondary index table

UB-Tree secondary index table UB-Tree index table UB-Tree index table

Figure 5-2: Cache requirements and UB-Tree secondary index table

In the remainder of this chapter we illustrate selected algorithmic problems and performance
problems which we had to solve in order to realize our prototype.

5.3 Implementing the Address Calculation

The address calculation algorithm first relied solely on bit-interleaving and supported only
positive integer numbers. Later the architecture was enhanced to allow plug-in functions for
any arbitrary data type. Since certain data distributions cause a multidimensional partitioning
with a high puff pastry degree and thus a bad performance of the UB-Tree algorithms, the
address calculation was enhanced to take any data distribution into account. Another
enhancement envisioned by the author is to modify bit interleaving to weigh attributes for the
interleaving process.

SECTION 5.3: IMPLEMENTING THE ADDRESS CALCULATION 103

5.3.1 Bit-Interleaving

The performance of the UB-Tree crucially relies on an efficient implementation of the Z-
address calculation. For tuples of positive integer numbers Definition 3-3 immediately yields
an algorithm to calculate the standard address from the binary representation of a tuple: Z-
values can be calculated by interleaving the bits of the attributes in a certain order.

In practical applications one often wants to index a multidimensional domain, where the
cardinality is not identical for all one-dimensional domains. Only a slight modification of the
interleave operation is necessary to support a universe where the domain of each dimension
does not consist of the same number of bits steps(r), i.e., there is some i, j ∈ D so that ri ≠ rj.
In this case the number of bits is not identical for each step of an address, but step k consists
of steplength(k) bits. Algorithm 5-1 shows this generalized algorithm for bit-interleaving.

Input: x : tuple
Output: Z-address α

// the algorithm requires the dimensions to be
// sorted according to their resolution
// in descending order

for step = 1 to max({steps(r
j
) | j ∈ D})

for i = 1 to steplength(step)
copy bit step of x

i
 to bit i of α

step

end for
end for

Algorithm 5-1: Bit-interleaving to calculate α = Z(x)

With r = max({steps(rj) | j ∈ D}) Algorithm 5-1 has a CPU-complexity of O(d⋅r) bit
operations (resp. ()∑ =

d
i irO 1 for attributes of different length). The same holds for Algorithm 5-2

to calculate the Cartesian coordinates of a tuple from its address.

 Input: α : Z-address
 Output: x : tuple

 // the algorithm requires the dimensions to be
 // sorted according to their resolution
 // in descending order

 for step = 1 to max({steps(r
j
) | j ∈ D})

for i = 1 to steplength(step)
copy bit i of α

step
 to bit step of x

i

end for
 end for

Algorithm 5-2: Bit extraction to calculate x = Z-1(α)

104 CHAPTER 5: PROTOTYPE IMPLEMENTATION

Algorithm 5-3 to extract one specific Cartesian co-ordinate from a Z-address has the CPU-
complexity O(ri).

 Input: α : Z-address
 i : number of attribute to extract
 Output: x

i
: attribute i of tuple x

 // the algorithm requires the dimensions to be
 // sorted according to their resolution
 // in descending order

 for step = 1 to r
j

copy bit i of α
step

 to bit step of x
i

end for

Algorithm 5-3: Bit-extraction to calculate xi = (Z-1(α))i

As one can see from the above algorithms, the calculation of Z(x) and Z-1(x) can be
implemented efficiently by simple bit operations. The linear behavior of the bit interleaving
performance for tuples consisting of 32 bit integers for 2 up to 10 dimensions on a SUN
ULTRA SPARC 143 MHz is displayed in Figure 5-3. The Figure shows that Z-address
calculation takes less than 1ms even for 10-dimennsional Z-addresses. Thus Z-address
calculation is more than one order of magnitude faster than a random disk access, which
usually takes 10ms. Using state-of-the-art CPUs with 300 MHz and more, the Z-address
calculation is more than 100 times faster than a random disk access and thus is negligible.

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12
number of dimensions

tim
e

in
 µ

s

Z(x) Z -1(α)

Figure 5-3: CPU time to calculate Z(x) and Z-1(α)

SECTION 5.3: IMPLEMENTING THE ADDRESS CALCULATION 105

5.3.2 Address Calculation for Arbitrary Data Types

We described bit-interleaving for address calculation just for positive integer numbers.
Algorithm 5-1 can be used to calculate the Z-address for any data type, when the bit-
lexicographic order on the binary representation of tuples matches the “natural” ordering on
this type.

Definition 5-1 (lexicographic character order C1 Cn, lexicographic byte order B1 Bn,
lexicographic bit order b1 ... bn): For the following examples we writeC1 Cn for
the lexicographic order on the character concatenation C1 ... Cn, B1 Bn for the
lexicographic order on the byte concatenation B1 ... Bn and b1 ... bn for the
lexicographic order on the bit concatenation b1 ... bn.

Lemma 5-1: For positive integer numbers with a fixed length binary representation the bit
lexicographic order on the binary representation is identical to the <-order on integer
numbers.

Proof:
The proof is a direct consequence of the definition of binary numbers and of the definition of
lexicographic order.

Example 5-1:

6510 < 6610 maps to the binary representation
010000012 b1 ... b8 010000102

Lemma 5-2: For character strings the bit lexicographic order on the binary representation is
identical to the <-order on integer numbers.

Proof:
The proof is a direct consequence of Lemma 5-1, the definition of ASCII codes and the fact,
that character strings are a concatenation of characters, which are ordered lexicographically.

Example 5-2:

“AB” C1 Cn “BB”
maps to the ASCII-Codes
6510 6610 B1 B2 6610 6610

maps to the binary representation
010000012 010000102 b1 ... b16 010000102 010000102

Because of Lemma 5-1 and Lemma 5-2 bit interleaving can be used to calculate the addresses
for character strings and positive integer numbers.

If for a data type the bit-lexicographic order on the binary representation of tuples does not
match the “natural” ordering on this data type, a transformation function with that desired
property must be defined. For address calculation this transformation function is applied on

106 CHAPTER 5: PROTOTYPE IMPLEMENTATION

the attribute prior to bit interleaving. Transformation is bijective. For Cartesian co-ordinates
the inverse function to the transformation function is applied after bit extraction. Figure 5-4
shows the architecture for the address calculation for arbitrary data types.

transformation

bit interleaving

transformation...

(x1, ..., xd)

α

re-transformation

bit extraction

re-transformation...

(x1, ..., xd)

α

(a) address calculation (b) Cartesian calculation

data type data type data type data type

tuple

address

x1
T xd

Tx1
Tbit string xd

T...

Figure 5-4: Dealing with arbitrary data types

It is out of the scope of this thesis to analyze transformation functions for further data types.
We just give a definition of transformation functions here:

Definition 5-2 (transformation function): We call a function f from any ordered domain (,
<) to a binary string a transformation function , if and only if, for a, b ∈ :

a < b ⇔ f(a) b1 ... bn f(b)

For positive integers and character strings the transformation function is the identity function.
For integer numbers in complement representation the simplest transformation function is to
invert the sign bit. Transformation functions for real numbers and date/time data types were
implemented under the supervision of the author and are described in the MISTRAL
documentation [MOD99]. Note that in order to do any algorithm from the previous chapter
like the Tetris algorithm, the spiral algorithm, or the range query algorithm we do neither
require a transformation function to be bijective nor injective. However, if a transformation
function is bijective, re-transformation to derive Cartesian tuples from an address is
possible.14

5.3.3 Dealing with low Cardinality Domains: Enumeration Types

Character strings very often have a similar prefix in the first bits. All capital letters of the
roman alphabet in ASCII have an identical binary prefix 0102, all numbers have a constant

14 Note that because of their binary nature, transformation functions are hardware dependent. One specific
problem of our implementation was to deal with little/big endian representation [PH90] of machine words and
binary strings in various microprocessors.

SECTION 5.3: IMPLEMENTING THE ADDRESS CALCULATION 107

binary prefix of 00112. Thus combining character strings and integer numbers easily results in
a strong puff-pastry of the UB-Tree.

Many applications use the domain of character strings merely to represent an enumeration
type, i.e., a domain consisting of a small set of distinct values. A typical example is the
SHIPMODE attribute of the LINEITEM table of the TPC-D benchmark. SHIPMODE has the
domain of character strings, although the set {REG AIR, AIR, RAIL, SHIP, TRUCK, MAIL,
FOB} represents all permissible values for SHIPMODE. There is no order on the values of
SHIPDMODE. For instance, it makes no sense to ask for all tuples satisfying the textual
comparison SHIPMODE < “AIR”.

Definition 5-3 (enumeration type): We call the data type of an attribute to be an
enumeration type, if its actual domain ⊆ consists of a relatively small finite set of
values, usually listed explicitly.

In order to maximize the entropy of an enumeration type of a domain we define an order
preserving one-to-one map f and its inverse function f -1:

f : → {0, 1, ..., | | - 1}, such that for a, b ∈ : ƒ(a) < ƒ(b) a < b

If there is no reasonable ordering on an enumeration type, we drop the requirement on f to be
order preserving and merely require:

f : → {0, 1, ..., | | - 1}, f injective

We call f a surrogate function for an enumeration type. For each value a ∈ we call f(a) the
surrogate of a. For a very compact representation we number surrogates in sequential order.

0 = 0002 = f(REG AIR) 0 = 0002 = g(REG AIR)
1 = 0012 = f(AIR) 4 = 1002 = g(AIR)
2 = 0102 = f(RAIL) 2 = 0102 = g(RAIL)
3 = 0112 = f(SHIP) 6 = 1102 = g(SHIP)
4 = 1002 = f(TRUCK) 3 = 0112 = g(TRUCK)
5 = 1012 = f(MAIL) 7 = 1112 = g(MAIL)
6 = 1102 = f(FOB) 5 = 1012 = g(FOB)

Table 5-3: Two surrogate mappings for an enumeration type

The surrogate mapping f of Table 5-3 for the enumeration type SHIPMODE uses running
numbers from 0 to 6. The function g defines a mapping which is more suitable than the
mapping f with respect to the space partitioning of UB-Trees: If the order of values from top
to bottom in Table 5-3 represents the insertion order of SHIPMODE values, even for an actual
domain consisting only of the first four values a puff pastry as discussed in Section 3.10 is
avoided. This is not true for the mapping f since the first four values have the leading bit as

108 CHAPTER 5: PROTOTYPE IMPLEMENTATION

common prefix. Thus if an enumeration type is built on the fly (i.e., its actual domain may
grow during the course of time), a surrogate function should vary the leading bits first, since
these bits will be used for space partitioning. Using running numbers for the surrogate of an
enumeration type may result in a sub-optimal space partitioning, since the leading bit might
not be used (see Section 3.10). If running numbers are used and the binary representation of
each surrogate is reverted with the function mirror(b1...bn) = bn...b1, the leading bit of the
surrogate will already partition the domain. However, since the natural order on integers is
lost by mirroring, this mapping should not be used, if an enumeration type is not only
restricted to points, but also to ranges.

To store an enumeration type in a UB-Tree, we map the enumerated set bijectively onto a set
of surrogates. For v distinct values in the enumeration, only log2v bits are used to represent
the enumerated set. Since all of these bits are used, a puff pastry is avoided to a large extent.
Thus the number of Z-regions overlapping the query box but not contributing to the result set
is minimized by that mapping.

Note that if the values are not uniformly distributed, a puff pastry effect will still exist.
However, the degree of the puff pastry will be much lower than for the character string
representation. If an enumeration is not required to be order preserving, mirroring the bits of a
surrogate may help to further reduce probability of a puff pastry.

5.3.4 Multidimensional Hierarchical Clustering

Often, especially in data warehousing applications, hierarchies are built on enumeration types
to provide structure to otherwise flat dimensions. Hierarchies then are used to provide an
appropriate method of describing the levels of semantically meaningful aggregations for a
dimension. With a relational modeling this means that some attributes of a table are
functionally dependent. We call this special kind of functional dependence hierarchical
dependence.

Definition 5-4 (hierarchical dependence): We call an ordered sequence of n attributes
A1 A2 A3 ... An-1 An to be hierarchically dependent, if and only if for any i ∈
{1, ..., n} the domain of attribute Ai functionally depends on the values of attributes
A1,...,Ai-1

Definition 5-5 (hierarchical independence): We call a sequence of attributes A1 | A2 | A3 | ... |
An-1 | An to be hierarchically independent, if they are not hierarchically dependent.

OLAP queries often impose restrictions with respect to hierarchies over multiple dimensions.
These restrictions usually are point restrictions or interval restrictions on some hierarchy level
[Sar97]. The result set satisfying these restrictions is usually quite large; for presentation it is
grouped and aggregated or ranked. Clustering data with respect to multiple hierarchies can
substantially speed up these operations.

SECTION 5.3: IMPLEMENTING THE ADDRESS CALCULATION 109

0

1

2

5.3.4.1 Hierarchies on Dimensions

For our definition of multidimensional hierarchical clustering we use a set concept to formally
define hierarchies: A dimension A consists of a base type having a set of values ={v1,...,vn}.
A hierarchy of depth h over A is an ordered set of levels, i.e., H={ 0 ,..., h} (see Figure 5-5).
Each hierarchy level i of H over A is a set of sets i = { im1 , ..., i

jm } with i
km ⊆ for k=1,..,j.

Each m ∈ i is a member set (or member) of the hierarchy of level i containing all members
of a category. Usually a member m is assigned a name label(m) (e.g., ‘Orange Juice’ for 1

1m)
instead of enumerating all values vk ∈ m. The subset relationship ⊆ between the members of
two neighboring levels i and i+1 defines a hierarchical relation (i.e., partial ordering)
between the levels (e.g., the product ‘OJ0,7L’ is in the product category ‘Orange Juice’).
Increasing the level of a hierarchy increases the granularity of the categorization, i.e., the data
is classified according to finer categories.

1L} Juice Apple 0,5L; Juice Apple 1L; OJ 0,7L; OJ 0,33L; {OJ0
1 =m

1L} OJ 0,7L; OJ 0,33L; {OJ1
1 =m

0,5L} Juice {Apple2
4 =m

1L} Juice Apple 0,5L; Juice Apple {1
2 =m

0,33L} {OJ2
1 =m 0,7L} {OJ2

2 =m 1L} OJ {2
3 =m 1L} Juice {Apple2

5 =m

Orange Juice Apple Juice

0,33L 0,7L 1L0,5L1L

Product Category

Container Size

All Products

All

0 1

110 02

Level Label Member Ordinal (e.g., 1) Member Label (e.g., 0,7L)Legend:

Figure 5-5: Example hierarchy in member set representation

The nodes of H are the hierarchy members (or member labels) connected by edges which are
defined by the subset relationship between members of neighboring levels. The children of a
member i

km of level i are all members 1+i
lm of the lower level i+1 that are subsets of ikm , i.e.,

children(i
km)={ 1+i

lm ∈ i+1 | 1+i
lm ⊆ i

km } (e.g., the set {{‘Apple Juice 0,5L’},{ ‘Apple Juice
1L’}} is the children set of ‘Apple Juice’).

With

(1) the base set as the only member of level 0 (i.e., 0 = { })

(2) i
km ∩ i

lm = ∅ for all i, k, l and k ≠ l

(3) i
k

i
k mm =U)children(for all i, k

a hierarchy H builds a hierarchy tree15 with the root level 0. The parent of a member i
km of

level i then is the member 1−i
lm of the upper level i-1 that is a superset of i

km , i.e.,
parent(i

km)={ 1−i
lm ∈ i-1 | 1−i

lm ⊇ i
km } (e.g. ‘Orange Juice’ is the parent of ‘OJ 0,7L’).

15 We will explain how to deal with complex hierarchies (i.e., directed acyclic graphs) in Section 5.3.4.4.
Formally these hierarchies are modeled by dropping the requirement on H to be an ordered set of levels.
Neighboring levels are then defined by coarsest refinement.

110 CHAPTER 5: PROTOTYPE IMPLEMENTATION

The bijective function ordm defines a numbering scheme for the children of a member m of H.
Ordm assigns each subset (child) of m a number between 0 and the total number of children of
m i.e.,

}1|)(|,...,0{)(: −→ mchildrenmchildrenordm

(see Figure 5-5 for an example).

Hierarchies should never relate members of different dimensions, since dimensions are
independent and thus such a hierarchy could be split up in two separate hierarchies (see
Section 5.3.4.4).

5.3.4.2 Clustering Hierarchies

For each dimension hierarchy OLAP queries usually restrict some hierarchy level to a point.
Sometimes an ordering on the levels of a hierarchy exists (e.g., a time hierarchy has an order
on the days, months and years). Then interval restrictions on a hierarchy level may also occur.
Our goal is to cluster data with respect to that partial order defined by the hierarchy levels.

For queries with large result sets one-dimensional clustering reduces disk accesses by a factor
of P. Clustering of one-dimensional objects and single object hierarchies has been discussed
to a large extent (e.g., [ZSL98], [BK89], [Sal88]).

If the order of dimensions during drill down is known in advance, clustering the data in this
order will result in a good query performance. In principle, a concatenated clustering index
(i.e., B*-Tree) on the hierarchy levels of all dimensions in one lexicographic order is main-
tained. However, with d dimensions with hi hierarchy levels over dimension i, there are

)!()!(11 i
d
ii

d
i hh == ΠΣ possible lexicographic orderings. For a 4-dimensional data cube (with 4

hierarchy levels for dimension 1, 4 for dimension 2, 2 for dimension 3 and 2 for dimension 4)
there are 207900 possible orderings. Thus there is a high probability that the pre-defined
clustering order will not be very useful for a particular query.

5.3.4.3 Encoding Hierarchies by Surrogates

To efficiently encode hierarchies, we introduce the concept of compound surrogates for
hierarchies. Since we require hierarchies to form a disjoint partitioning, a uniquely identifying
compound surrogate for each child node of a hierarchy member exists and can be recursively
calculated by concatenating () the compound surrogate of the member with the running
number of the child node as calculated by the surrogate function ord from Section 5.3.4.1.

Definition 5-6 (compound surrogate): For a member mi of hierarchy level i of hierarchy H
we define its compound surrogate:

() otherwise ,

1 if ,

)()father(,

)(
),(

)(

)(=







=
i

mordmHcs

mord

mHcs
i

mfather

i

i

mfather
i

i

i

o

SECTION 5.3: IMPLEMENTING THE ADDRESS CALCULATION 111

Definition 5-7 (path through a hierarchy): A path Φ through a hierarchy of depth h is
specified by a list of members m1, ..., mh, where mi is a member of hierarchy level i.

The compound surrogate for a hierarchy path Φ then is calculated as:

)(...)()(),cs(),(
)(

2

)(

1

)(21
h

mfathermfathermfather

h mordmordmordmHHcs hooo==Φ

0

CUSTOMER

South Europe North America Asia

RetailWholesale Kana´s Sushi Bar

Joe‘s Sports Bar

... ...

Bar

4 6

2

1

10

RetailUSACanada 10

... ...

... ...

... ...

Figure 5-6: Part of a hierarchy

The hierarchy path North America È USA È Retail È Bar (Figure 5-6) has the compound
surrogate:

ordCustomer (North America) ordNorth America (USA) ordUSA(Retail) ordRetail(Bar) =

4 1 1 2

The upper limit of the domain for surrogates of level i is calculated as the maximum fan-out
(number of children) minus one of all members of level i–1 of a hierarchy H, i.e.,

surrogates(H, i) = max {cardinality(children(H, m)) where m ∈ level(H, i - 1)} - 1

With li = log2 surrogates(H, i) a fixed length compound surrogate can be stored in a very
compact way by binary encoding.16

1211
21

...

)(

2

)(

1

)(
2)(...2)()(),cs(),(−+++⋅++⋅+==Φ n

h

lllh

mfather

l

mfathermfather

h mordmordmordmHHcs

With n = 4 and l1 = 3, l2 = 1, l3 = 3 and l4 = 3 the above formula leads to the compound
surrogate cs(H, Bar) = 10000110102 = 538.

Usually growth expectations for a hierarchy are known well in advance. Often hierarchy trees
are even static. Therefore it is possible to determine a reasonable number of bits for storing
each surrogate of the compound surrogate of a hierarchy. Since hierarchy trees grow
exponentially, the overall number of bits necessary to store a compound surrogate is relatively
small. For instance, a hierarchy tree with four branches on 8 levels already represents 48 =
65536 partitions and is stored by 16 bits.

16 In general we use variable length compound surrogates that need li(m) = log2 |children(m)| bits to store the
surrogate for any child of m.

112 CHAPTER 5: PROTOTYPE IMPLEMENTATION

The lexicographic order on the hierarchy levels is preserved by this very compact fixed length
encoding. Point restrictions on upper hierarchy levels result in range restrictions on the finest
granularity of a hierarchy. For instance, the point restriction NATION = “USA” on the second
level of the CUSTOMER hierarchy with f(“North America”) = 4 = 1002 and f(“USA”) = 1 =
0012 maps to the range restriction cscustomer between 528 = 10000100002 and 543 =
10000111112. Thus, a star join with this surrogate encoding for the foreign keys of a fact table
results in a range restriction on each compound surrogate, if some hierarchy level of each
dimension is restricted to a point (e.g., customer region = “USA”). In the same way intervals
on the children of one hierarchy level result in a range of the corresponding compound
surrogates (e.g., year = 1998 and month between April and June). A star join on a schema
with d dimensions creates a d-dimensional interval restriction on the fact table.

5.3.4.4 Dealing with Complex Hierarchy Graphs

If two levels of a hierarchy graph are linked by several paths, there are several possibilities to
define a hierarchy tree and therefore several ways to calculate the compound surrogates for
physical clustering:

• If the order on the lowest level of granularity is identical for two hierarchy paths, then one
path can be derived from the other path by an order preserving function on the lowest
level of granularity. Then the clustering order for both hierarchy paths is identical. Thus,
the clustering order for WEEK and MONTH in Figure 5-7a is identical. Both can be
computed by an order preserving function from DAY, the lowest granularity level of the
TIME hierarchy.

• If the query profile is known, the most useful path of the hierarchy graph used for
restrictions, sort operations, or grouping should be chosen. Thus, if in Figure 5-7b queries
on CUSTOMER usually restrict REGION and NATION, this path should be chosen for
clustering.

• If the query profile is not known, all paths of a hierarchy graph may be used for clus-
tering, since hierarchies may be used for restrictions independently during drill-down. For
clustering, the different paths then can be considered to be independent dimensions. In the
hierarchy graph of Figure 5-7b both the REGION hierarchy and the CUSTOMER
hierarchy might be used for clustering. However, this approach increases the clustering
dimensionality and thus should be used with care.

(a) (b)

YEAR

MONTH WEEK

DAY

REGION

NATION

TRADE TYPE

CUSTOMER TYPE

CUSTOMER SIZE

CUSTOMER

Figure 5-7: Complex hierarchy graphs

SECTION 5.3: IMPLEMENTING THE ADDRESS CALCULATION 113

Other issues in the context of complex hierarchies are unbalanced hierarchies, slowly
changing dimensions and multiple inheritance. Unbalanced hierarchies occur, if some
hierarchy members have more child levels than others. This means, that the compound
surrogates of Joe’s Sports Bar and Kana’s Sushi Bar in Figure 5-6 have different lengths.
Using variable length compound surrogates or padding the shorter compound surrogate with
zero bits solves this problem without any impact on clustering.

CUSTOMER

South Europe North America Asia

USACanada

Retail Wholesale

Bar Restaurant

Joe‘s Sports Bar

Year <= 1997 Year > 1997

Figure 5-8: Slowly changing dimensions

Slowly changing dimensions can be addressed by marking each node of a hierarchy tree with
a validity time interval. An object is physically clustered and retrieved with respect to its
validity time. Re-organization of the physical clustering is not necessary: Even with a new
classification upon a certain point of time the existing clustering should be correct from a
historic perspective. If the business type of Joe’s Sports Bar changes from bar to restaurant in
1998 (cf. Figure 5-8), all previously clustered data still is correct. The total sales over all bars
in 1997 must include Joe’s Sports Bar, whereas it is included in restaurants for 1998.
However, each object of a hierarchy needs information about re-classification in order to
correctly calculate the total sales to Joe’s Sports Bar over the last years.

Multiple inheritance (e.g., Joe’s Sports Bar is considered to be both a bar and a restaurant at
the same time) is solved similarly to slowly changing dimensions: One of the several possible
paths to a hierarchy node is chosen for clustering. The other paths of a hierarchy graph to that
object then merely store a pointer to the sub-tree that actually stores the object. If multiple
aggregation paths are possible, precautions must be taken that only one of these paths is used
for aggregation.

5.3.4.5 Addressing Sparsity

Sparsity is defined as the percentage of a domain that is not existent in the actual domain. In
data warehousing applications the multidimensional universe is often called data cube. For a
multidimensional universe, i.e., data cube, sparsity is the ratio between the number of cells
not containing any data and the overall number of cells of a data cube. Some OLAP tools
allows one to mark dimensions to be sparsely populated and then specially handle them.

114 CHAPTER 5: PROTOTYPE IMPLEMENTATION

However, a multidimensional cube is formed as the cross product over the domains of all
dimensions. Therefore, even for non-sparse dimensions the sparsity of the entire cube
becomes extremely high soon. The ‘Juice & More’ schema of Section 8.3, for instance, is a
star schema with four independent dimensions with a sparsity of 99,8%:

∏ =

−==
⋅⋅⋅

−=
d

i
i

1
 Table Dim

TableFact
 1)schemastar sparsity(with 9984,0

123656007030

Mio 26
 1)More & Juicesparsity(

To our knowledge sparsities of more than 99% are typical for data warehousing applications.
The TPC-D schema (see Figure 2-2), for instance, can be regarded to be a snowflake schema
with shared hierarchies consisting of three independent dimensions:

• part + supplier (combined dimension with 0.8 million records coming from 0.2 million
parts from 10 thousand suppliers)

• customer + order (combined dimension with 1.5 million orders from 150 thousand
customers)

• time (2557 records for seven years on the aggregation level of a single day)

For a fact table of 6 million records (a TPC-D scaling factor of 1) the resulting data cube has a
sparsity of more than 99,99999%.

Thus, in practice sparsity forbids to materialize an entire data cube of raw data. Physical data
organization in a multidimensional array is only feasible for highly aggregated data. However,
serious decision support applications require a deep drill down into interesting areas of a data
cube. Therefore it is necessary to have a physical representation of a sparsely populated data
cube that allows efficient access to some part of that cube. With multidimensional hierarchical
clustering, drill down defines a subspace of a data cube by range restrictions in several
dimensions. Therefore a method to cluster sparse data with respect to several dimensions in
combination with an efficient range query and sort algorithm are necessary for efficient
handling of drill down queries.

The surrogate calculating function of Section 5.3.4.3 can use any multidimensional access
method to implement multidimensional hierarchical clustering. However, using any variant of
R-Trees [Gut84, BKS+90, BKK96] may result in a sub-optimal performance, since R-Trees
may subdivide the universe into overlapping tiles, which may result in multiple accesses to
one disk page. Therefore the most interesting candidates are Grid-Files [NHS84], hB-Trees
[LS90], or space filling curves in combination with one-dimensional access methods [OM84,
Jag90]. It is very well suitable for the UB-Tree, since the UB-Tree hierarchically organizes
the data space. The hierarchy is directly reflected by the binary representation of the
compound surrogates. Thus bit-interleaving as used by the UB-Tree causes a
multidimensional partitioning whose boundaries directly reflect the hierarchy levels. Partial
match queries with point restrictions on upper hierarchy levels then result in multidimensional
range queries.

SECTION 5.3: IMPLEMENTING THE ADDRESS CALCULATION 115

5.3.4.6 Processing OLAP Queries on Multidimensionally Clustered Data with the

Tetris-Algorithm

Figure 5-9 illustrates how the Tetris algorithm is used to calculate the total sales for each
different fruit juice for all customers in Asia on relation partitioned by a two-dimensional UB-
Tree and hierarchies on the CUSTOMER and PRODUCT dimensions. The restriction of the
REGION to ‘Asia’ results in an interval in the CUSTOMER dimension. The same holds for
the restriction to ‘Juice’ for PRODUCT. The boundaries of each query interval correspond to
Z-region boundaries and thus minimize the number of Z-regions only partly contained in the
query box. The query box is read in sort order from bottom to top; the aggregates for each
juice type are calculated on the fly. The part of each Z-region from which tuples are cached is
shaded. When all Z-regions intersecting the ‘Orange Juice’ slice have been read, this slice is
sorted and aggregated. In the same way the next slices (‘Apple Juice’, ‘Cherry Juice’, etc.) are
processed. This continues until the entire product interval defined by the restriction to ‘Juice’
has been handled.

Orange

Juice

Asia

Apple

Juice

Asia

Figure 5-9: Processing a query box in sort order with the Tetris algorithm

5.3.4.7 Materializing Aggregates

Multidimensional hierarchical clustering is not only applicable to the raw data itself, but can
also be used to organize views with materialized aggregates. Higher aggregation levels result
in a UB-Tree with shorter compound surrogates or reduced dimensionality. It makes sense to
store pre-computed aggregates for the highest aggregation levels with restrictions in only one
dimension, e.g., the total sales on a yearly basis. However, multidimensional hierarchical
clustering allows one to derive many aggregates efficiently from the raw data. This avoids
materialization of many aggregation levels and thereby reduces the view maintenance
problem for summary tables to a large extent.

116 CHAPTER 5: PROTOTYPE IMPLEMENTATION

5.3.5 Dealing with non-uniformly distributed Data with Quantiles

In Section 3.10 we identified the puff pastry effect as a severe problem of UB-Trees for
certain data distributions. The problem is due to the fact that UB-addresses are always
calculated by splitting an attribute in the center of a subcube. The space partitioning can be
improved considerably by taking the actual domain of each attribute into account. More
precisely, if the attribute is not split in the middle of the domain, but in the middle of the data
distribution, the space partitioning is greatly improved with respect to spatial proximity. This
basically means that α-quantiles (i.e., the value of a domain where the cumulated data
distribution exceeds α, see e.g., [Zwi96]) are used to identify the Cartesian coordinate of each
subdivision point α. Quantiles were previously used in combination with hashing techniques
[KS87]. The variable UB-Tree is an approach which combines quantiles with UB-Trees.

5.3.5.1 The Variable UB-Tree

Definition 5-8 (variable UB-Tree, VUB-Tree): A variable UB-Tree (VUB-Tree) is a UB-
Tree, whose addresses are calculated by subdividing each dimension with respect to
the quantiles according to the data distribution of this dimension.

VUB-Trees recursively subdivide the embedding space with respect to the data distribution.
Thus for each dimension the first subdivision step compares each attribute value to the value
for which the cumulated data distribution of this dimension exceeds 50% (50%-quantile).
Accordingly, the two values for the second subdivision step are the values, where the
cumulated distribution exceeds 25% and 75% respectively (25%-quantile, 75%-quantile).
Consequently, we will call these subdivision points split points. Note that for uniformly
distributed data the split points of a VUB-Tree are identical to those of a UB-Tree.

VUB-Trees therefore use a transformation function to re-distribute the values of a domain.
The resulting bit strings are equally distributed. This means, that with variable UB-Trees the
behavior of UB-Trees for uniformly distributed data is achieved for any data set which is
distributed independently in the dimensions.

Figure 5-10 illustrates how the split points for various data distributions are derived. The thick
line at 50% of the cumulated distribution calculates the split point for step 1, the two thinner
lines at 25% and 75% calculate the split points for step 2, and the even thinner lines at 12.5%,
37.5%, 62.5% and 87.5% calculate the split points for step 3. Figure 5-10a displays
polynomially distributed data. Some skewed data distribution is shown in Figure 5-10b.
Figure 5-10c shows uniformly distributed data, which results in recursively halving the
domain and thus yields the split points of non-variable UB-Trees.

The address calculation algorithm of VUB-Trees is just a slight modification of the UB-Tree
address calculation. Values are now compared to split points instead of fixed subdivision
points. Thus VUB-Trees use a special transformation function that calculates the bit string of
an attribute with respect to the data distribution. The conventional bit interleaving algorithm is
then used to calculate the addresses of the VUB-Tree.

SECTION 5.3: IMPLEMENTING THE ADDRESS CALCULATION 117

0%

25%

50%

75%

100%

0 100 200 300 400 500 600 700 800 900 1000

attribute value

cu
m

u
la

te
d

 d
is

tr
ib

u
ti

o
n

 in
 %

0%

25%

50%

75%

100%

0 100 200 300 400 500 600 700 800 900 1000 1100

attribute value

cu
m

u
la

te
d

 d
is

tr
ib

u
ti

o
n

 in
 %

0%

25%

50%

75%

100%

0 100 200 300 400 500 600 700 800 900 1000

attribute value

cu
m

u
la

te
d

 d
is

tr
ib

u
ti

o
n

 in
 %

(a)

(b)

(c)

Figure 5-10: Calculation of split points for various data distributions

118 CHAPTER 5: PROTOTYPE IMPLEMENTATION

VUB-Trees yield a better space partitioning for non-uniformly distributed data. The
transformation function performs a re-distribution of data. Uniformly distributed attribute bit
strings are created from the data of any data distribution. Thus common prefixes do not exist
for any attribute bit string. This avoids the puff pastry effect described in Section 3.10.

(a) (b) (c)

Figure 5-11: UB-Tree and VUB-Tree for Gaussian/uniform data distribution

Figure 5-11a shows data which is distributed uniformly in the vertical dimension and
Gaussian in the horizontal dimension. The corresponding UB-Tree in Figure 5-11b shows a
strong puff pastry, since the split points in the center of the space are not useful for the
horizontal dimension. In contrast to that the VUB-Tree in Figure 5-11c shows an equal
number of splits in both dimensions.

(a) (b) (c)

Figure 5-12: UB-Tree and VUB-Tree for Gaussian data distribution

Figure 5-12a shows data which is Gaussian distributed in both dimensions. Again the
corresponding UB-Tree (Figure 5-12b) yields a puff pastry, which in this case is not so strong
as in Figure 5-11b, since both dimensions have common prefixes. Since these prefixes do not
have identical length, the VUB-Tree (Figure 5-12c) again yields a better partitioning than the
UB-Tree.

SECTION 5.3: IMPLEMENTING THE ADDRESS CALCULATION 119

(a) (b) (c)

Figure 5-13: UB-Tree and VUB-Tree for centered Gaussian data distribution

Figure 5-13a shows data with Gaussian distribution in both dimensions. Here the average and
the standard deviation are identical for both dimensions. Therefore the partitioning does not
yield a puff pastry (Figure 5-13b). However, variable UB-Trees produce a different space
partitioning (Figure 5-13c). Figure 5-12 and Figure 5-13 show that for both UB-Trees and
VUB-Trees the location of the data distribution does not matter, if the prefixes in all
dimensions are identical (see also Section 3.10).

5.3.5.2 Split Point Trees

Definition 5-9 (split point tree): A split point tree is a binary tree that stores the split point
hierarchy. The root of the tree consists of the values where the cumulated distribution
of each dimension exceeds ½. The left and right son store the values where the
cumulated distributions exceed ¼ respectively ¾ (25%-quantile, 75%-quantile). In
general a split point tree of height h stores 2h split points corresponding to the
cumulated distribution in discrete steps of k ⋅ 2-h for k ∈ {1, ..., 2h-1}.

A split point tree is an efficient way of storing the split points for each independent dimension
of a variable UB-Tree. Assuming a split point tree of height h, a dimension then can
contribute h bits to the VUB-address. The total length of each address then is d*h. Databases
consisting of p = 2d*h pages can be managed with a split point tree of height h. Thus, the

height of the split point tree for each dimension is 



=

d

P
h 2log

, which is quite small

compared to the size of the database. For instance, a split point tree of height 4 for a 6-
dimensional database is sufficient for a database size of up to 224 pages. Table 5-4 lists the
height of a split point tree for databases with 1 million, 10 million and 100 million data pages
for 2 to 10 dimensions.

120 CHAPTER 5: PROTOTYPE IMPLEMENTATION

2d 3d 4d 5d 6d 7d 8d 9d 10d

1 mio. = 200 MB 10 7 5 4 3 3 2 2 2

10 mio. = 2 GB 12 8 6 5 4 3 3 3 2

100 mio. = 20 GB 13 9 7 5 4 4 3 3 3

Table 5-4: Heights of a Split Point Tree for various Database Sizes and Dimensions

5.3.5.3 Implementation of Variable UB-Trees

To implement variable UB-Trees, only the transformation function of the address calculation
algorithm needs to be modified. A split point tree is used to determine the bit string of an
attribute. Each decision in the split point tree decides to which part of the data distribution a
point belongs.

VUB-Trees were implemented by Michael Bauer in a master thesis [Bau98] supervised by the
author. A more detailed description of split point trees and the algorithms involved can be
found there.

Since VUB-Trees just change the attribute transformation, no modifications of other
algorithms like range query, point query, or Tetris, are necessary.

However, VUB-Trees have two major drawbacks:

• The data distribution for each attribute must be known in advance.
• Dimensions must be independent.

Split point trees require the data distribution to be known in advance. This is possible, if
statistics on the data are available or expectations on the data exist. For OLAP data another
efficient method is to use a bulk loading tool. A VUB-Tree can be built by two passes over
the data. The first pass gathers the statistics and the second pass calculates the addresses for
each tuple. If the data distribution changes, the entire VUB-Tree needs to be re-organized.
Otherwise the VUB-address space might be exhausted, which causes the multidimensional
clustering to be no longer useful, since many tuples will be addressed by the same address.

The dimensions of a VUB-Tree must be independent. For certain dependencies like the sine
dependency the VUB-Tree cannot avoid the puff-pastry effect or run into problems with the
height of the split point tree (see [Bau98]).

SECTION 5.4: IMPLEMENTING THE INSERTION ALGORITHM 121

5.4 Implementing the Insertion Algorithm

The complexity of the insertion algorithm is logarithmic in the table size and relies essentially
on the implementation of the point query algorithm. Since the implementation of the point
query algorithm is discussed in Section 4.3, we focus on the Z-region split algorithm here.

Figure 5-14a shows that a Z-region partitioning usually does not subdivide a
multidimensional space into rectangular Z-regions, but usually consists of Z-regions which
are a union of several rectangular subcubes. We say that such a region has fringes. Thus
fringes are a union of small subcubes which in addition to the largest subcube belong to one
region.

Fringes cannot be avoided in general, since the Z-region partitioning adapts to the data
distribution as shown in sections 3.7 and 3.8. However, it is desirable to minimize fringes,
since a small fringe might cause a Z-region to overlap a query box. This Z-region then must
be retrieved by the range query algorithm, although probably no points or only very few
points on the Z-region are located in the query box.

A Z-region is split due to an overflow of the corresponding page. The Z-region split then
creates two Z-regions from the Z-region being split. Minimizing fringes thus can be achieved
by trying to create rectangular regions during the split. This may be achieved by giving this
algorithm some more flexibility. The split algorithm consists of two parts:

• choose two points on the page not exactly in the middle, but close around the middle (ε-
split)

• find the split address between two points that yields the “best” rectangular partitioning

The “best” rectangular partitioning of a Z-region [α : β] is calculated by choosing a split
address ξ where as many trailing bits as possible are set to 1. In the following we assume that
a page is an ordered set of tuples {x1,...,xC}. The split algorithm determines the Z-address ξ
with the most trailing bits between the Z-addresses of the tuples x½⋅C-ε⋅C and x½⋅C+ε⋅C.
Depending on ε, fringes are avoided to a large extent. A worst case storage utilization of
50%- ε is guaranteed for each page. For our tests with uniformly distributed data fringes get
reduced to a large extent. With an ε of 5% the partitioning of uniformly distributed data gets
very close to a uniformly idealized partitioning. Identical uniformly distributed data was
spooled into the UB-Trees of Figure 5-14a, b and c. While the UB-Tree of Figure 5-14a only
takes the tuple in the middle of the page into account for a region split, Figure 5-14(b and c)
use an ε of 1% respectively 40%. The picture clearly shows that fringes are minimized with
growing ε at the expense of a reduced storage utilization. As we will see in Section 6.1.5, the
range query performance is also improved by using an ε > 0. Our measurements showed that
an ε of a few percent already has a substantial effect on the range query performance. For a
detailed investigation of the effects of the ε–split please refer to [Sch98].

122 CHAPTER 5: PROTOTYPE IMPLEMENTATION

(a) (b) (c)

Figure 5-14: Splitting Z-regions with ε = 0%, ε = 1% and ε = 40%

5.5 Implementing the Deletion Algorithm

The deletion algorithm works analogously to the deletion algorithm for B-Trees [BM72].
However, when a deletion causes a page underflow and the corresponding page merge causes
an overflow, the subsequent page split utilizes the splitting algorithm of Section 5.4 to create
a “good” space partitioning. See [Sch98] for details.

5.6 Implementing the Point-Query Algorithm

The point query algorithm for a tuple x reads a single Z-region [α : β] and the corresponding
page from a UB-Tree. The region address β is defined as the nearest upper neighbor in the
UB-Tree index table to the Z-address ξ of tuple x. As already mentioned in Section 2.2.4, this
nearest neighbor is found by a single ESQL query. This region address then is used by a
second ESQL query to retrieve the entire data page.

ESQL SELECT MIN(z-address) INTO region_address
FROM UB-Tree_index_table
WHERE z-address ≥ ξ

ESQL SELECT number_of_tuples, data_page_content INTO tuples, page
FROM UB-Tree_index_table
WHERE z-address = region_address

The performance of the first ESQL query heavily relies on the DBMS optimizer. In general
queries with an aggregation function and a restriction are evaluated by first retrieving all
tuples satisfying the restriction and then applying the aggregation function on the retrieved
tuple set. However, if a B*-Tree index on z-address exists, the optimal execution plan for this
statement is different: The combination of the aggregation function MIN() with a ≥-restriction
in the WHERE-clause allows one to determine the result by traversing just one path in the B*-
Tree: A point query with ξ yields the page that stores the region address as the first value
exceeding ξ. However, only the TransBase optimizer created this optimal execution plan.

SECTION 5.7: IMPLEMENTATION OF THE RANGE QUERY ALGORITHM 123

Figure 5-15 shows the access plans of Oracle (a) and TransBase (b) for the SELECT-MIN-
query. Figure 5-15c shows the actual operation that TransBase performs on the UB-Tree
secondary index table in order to find the region address.

UB-Tree index table

MIN(z-address)

σz-address

UB-Tree index table

MIN(σz-address)

(a) (b) (c)

Figure 5-15: Implementation of the point query algorithm

For DB2 and Oracle it was necessary to rewrite the query in the following way:

ESQL DECLARE CURSOR minquery FOR
SELECT z-address from UB-Tree_index_table

WHERE z-address ≥ ξ
ORDER BY z-address

ESQL OPEN CURSOR minquery
ESQL FETCH minquery INTO region_address
ESQL CLOSE CURSOR minquery
ESQL SELECT number_of_tuples, data_page_content INTO tuples, page

FROM UB-Tree_index_table
WHERE z-address = region_address

The ORDER BY clause of the rewritten query forces the optimizer to favor a secondary index
on Z-address over a full table scan. Since Z-addresses are delivered in ascending order by the
query, the first FETCH returns the minimum Z-address. Therefore the rewrite is equivalent to
the original query.

5.7 Implementation of the Range Query Algorithm

The range query algorithm as described in Section 4.5 is exponential in the number of
dimensions. A linear version of this algorithm was developed by the author. In addition the
algorithm was optimized to operate solely on Z-addresses, which saves CPU time for
transformations between Z-addresses and Cartesian tuples. The main function of the range
query algorithm is the function which, for a given Z-region, determines the next Z-region
intersecting the query box. Next to the Z-addresses of start point y and end point z of a query
box Q = [[y, z]] the region address β of a Z-region [α :β] suffices to perform the calculation.

124 CHAPTER 5: PROTOTYPE IMPLEMENTATION

5.7.1 Determining the next Intersection

The crucial task of the range query algorithm is to calculate the next region in Z-order which
intersects the query box Q after a Z-region [α : β] (which intersects the query box) has been
retrieved. This algorithm has been steadily refined in the MISTRAL project during the
evolution of this thesis. While the first version of the algorithm was exponential in the number
of dimensions and required a transformation of Z-addresses into Cartesian co-ordinates for
each iteration, the final version merely requires O(a) bit operations (set bit and clear bit) for
standard Z-addresses consisting of a bits.

The exponential version of the algorithm has been described in Section 4.4. In principle, this
algorithm is divided into two steps:

• determination of the Z-address λ of the last point of the Z-region [α : β] intersecting the
query box

• determination of the Z-address φ of the next Z-region intersecting the query box

Since each subdivision step divides the multidimensional space into 2d subcubes, this
algorithm is exponential in the number of dimensions. In addition, it requires a transformation
of Z-addresses into Cartesian co-ordinates in order to test the intersection of the query box
with the subcube. The overall CPU-complexity (in address transformations, integer
comparisons and bit-operations) of this algorithm is O(a2/d⋅2d).

A linear version of this algorithm can be developed, observing that dimensions are
independent and query boxes are iso-oriented. Thus the intersection can be tested for each
dimension independently. Then, to construct the Z-address φ it is not necessary to traverse 2d

subcubes for each step of φ and to check if that subcube intersects the query box. Instead, it
suffices to test if dimension j intersects the interval [yj, zj]. Thus only d tests are necessary.
However, still necessary is a transformation of the address to Cartesian coordinates for each
test, thus the overall complexity is O(a/d⋅d⋅a/d) = O(a2/d).

The linear algorithm can be further improved into a bit-oriented algorithm by transforming
the co-ordinates y and z into addresses ψ and ζ. Then a transformation of the current Z-
addresses to Cartesian coordinates is not necessary to perform the intersection calculation; the
intersection calculation is solely done on the Z-address representation. (It is possible to
implement an intersection test on Z-addresses, which determines by simple bit operations if a
Z-address is located in a query box defined by two Z-addresses [MOD99]). Each bit of a Z-
address is inspected at most twice by the bit-oriented algorithm in order to determine the first
Z-address of the next Z-region intersecting the query box. Thus the overall complexity of the
algorithm is O(a).

SECTION 5.7: IMPLEMENTATION OF THE RANGE QUERY ALGORITHM 125

Additional details about the implementation of the range query algorithm can be found in the
MISTRAL Source Code Documentation [MOD99]. Several experiments were performed to
evaluate the practicability of the algorithm [Fri97]. The major results of these experiments
were:

• The exponential algorithm is easy to implement; however, it is useful only for up to three
dimensions.

• The linear algorithm is useful for up to 6-dimensional Z-addresses, if the result set size is
sufficiently small. Otherwise the overhead for the Z-address/Cartesian transformation
plays a significant role.

• The bit oriented algorithm is insensitive to the complexity of the tuple transformation.
Therefore UB-Trees using complex tuple transformations in order to create a good space
partitioning (like the surrogate calculation (Section 5.3.3 and 5.3.4) or variable UB-Trees
(Section 5.3.5)) can be built without additional cost on the range query algorithm.

5.7.2 Dealing with Sets of Query Boxes

Retrieving a result set defined by a set of query boxes = {Q1, ..., Qn} is possible by only
accessing each page of the result set once. This is achieved by calculating the first intersection
φi for each Qi as mentioned in Section 5.7.1. These intersections {φ1, ..., φn} are stored in a
heap sorted in Z-order. MIN() then determines the next Z-region [α : β] to be retrieved
by the range-query-set algorithm. Then all φi with φi ≤ β can be updated in by removing
these φi and storing a new φi’ calculated by the algorithm of Section 5.7.1.

This algorithm requires space O(n) for n query boxes and has a CPU-time complexity of
O(a⋅n) for Z-addresses consisting of a bits. The I/O-complexity of the algorithm is O(m) (plus
the overhead for the B-Tree access to each page) if m regions overlap . Further details on
the implementation of the algorithm as well as performance measurements are described in
[Fen98]. In addition, investigations about the approximation of arbitrary query volumes can
be found there. Here we just sketch the main results:

• Dealing with sets of query boxes induces no additional CPU- and I/O-overhead to the
range query algorithm. Additional main memory in O(n) is required to process a set of n
query boxes.

• In the case of one query box the algorithm degenerates to the standard range query
algorithm.

• Disk accesses are performed in Z-order, so if the relation is page clustered, this page
clustering will be exploited by the algorithm.

• When sets of query boxes are used to approximate arbitrary query volumes, for uniformly
distributed data the best performance is achieved when the volume of each query box gets
close to the average volume of each Z-region.

126 SECTION 5.8: THE UB-TREE LIBRARY

5.8 The UB-Tree Library

The UB-Tree library consists of an API and an operator interface. The UB-API provides a C-
interface for data manipulation and data definition functions. The functionality of the UB-API
includes C-functions for

• UB_create, UB_drop, UB_rename

• UB_open, UB_close

• UB_insert, UB_delete

• UB_pointquery, UB_rangequery

While UB-API functions deal with result sets of tuples which are materialized in one
processing step, the operator interface deals with streams of tuples. The operator interface
essentially provides the same functionality as the UB-API. However, since the operator
interface works with tuple streams and allows pipelined processing, it is better suited for
using the UB-Tree functionality in an operator tree of an RDBMS. Next to the functions listed
above a preliminary version of the Tetris algorithm for uniformly distributed data is
implemented with the operator interface.

The UB-API has a tuple handling which allows one to use signed integer, unsigned integer
and character strings for the calculation of Z-addresses. The concept of transformation
functions has been implemented to easily plug in support for further data types. The current
implementation allows one to calculate Z-addresses for UB-Trees with up to 31 index
dimensions.

A detailed description of the UB-Tree library is found on the MISTRAL web server
[MOD99].

Part III

Analysis of Query Processing with
Multidimensional Indexes

CHAPTER 5: PERFORMANCE ANALYSIS 129

Ideals are like the stars, we never
reach them, but like the mariners
of the sea, we chart our course by
them.

(Carl Schurz)

Chapter 6

Performance Analysis

nalyzing the cost of query processing with certain access methods is crucial
to cost-based query optimization. Next to that it allows one to simulate
query processing without actually creating the database and thus saves time
and resources while gaining a better understanding of access methods. In
addition a cost function is a benchmark for the query performance since it
defines the expected response time and thus allows one to judge the quality

of an access method implementation. Cost functions can further be used to predict the result
sizes of a query or tell a user the expected processing time of a query before query execution
has started. Since multi-attribute restrictions and sort operations are very common in many
applications (cf. Section 1.1), we in this chapter investigate the cost of range queries and the
Tetris algorithm for UB-Trees. We define cost functions for page accesses for idealized
uniformly partitioned universes. The quality of our cost function is proven by comparing the
predicted number of page accesses with the actual number of page accesses measured with
our prototype implementation. We also explain how our cost function is linked to the
selectivity of a multidimensional query box. Then we define a cost model for range queries
with sort operations for various further access methods and do an analytical performance
comparison of UB-Trees with bitmap indexes, clustering B-Trees, non-clustering B-Trees and
a full table scan. Chapters 7 and 8 will show that the results predicted by our cost functions do
also hold in practice.

A

130 CHAPTER 6: PERFORMANCE ANALYSIS

6.1 The Cost of UB-Tree Range Queries

For an analysis of the UB-Tree range query performance it is desirable to have a cost function
for the retrieved pages, i.e., the regions overlapped by a query box. This enables the
prediction of the run time of a range query and yields a base for query optimization. In
addition, a cost function permits to produce a statistical relevant number of measures by
simulating range queries with varying table sizes and dimensionalities. This is especially
useful, when practical measurements with our pilot implementation can not be performed due
to their memory requirements or their long run time. The cost function also allows a
theoretical analysis of the range query performance and provides an excellent insight in the
importance of the attribute order. It also explains the page jump phenomenon of UB-Tree
range queries. Several master students supervised by the author used this cost function to
simulate the behavior of the UB-Tree for several database sizes and dimensionalities [Fri97],
to analyze the effect of region fringes and to judge the quality of the region splitting strategy
[Sch98], to analyze the space partitioning of VUB-Trees [Bau98] and to analyze the behavior
of UB-Trees for sets of query boxes [Fen98].

To be useful for a broad range of applications, a cost function should not require too much
knowledge about the queried database. The minimum requirements for input parameters of a
cost function are the database size and the query restriction. For multi-dimensional index
structures the dimensionality of the index is also necessary. These parameters are in general
easy to obtain and maintain.

To derive a cost function using only these input parameters is not achievable in general, since
the data distribution is another decisive factor for the query performance. Yet it is possible to
develop such a cost function for a certain case of space partitioning, the so-called idealized
uniform partitioning, consisting of uniformly distributed and independent attributes.

6.1.1 A Cost-Function for Perfect Idealized Uniform Partitioning

In the following we use P for the number of data pages of a UB-Tree table. The query box is
specified by the lower bounds vector y and the upper bounds vector z. The lower bound and
upper bound of the restriction in dimension i are denoted by yi and zi. The UB-Tree has been
built over a total of d dimensions.

Definition 6-1 (perfect idealized uniform partitioning): A perfect idealized uniform
partitioning (i.e., P = 2d⋅k for some k > 0, cf. Figure 6-1a for a two-dimensional
example) subdivides the multidimensional space in P hypercubes with volume 2-d⋅k.
Otherwise we call an idealized uniform partitioning imperfect.

Thus for perfect idealized uniform partitioning each dimension j of the universe has been
partitioned recursively lj(d, P) = log2 P / d = k times. In this case the number of Z-regions
intersected by a query box [[y, z]] is identical to the number of subcubes overlapped by
[[y, z]].

SECTION 6.1: THE COST OF UB-TREE RANGE QUERIES 131

Q=[[y,z]]

(a) (b)

Figure 6-1: The cost function for perfect idealized uniform partitioning

In the following we assume the boundaries of the query interval in each dimension to be
normalized to the interval [0,1].

If we have s completed split levels in dimension j, the number of slices of the multi-

dimensional space that are overlapped by the query box [[y, z]] in dimension j can be

determined by calculating the number of the slices, that are contained in interval [0, jẑ], but

not in interval [0, jŷ], i e., the number of slices in [0, jẑ] minus the number of slices in

[0, jŷ]. Since the slice containing jŷ is also a slice overlapped by the query box, we must

increment the above number by one to get the correct number of slices. If the number of slices

for the interval [0, ĉ] is calculated as  ĉ ⋅2s, a non-existing slice 2s+1 is added for jẑ =1 by

the formula derived above. We must correct this error for the case jŷ < 1 and jẑ = 1. This is

achieved by decrementing the number of slices by one. For jŷ = jẑ = 1 the subtraction

removes the error, therefore no correction is necessary here.

Thus the number of slices n(yj, zj ,lj) in dimension j overlapped by the query interval [yj, zj] for
lj completed splits in dimension j can be calculated by the following formula:

 
   





+−

≠∧=−
=

 otherwise ,12ˆ2ˆ

1 ˆ 1 ˆ if ,2ˆ2
),,(

jj

jj

l
j

l
j

jj
l

j
l

jjj

yz

yzy
lzyn

The number of subcubes intersected by the query box c(y, z, P, d) then is the product of n(yj,
zj, lj(d, P)) over all dimensions:

()()∏
=

=
d

j
jjj PdlzynzyPdc

1

,,,),,,(

132 CHAPTER 6: PERFORMANCE ANALYSIS

6.1.2 A Cost Function for Semi-perfect Idealized Uniform Partitioning

An imperfect idealized uniform partitioning produces rectangular regions, where each region
has either the shape of a subspace with volume  P2log2− or consists of two of these subspaces.
In this case the multidimensional space has been partitioned recursively log2 P mod d times
for some dimensions and log2 P mod d + 1 times for some other dimensions. One dimension
may exist, where some parts of the space already have been partitioned log2 P mod d + 1
times, while other parts of the space only have been partitioned log2 P mod d times.

Because of the above considerations we distinguish two cases of imperfect partitioning:

Definition 6-2 (semi-perfect and probabilistic idealized uniform partitioning): If P = 2k

for some k > 0 , we call an imperfect idealized uniform partitioning semi-perfect.
Otherwise we call it probabilistic.

Definition 6-3 (probabilistic dimension): For a probabilistic idealized uniform partitioning
we call a dimension probabilistic, if with respect to this dimension some parts of the
space have been partitioned log2 P mod d + 1 times, while other parts of the space
only have been partitioned log2 P mod d times.

Lemma 6-1: Each probabilistic idealized uniform partitioning has exactly one probabilistic
dimension.

Proof:

Bit interleaving takes place in a fixed order of dimensions. Our implementation of bit
interleaving starts with the rightmost dimension. 2l splits need to take place to completely
split the space with respect to split level l (i.e., bit l of the binary representation of the Z-
address). After these 2l splits have taken place (i.e., enough data has been inserted into the
UB-Tree), the next split takes place at split level l + 1 (i.e., bit l + 1 of the binary
representation of the standard address). This split level corresponds to the next bit in the
binary representation of standard addresses as obtained by bit interleaving. Therefore it splits
the next dimension in the order of dimensions as used by bit interleaving.

Since splits complete one split level before moving to the next split level, only one dimension
may have both subspaces with split level l and subspaces with split level l + 1.

As a consequence of the proof of Lemma 6-1 the index of the probabilistic dimension in the
order of dimension as used by bit interleaving (Algorithm 5-1) is calculated as:

 ()dPdPd mod log -) ,tic(probabilis 2=

SECTION 6.1: THE COST OF UB-TREE RANGE QUERIES 133

Example 6-1:

Split levels for perfect and imperfect uniform partitioning are illustrated in Table 6-1 for a 6-
dimensional space: For a table size of 64 pages the space is perfectly partitioned (k = 1, d =
6) with one split level for each dimension. With 512 (k = 9) pages this space is partitioned
semi-perfectly with one split level in the first three dimensions and two split levels for the last
three dimensions. With a page number of 700, the partitioning is probabilistic with dimension
3 as probabilistic dimension.

Split Levels per DimensionPages

Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6

64 (perfect) 1 1 1 1 1 1

512 (semi-perfect) 1 1 1 2 2 2

700 (probabilistic) 1 1 >1 2 2 2

Table 6-1: Split levels

For a semi-perfect idealized uniform partitioning the number of completed splits lj(d,P) with
respect to dimension j is calculated as

 


 ≤+

=
↓

↓

 otherwise,),(

 mod log if,1),(
),(

2

Pdl

jdPPdl
Pdl

j

j
j where 



=

↓ d

P
Pd

j
l 2log

),(

With lj(d,P) as defined above the c(y, z, P, d) is calculated in the same way as for perfect
idealized uniform partitioning:

 
   





+−

≠∧=−
=

 otherwise ,12ˆ2ˆ

1 ˆ 1 ˆ if ,2ˆ2
),,(

jj

jj

l
j

l
j

jj
l

j
l

jjj

yz

yzy
lzyn

The key attributes are independent and the query box [[x, y]] is iso-oriented with respect to
each dimension. Therefore the total number of pages is obtained by multiplication of the
slices in each dimension:

()()∏
=

=
d

j
jjj PdlzynzyPdc

1

,,,),,,(

134 CHAPTER 6: PERFORMANCE ANALYSIS

6.1.3 A Cost Function for Probabilistic Idealized Uniform Partioning

If an idealized uniform partitioning is probabilistic, the formula n(yj, zj, lj(d, P)) needs to be
modified for the probabilistic dimension to take the probability of an incomplete split into
account.

(a) (b)

Q=[[y,z]]

Figure 6-2: The cost function for probabilistic uniform partitioning

The complete split levels produce only  P2log2 pages, thus P -  P2log2 additional regions are
needed to obtain the given number of pages, i.e., the table size. These regions are created from
the  P2log2 pages by splitting these pages with respect to attribute j. Therefore the probability
of an additional split in an attribute j is:

 





 =−=

 otherwise ,0

),listic(iprobab if ,1
 2),(yprobabilit 2log

Pd j
P

Pd P
j

If the probability of an incomplete split is taken into account, the number of slices overlapped
by a query range in a certain dimension can be derived from the value for the completed
splits. By subtraction we calculate, how many slices would be overlapped additionally, if
another completed split were existing. For each of these splits the probability of its existence
is probabilityj(d, P). The average number of additional splits may then be calculated by
multiplication.

Thus, the average number of slices in dimension j overlapped by the range [yj, zj] is:

nj(d, P, yj, zj) = n(yj, zj, lj(d, P)) + (n(yj, zj , lj(d, P) + 1) - n(yj, zj , lj(d, P))) ⋅ probabilityj(d, P)

The key attributes are independent and the query box [[x, y]] is iso-oriented with respect to
each dimension. Thus the total number of pages is obtained by multiplication of the slices in
each dimension as in the previous sections.

SECTION 6.1: THE COST OF UB-TREE RANGE QUERIES 135

6.1.4 Cost Function and Selectivity

For independently uniformly distributed data the restriction of each attribute in percent of
space also defines the selectivity of that attribute. Thus the restriction [yj, zj] in attribute Aj has
a selectivity of sj = jj yz ˆˆ − .

∏ nj(d, P, yj, zj) can be considered to be ∏ js
) ⋅P with js

) as a special ceiling function rounding
the selectivity sj of dimension j to the next partitioning grid point. Then the cost function can
also be represented as:

∏∏
==

⋅==
d

j
j

d

j
jj sPsPdnsPdc

11

),0,,(),,(
)

Note that by using 0 and sj instead of zj and yj some information for the accuracy of the cost
function is lost, since the position of the query box influences the number of Z-regions
overlapped by a query box. Thus c(d, P, y, z) should be used instead of c(d, P, s), if not only
the selectivity, but also start and endpoint of the query in space are known.

6.1.5 The Cost Function: Theory and Practice

Figure 6-3 shows the number of pages predicted by the cost function as well as the actually
retrieved number of pages for two range query series. Both measurement series where
conducted on a six dimensional UB-Tree of 211218 pages storing 10 million uniformly
distributed tuples. The left series shows a query that constantly restricts five dimensions to
40% of their domain and varies the sixth dimension from 1% to 100% of its domain. The right
series varies the restriction in each dimension from 1% of its domain to 100% of its domain at
the same time. Thus the left series creates a linearly growing result set, whereas the result set
of the right series grows with the 6th power.

0

2.500

5.000

7.500

0% 25% 50% 75% 100%
restriction in %

pa
ge

s

Predicted
Retrieved

0

50.000

100.000

150.000

200.000

0% 25% 50% 75% 100%
retriction in %

pa
ge

s

Predicted
Retrieved

Figure 6-3: Cost function and reality

Both series show the accuracy of the cost function with an average prediction error of 8%.
The maximum deviation is 22% in the left series and 30% in the right series.

136 CHAPTER 6: PERFORMANCE ANALYSIS

The deviation is due to two facts:

• The data is just distributed uniformly, but there is actually no idealized uniform
partitioning.

• The model is probabilistic, thus a certain error is inherent to the cost model.

The effect of the ε-splitting algorithm (cf. Section 5.4) on the exactness of the cost function is
shown in Figure 6-4. The six dimensional UB-Tree of this figure consists of 1 million tuples
of uniformly distributed data stored on about 22000 pages (the actual number of pages differs
for each ε, since the degree of filling for each page depends on ε). The figure shows the
actually retrieved pages for various values of ε as well as the theoretically expected value
from the cost function for a query which restricts five dimensions to 15% of their domain and
varies the sixth dimension from 1% to 100%. The larger ε gets, the better the region
partitioning approximates an idealized uniform partitioning. The figure therefore shows the
accuracy of the cost function and the potential of the region splitting algorithm to reduce the
number of pages overlapped by a range query. In general a trade-off between space
partitioning (i.e., range query performance) and page utilization exists. However, as the figure
shows, an ε of around 3% is already quite effective. Due to the probabilistic nature of the cost
function an ε of 100 % sometimes even retrieves less pages then predicted. For more details to
the ε-splitting algorithm please refer to sections 4.2 and 5.4.

0

100

200

300

400

500

0% 25% 50% 75% 100%

restriction in %

nu
m

be
r

of
 Z

-r
eg

io
ns

 in
te

rs
ec

tin
g

th
e

qu
er

y
bo

x 0,00%
1,56%
3,13%
6,25%
7,81%
10,94%
Predicted
100,00%

ε

100%

Figure 6-4: ε-split and cost function

SECTION 6.2: A COST MODEL 137

6.2 A Cost Model

In the following we define a cost model to compare the cost of various access methods for
range queries. Our cost model takes both CPU-time and I/O-time for query processing into
account. For I/O-time we consider both clustered access and random access in our cost model.

Clustering places data that is likely to be accessed together physically close to each other. The
goal of clustering is to limit the number of disk accesses required to process a query by
increasing the likelihood that query results have already been cached. We distinguish two
kinds of clustering: Tuple clustering stores tuples of one or several relations on one disk page,
if the tuples are likely to be used together to create the result set of a query. If the tuples do
not fit on one page, the tuples have to be stored on several pages. Normally new pages are
physically placed on disk in insertion order. Page clustering in addition to tuple clustering
also maintains physical clustering between disk pages.

Let tπ be the (average case or worst case) positioning time of a hard disk, tτ be the transfer
time of a hard disk and tξ the CPU time17 spent for page processing after retrieval. We assume
that the prefetching strategy of the file system reads a physical cluster of L consecutive pages
from disk with one random access into the read-ahead cache. This takes time tπ + (tτ + tξ) ⋅ L.
In addition we assume that each page has a capacity of C tuples. With this cost model page
clustering (i.e., reading k tuples in consecutive order) takes time

cpage(C, L, tπ, tτ,, tξ ,k) = min(k / C / L + 1, k)⋅ tπ + max(k / C, L) ⋅ (tτ + tξ)

Tuple clustering requires to position the read/write-head of the hard disk for every page and
therefore takes time

ctuple(C , tπ , tτ, tξ ,k)= min(k/C+1, k) ⋅ (tπ +tξ + tτ)

Random access without caching requires to position the read/write-head of the hard disk for
every tuple and therefore takes time

crandom(tπ, tτ, tξ ,k)= k ⋅ (tπ + tτ+ tξ)

In the following considerations we assume that a query retrieves large result sets. We
consequently omit the “+1” in the cost formulas for page clustering and tuple clustering, since
this additional summand is negligible for large result sets. Basically this means that we
assume a best case distribution of the tuples on pages so that the first tuple of the result set
also is the first tuple on a page (i.e., a result set of less than C tuples will always be stored on
one page).

17 Note that tξ heavily depends on the specific query. For complex restrictions like multidimensional intervals or
IN-clauses of SQL tξ may be considerably higher than for simple single-attribute restrictions.

138 CHAPTER 6: PERFORMANCE ANALYSIS

6.3 The Cost of Range Queries

For retrieving or sorting a relation in combination with multidimensional hierarchical
restrictions we define cost functions for response times and intermediate temporary storage.
Our analysis considers a UB-Tree, a composite secondary index (CSI, clustering B*-Tree)
over all attributes (foreign keys of each dimension and measure attributes) of a fact table, a
single secondary index (SSI, non-clustering B*-Tree) on the attribute with the least selectivity
and a full table scan (FTS). In addition we analyze the performance of bitmap index
intersection (BII), which combines the bitmaps of each restricted attribute to determine the re-
sult set of the query. Note that an index organized table (IOT) as introduced in section 2.3 can
be regarded to be a special case of a CSI, which stores the entire tuple in the B-Tree leaf
pages and therefore does not have to store any tuple identifier there.

An FTS to answer multidimensional range queries with selectivity sj in dimension j can
exploit prefetching techniques to reduce the number of random page accesses at the expense
of having to read the entire table.

Using a CSI with a composite B*-Tree in lexicographic order A1, ..., Ad allows one to use the
index for the restriction in A1 at the expense of having a random access for each page.

A SSI on Aj requires a random page access for each tuple satisfying the restriction in Aj, since
no clustering of the tuples is available. The number of random accesses of an SSI is limited to
P, if the row identifiers of the SSI are sorted and then processed in physical page order for
data page retrieval. For point restrictions on the index attribute, sorting of row identifiers may
even be avoided: index pages for tuples with identical index attributes may be organized in
the physical order of the row identifiers. Then point restrictions will get a list of row
identifiers sorted according to the physical location of the tuple. This makes a SSI not to
degenerate and behave similarly to an FTS in worst case.

BII requires a random access for each tuple satisfying the restrictions in all attributes. In
addition the corresponding part of each bitmap index has to be retrieved. In analogy to an SSI
the result of BII is a bitmap which is used to access data pages in physical order. Thus
multiple random accesses to one data page will not occur. Figure 6-5 shows how two specific
bitmap indexes process a two dimensional partial match query.

bitmap for organization = „TM“

bitmap for region = „Asia“

1.....1.11 1.1...1.1. 1.1...1.1. ...1.1.... ..1.1...1.

11.1...... 1.11.....1 .1.1..1... 1.1.1..... .1..1.1...

1......... 1.1.......1...1.....

Page 1 Page ´2 Page 3 Page 4 Page 5

result of bitmap intersection

accessed disk pages (shaded)

34 % of tuples

32 % of tuples

10 % of tuples

80 % of pages

Figure 6-5 Bitmap index intersection

SECTION 6.3: THE COST OF RANGE QUERIES 139

For each restriction, the bitmap is retrieved from the corresponding bitmap index. After
intersecting these two bitmaps by a bitwise AND-operation the tuples corresponding to 1-bits
are retrieved (The zero bits in the figure are denoted by a “.” instead of a “0”). In the figure
we assume C = 10 tuples to fit on one page, thus ten consecutive bits correspond to the tuples
on one disk page. The selectivities for both dimensions are 32% respectively 34%, resulting in
an overall selectivity of 10%. Since the data is not clustered on the pages, the query needs to
retrieve 80% of the fact table to retrieve 10% of the tuples. In practice this ratio is even worse:
Actual values for C range between 20 and 400 for 8kB pages.

The shaded part of each cube in Figure 6-6 shows the part of a three dimensional database
which is retrieved by the corresponding access method to answer a three-dimensional range
query with (s1 = 25%, s2 = 33%, and s3 = 17%): an FTS retrieves the entire database
exploiting clustering and prefetching. In contrast to that an SSI will rarely utilize any
clustering benefits for small result sets. BII retrieves each bitmap by clustered access, whereas
the data itself will often be spread over many data pages and then must be retrieved by ran-
dom access to each page. However, for larger result sets the probability rises that prefetching
might be applicable for bitmap indexes. This means, that BII will not be much less efficient
than an FTS in worst case. A CSI with A3 as first attribute in concatenation order utilizes
clustering but only exploits the 17% restriction on A3. In contrast to that the UB-Tree utilizes
the restrictions of all dimensions and retrieves the data in a clustered way.

tup
le

clu
ste

rin
gtup

le

clu
ste

rin
g

ra
nd

om
tu

pl
e

´

page clustering

ra
nd

om
 a

cc
es

s

tu
pl

e
cl

us
te

ri
ng

FTS BIISSI CSI

tu
pl

e
cl

us
te

ri
ng

UB-Tree

17%

25%

33%

A3A
2

A 1

cl
us

-
te

ri
ng

Figure 6-6: Access methods and clustering

6.3.1 Cost Functions

Using the cost model of Section 6.2 we calculate the cost of processing a fact table consisting
of T tuples stored on P pages restricted by a multidimensional interval Q = [[y, z]] = [y1, z1] ×
... × [yj, zj] × ... × [yd, zd] with a selectivity of sj in attribute Aj. For UB-Trees we assume a d-
dimensional hierarchical organization of the table. For secondary indexes we assume Bj to be
the size in pages of a secondary index on Aj. Figure 6-7 displays cost formulas for these
access methods.

140 CHAPTER 6: PERFORMANCE ANALYSIS

()
()

() ()

() () ∏∏

∏
∑

==

=

=

⋅⋅++=⋅++=

⋅
⋅





+++⋅⋅++=

⋅
⋅





+++⋅⋅++=

⋅⋅++=

⋅




 ++⋅=

d

j
j

d

j
jjj

d

d

i
i

d

d

i
iidd

d

i

d
iiid i

d

sPtttzyPdntttzyPdc

ssPT

sT
tt

ssPT

t
BstttBBssTdc

ssPT

sT
tt

ssPT

t
BstttBssTdc

sPtttssPdc

Ptt
L

tPdc

11
UB

sets)result largefor ng(prefetchi access randomby retrieval tuple

1

1

1

onintersecti & retrieval bitmap

1
11BII

11
1dimensionon SSI

11CSI

FTS

),,,(),,,(

),...,,,(cluster),...,,,prefetch(
),...,,,...,,,(

),...,,,(cluster),...,,,prefetch(
),,...,,,(

),...,,,(

1
),(

)

44444444444 344444444444 214444 34444 21

Figure 6-7: Cost functions for retrieval of a multidimensional interval

Interestingly, non-clustering indexes may utilize tuple clustering for large result sets, since the
probability of tuples of the result set to be located on the same page increases with growing
result set size. This “clustering effect” of non-clustering secondary indexes is taken into
account by our cost functions by introducing a function cluster that with growing result set
size of a query grows from 1 to C and interpolates linearly with the selectivity:







⋅

⋅=⋅= ∏
=

11

11

on index secondary single afor),1max(

onintersectiindex secondary for),1max(
))(yselectivit,1max(),...,,,(cluster

AsC

sC
QCssPT

d

i
i

d

Thus min(cluster) = 1 and max(cluster) = C.

In the same way secondary indexes may utilize page clustering when retrieving large result
sets. The function prefetch(T,P,s1,...,sd) denotes the actual prefetching for the retrieval of a
result set by secondary indexes and grows from 1 to L: With growing result set size the
probability of tuples to be located on consecutive pages increases.




























⋅
⋅





































⋅

⋅

=












⋅
⋅=

∏
=

1
1

1

1

on SSIfor ,1max,min

SIIfor ,1max,min
)(yselectivit

,1max,min),...,,,prefetch(

A
LP

sT
L

LP

sT

L

LP

QT
LssPT

d

i
i

d

Thus min(prefetch) = 1 and max(prefetch) = L.

For T = 26⋅106 tuples on P = 878⋅103 pages, C = 30 and L = 16, Figure 6-8 shows the
functions prefetch and cluster depending on the selectivity of the query. As soon as the
selectivity exceeds 1/C (=3,33%) several tuples of the result set are stored on one page.
Prefetching already shows benefits when the selectivity exceeds 1/(L⋅C) = 0,21%.

SECTION 6.3: THE COST OF RANGE QUERIES 141

0

5

10

15

20

0% 1% 2% 3% 4%
selectivity of the query

fa
ct

or

prefetch * cluster
prefetch
cluster

0

5

10

15

20

25

30

0% 25% 50% 75% 100%
selectivity of the query

fa
ct

or

cluster prefetch

 (a) (b)
Figure 6-8: prefetch(T, P, s1, ..., sd) and cluster(T, P, s1, ..., sd)

These definitions are used for prefetch and cluster in the cost functions of Figure 6-7.

Note that in order to utilize tuple clustering or page clustering the tuple identifiers of a
secondary index (intersection) need to be sorted with respect to the physical storage order.
Sorting can be avoided, if the restriction is a point restriction and tuples with identical index
keys are stored in physical order in the secondary index. Note that tuples are delivered in
physical order and not in the sort order of any index, if clustering is utilized in this way by
secondary indexes. With optimized storage structures, like bitmap representation for row
identifiers, partial match queries can be handled efficiently. However, the loss of the index
key order limits the usability of the approach for range queries in combination with sort
operations on an index attribute (see Section 6.4).

6.3.2 Simulation Results

Current operating systems usually prefetch L = 16 pages with one random access. We assume
tπ = 10 [ms], tτ = 0,6 [ms] and tξ = 0,4 [ms]. We assume a four dimensional organization of
the UB-Tree.

Figure 6-9a shows the cost [in s] for a range query with (s1 = 33%, s2 = 25%, s3 = 17%, s4 =
100%) against 4-dimensional UB-Trees compared to other access techniques. The table size
is varied from one page up to one million pages.

Varying the selectivity of the restriction in A1 for a table size of P = 878k pages (about 7GB
for a page size of 8kB) shows that UB-Trees are superior to a CSI on the most selective
attribute A3, since this CSI cannot exploit any restriction but the one on A3. UB-Trees can
exploit the restrictions on A1 and A2 in addition to the restriction on A3. Thus UB-Trees are
also superior to an FTS and to BII using bitmap indexes for all four dimensions (Figure 6-9b).

142 CHAPTER 6: PERFORMANCE ANALYSIS

Note that due to the high selectivity in A3 a SSI always degenerates to an FTS. For an overall
selectivity of 75% ⋅ 17% ⋅ 25% ⋅ 100% = 3,1875 % an FTS is already preferable to BII. Since
bitmap indexes do not cluster the data, the result set defined by the restrictions in all
dimensions must be sufficiently small for BII to be competitive.

0

250

500

750

1000

0
table size in pages

co
st

 [
tim

e]
 in

 s

FTS

BII

UB-Tree

106

CSI A 3

0

500

1000

1500

2000

0% 100%
selectivity in dimension A 1 in %

co
st

 [
tim

e]
 in

 s

FTS

SII UB-Tree
CSI A 1

CSI A 3
SSI A 1

 (a) (b)
Figure 6-9: Simulation of a four dimensional range query

6.4 The Cost of Range Queries with Sort Operations

The Tetris Algorithm of Section 4.7 allows one to process queries with multi-attribute
restrictions and sort operations. Since only very little main memory is needed, in general no
external sorting will be necessary. In this section the response times and storage requirements
of the Tetris algorithm are compared to those of a merge sort algorithm in combination with
any of the access methods of Section 6.3.

6.4.1 Cost Functions for Secondary Storage

The Tetris cache is considerably smaller than the temporary storage of P⋅Πsi required by the
merge-sort algorithm that is necessary after the data has been retrieved by an FTS or any
index on a restricted attribute. To sort Aj the Tetris algorithm just requires to cache one slice,
i.e.,

∏
≠

==
ji
di iii zyPdnjzyPdcache ,..,1Tetris),,,(),,,,(

For a two-dimensional UB-Tree the above formula results in a square root function of the
number of Z-regions overlapping the query box, i.e., cacheTetris(2, P,s1,s2, j) ≈ 21 ssP ⋅⋅ for j

∈ {1, 2}.

SECTION 6.4: THE COST OF RANGE QUERIES WITH SORT OPERATIONS 143

6.4.2 Cost Functions for Response Time

For the following considerations we assume a merge sort algorithm using a main memory of
M pages and a merge degree of m. We divide the sort process in a retrieval phase (which
retrieves the data to create initial runs for the merge-sort) and a sort phase (which actually
performs the merge-sort). Because of the multi-attribute filtering of the retrieval phase the
data set to be sorted is usually smaller than the entire table. With sj denoting the selectivity of
the restriction in attribute Aj and independence of the attributes, P⋅Πsi pages need to be sorted.
The cost functions of Section 6.3 can be used to calculate the cost of the retrieval phase to
create the initial runs for the sort operation. If an access method does not return the tuples in
the requested sort order, sorting with the cost of csort takes place. If M ≥ P⋅Πsi, sorting takes
place in main memory. csort then is the cost of an internal sort operation. csort is zero, if a CSI
with A1 as first attribute is used for the retrieval phase and the sorting attribute is A1, since the
data then is already retrieved in the desired sort order.

























⋅⋅










⋅⋅⋅





 ++⋅

⋅>









⋅⋅⋅⋅

= ∏∏

∏∏∏

==

===

 otherwise ,log 2
1

 M if ,log

),...,,,,,,(

phases merge ofnumber

1

sort topages

1

write
& readaccess econsecutiv

111

1sort

444 3444 2143421321444 3444 21

d

i
im

d

i
i

d

i
i

d

i
i

d

i
i

d
s

M

P
sPtt

C
t

sPsPsPt

ssMmCPdc

As shown in the section before, SSI and CSI on restricted attributes are only efficient for
fairly small result sets. In this case sorting would take place in main memory. One can expect
that as soon as external sorting is necessary, SSI and CSI are not efficient for the retrieval
phase anymore. Therefore we do not consider SSI and CSI in this section, since we focus on
external sorting here.

The Tetris algorithm has to sort each cached slice. Since the algorithm reads n(yj, zj ,lj) slices,
the overall cost of internal sorting according to Aj is:

),,,,(log),,,,()(),,,,(TetrisTetrisTetris jzyPdcachejzyPdcache ,l, zyntjzyPdc jjj ⋅⋅⋅=

6.4.3 Cost Functions for Interactive Response Times

When the Tetris algorithm has completed a slice, it is usually sorted internally and then is
available in sort order. Thus first results are available for further processing after a time of
cachetetris(d,p,x,y)⋅ (tπ + tτ + tξ). For a CSI (or IOT) on a restricted attribute and an FTS it is
necessary to wait until the entire merge sort is completed. This yields a tremendous
performance advantage of the Tetris algorithm for pipelined processing and interactive
response times.

144 CHAPTER 6: PERFORMANCE ANALYSIS

6.4.4 Simulation Results

Using the same parameters as in Section 6.3 and additionally using a main memory cache of
32 MB and a merge degree of m = 2 for the merge sort algorithm Figure 6-10 shows the cost
[in s] for sorting the result set of a fact table defined by restrictions in multiple hierarchical
dimensions

0

250

500

750

1000

0
table size in pages

co
st

 [
ti

m
e]

 in
 s

FTS BII
UB-Tree

106

CSI A 1CSI A 3

0

500

1000

1500

2000

0% 100%selectivity of A 1 in %

co
st

 [
tim

e]
 in

 s

FTS

BII
UB-Tree

CSI A 3

CSI A 1

 (a) (b)

Figure 6-10: Simulation of sorting a four dimensional query box

Figure 6-10a shows the cost [in s] for sorting a four dimensional query box with (s1 = 33%, s2

= 25%, s3 = 17%, s4 = 100%) according to A1. Again the table size is varied from one page to
one million pages. Since the selectivity of each restriction exceeds 10%, processing this query
by a single secondary index usually degenerates to an FTS. The speed up of the Tetris
algorithm for UB-Trees grows superlinearly with increasing table size, since all other access
methods require an external merge sort. Varying the selectivity of the restriction in A1 for a
table size of P = 878k pages in Figure 6-10b shows the superiority of the Tetris algorithm,
since multidimensional clustering allows one to exploit multi-attribute restrictions to reduce
the number of random accesses and at the same time avoids an expensive external sort
operation. Sorting with Tetris takes place in main memory as long as this memory suffices to
hold one slice of the query box. Figure 6-11(a, b) shows that the temporary storage for the
merge sort algorithm used by FTS, BII, and CSI A3 soon exceeds the main memory sorter
cache of M = 32 MB when processing the queries of Figure 6-10 (a, b). In contrast to that
sorting with Tetris never requires more than 14 MB of cache for one slice and thus sorting can
take place in main memory.

SECTION 6.5: SUMMARY: COST ANALYSIS 145

0

25

50

75

100

0
table size in pages

so
rt

er
 c

ac
he

 s
iz

e
in

 M
B

Mergesort
Tetris
CSI A 1

106

0

100

200

300

0% 100%
selectivity of A 1 in %

so
rt

er
 c

ac
he

 s
iz

e
in

 M
B

Mergesort

Tetris
CSI A 1

 (a) (b)

Figure 6-11: Temporary storage required for the sorter cache (simulation)

A CSI or SSI on A1 does not require any sorter cache. The tradeoff of these two access
methods is the inability to use restrictions in multiple dimensions. Overall, the Tetris
algorithm for UB-Trees outperforms any access method either with respect to response time
or with respect to both response time and temporary storage requirements.

6.5 Summary: Cost Analysis

Using our cost functions we found out that for sort operations with restrictions in some
attributes UB-Trees and the Tetris algorithm are superior to one-dimensional access methods,
unless a strongly preferred sort order on one attribute per relation exists or the restrictions are
not selective enough to make up the tenfold speed of the FTS. Another limitation of our
technique is the number of dimensions as investigated in Section 3.9: Increasing
dimensionality exponentially reduces the potential of the multidimensional space partitioning
to create a total sort order in one dimension. Our theoretical and practical analysis shows that
multidimensional indexes of up to 6 dimensions are handled very well with table sizes around
1 GB. These dimensionalities are typical for data warehousing applications and in particular
for the TPC-D benchmark (see Section 8.1). With larger table sizes even further attributes
could be added to the multidimensional index in order to speed up queries with restrictions or
sorted processing in this attribute.

CHAPTER 7: PERFORMANCE MEASUREMENTS 147

In science, as in life, learning and
knowledge are distinct, and the
study of things, and not of books, is
the source of the latter.

 (Thomas H. Huxley)

Chapter 7

Performance Measurements

arge-scale experiments with our prototype implementation are reported in
this chapter. We investigate the behavior of our prototype implementation of
the UB-Tree for relations storing artificially generated, uniformly
distributed data of up to 10 million tuples. We show the performance of
insertion into UB-Trees, clustering B-Trees and multiple non-clustering B-
Trees for various dimensionalities. After a brief summary of main results of

point query investigations we more closely look on the range query performance. We first
identify the main factors that influence the range query behavior of the UB-Tree. Then several
types of measurements are defined. Performance figures for range queries measured with our
prototype implementation on top of two relational DBMS are listed and interpreted. Due to
legal considerations the DBMS have been made anonymous. Last but not least performance
figures are given for partial match queries that restrict only a subset of the dimensions of the
UB-Tree. This chapter practically undermines our observations from Chapter 3 and also
proves the accuracy of our cost functions from Chapter 6 for uniformly distributed data.

L

148 CHAPTER 7: PERFORMANCE MEASUREMENTS

7.1 Insert Performance

Figure 7-1 shows performance measurements of the insert performance of the prototype
implementation on DBMS1 on a 167 MHz ULTRA SPARC 2 with an IBM hard disk with
8ms positioning time for 3-dimensional (a), 6-dimensional (b), and 12-dimensional data (c).
Each measurements series shows the time in ms for the insertion of one additional tuple for
the database size shown on the horizontal axis. The performance of UB-Trees is compared to
insertion into an index organized table (IOT) on the attributes and to insertions into multiple
secondary indexes over 3, 6 resp. 12 dimensions (MSI).

0

20

40

60

80

0 250.000 500.000 750.000 1.000.000
tuples in database

ti
m

e
in

 m
s

/ a
dd

it
io

na
l t

up
le

MSI
IOT
UB-Tree

0

50

100

150

200

250

0 250.000 500.000 750.000 1.000.000
tuples in database

ti
m

e
in

 m
s

/ a
dd

it
io

na
l t

up
le

MSI

IOT

UB-Tree

(a) (b)

0

100

200

300

400

0 200000 400000 600000 800000 1000000
tuples in database

ti
m

e
in

 m
s/

ad
di

ti
on

al
 t

up
le

MSI
IOT
UB-Tree

(c)

Figure 7-1: Insert performance

Figure 7-2 shows how the insertion time for UB-Tree insert is distributed to CPU for address
calculation, I/O for page retrieval, CPU for page modification and I/O for page update. The
time distribution in the bars is from top to bottom as listed in the legend.

SECTION 7.2: EXACT MATCH QUERY PERFORMANCE 149

0

10

20

30

40

50

60

0 80.000

160.000

240.000

320.000

400.000

480.000

560.000

640.000

720.000

800.000

880.000

960.000

table size in tuples

ti
m

e
in

 m
s

/ a
dd

it
io

na
l t

up
le IO:StorePage

CPU:UpdatePage
IO:GetPage
CPU:GetPage

Figure 7-2: Time distribution for UB-Tree insertion

All in all the performance of UB-Tree insertion is similar to insertion into an index organized
table. This is not surprising, since the UB-Tree merely requires CPU operations for address
calculation in addition to index organized tables. This additional address calculation overhead
is negligible. For a 6-dimensional integer tuple it uses less than 1% of the total insertion time.
For a UB-Tree of height h UB-Tree insertion is about (h-1)/h ⋅ d times faster than insertion
into multiple B-Trees. The factor (h-1)/h in the above formula is due to the fact that for a
given database the UB-Tree in the average is one level higher than each of the secondary
indexes.

Detailed measurements and investigations of insert performance on the prototype
implementation of UB-Trees can be found in [Fri97] and [Bau97].

7.2 Exact Match Query Performance

A point can be found in O(logk T) time, where T is the number of objects in the relation and k
= ½C, since UB-trees are balanced and searched exactly like the variant of B-tree used as the
underlying data structure for the UB-tree. Thus the point query performance of a UB-Tree is
similar to that of an IOT. The additional address calculation overhead is negligible. Detailed
measurements and investigations of exact match query performance on the prototype
implementation of UB-Trees on DBMS1 can be found in [Fri97].

150 CHAPTER 7: PERFORMANCE MEASUREMENTS

7.3 Storage Requirements

As expected, the storage requirements of UB-Trees are equivalent to those of concatenated B-
Trees (IOTs). UB-Trees require more storage than a simple sequential file organization (FTS),
since one additional B-Tree is maintained in order to store the Z-addresses of the
multidimensional space partitioning. However, this yields a tremendous reduction in storage
requirements over multiple secondary indexes (MSI), which require to maintain one B-Tree
for each dimension.

FTS IOT (A1..A6) MSI (6 dim.) UB-Tree

Table Size in Pages / MB 21115 / 42,2 27759 / 55,5 76678 / 153,3 21616 / 43,2

Height of B-Tree - 4 3 4

Leaf Page Utilization 100% 89,677% 90,003% 99,301%

Table 7-1: Table Sizes of a 1 million 28 Byte tuples relation on DBMS1 (2kB pages)

Table 7-1 and Table 7-2 show the storage requirements for a one million respectively ten
million tuple DBMS1 relation organized as FTS, IOT, 6 multiple secondary indexes and a 6-
dimensional UB-Tree on 2kB pages. Due to the simpler page handling of our prototype
implementation (e.g., no variable length attributes, only support for numbers and character
data), storage requirements for UB-Trees are lower than those of native DBMS1 B-Trees.

FTS IOT (A1..A6) MSI (6 dim.) UB-Tree

Table Size in Pages / MB 256082 / 512,2 296284 / 592,6 775951 / 1551,8 211218 / 422,4

Height of B-Tree - 4 4 5

Leaf Page Utilization 100% 89,677% 90,003% 99,301%

Table 7-2: Table Sizes of a 10 million 28 Byte tuples relation on DBMS1 (2kB pages)

For DBMS2 Table 7-3 shows the storage requirements for several 6-dimensional relations
with different tuple sizes and table sizes. Due to some implementation overhead of B-Trees in
DBMS2, the table size of a sequential file (FTS) for small relations is considerably lower than
the table size of B-Trees as used for IOT and UB-Tree.

Tuples 125.000 250.000 1 million 1 million 2 million 4 million

Tuple Size 428 Byte 428 Byte 28 Byte 228 Byte 228 Byte 228 Byte

FTS
Pages / MB

7814 / 61,0 15629 / 122,1 6274 / 49,0 34484 / 269,4 68969 / 538,8 137934 / 1077,6

IOT
Pages / MB

13915 / 108,7 27810 / 217,3 11700 / 93,5 60705 / 474,3 96124 / 947,6 153420 / 1198,6

UB-Tree
Pages / MB

13629 / 106,0 27194 / 212,5 5059 / 39,5 48119 / 376,0 121295 / 751,0 166669 / 1302,1

Table 7-3: Table Sizes of several tables on DBMS2 (8kB pages)

SECTION 7.4: RANGE QUERY PERFORMANCE 151

7.4 Range Query Performance

Answering a range query over a database, which is organized as a UB-tree, requires time
proportional to the number of Z-regions overlapping the query box. For non-uniformly
distributed data this number is not just a function of the restriction in each dimension, but also
depends on the data distribution. Thus the parameters that influence the behavior of the UB-
Tree range query algorithm are:

• query box volume

• query box position

• query box width in each dimension (degree of query box generation [Fri97])

• table size

• Z-region partitioning (i.e., data distribution, split parameters, etc.)

• dimensionality

Many of these parameters were investigated in detail in the master theses of Nils Frielinghaus
[Fri97] and Roland Pieringer [Pie98]. There the cost function of Section 6.1 was used to
simulate idealized uniformly partitioned UB-Trees. In addition measurements on a prototype
implementation of the UB-Tree were conducted for various dimensionalities, database sizes,
and data distributions. Here we just sketch the main results and present the most interesting
measurement series.

For uniformly distributed data the range query performance exponentially decreases with the
dimensionality of the UB-Tree (cf. also Section 3.9). The more dimensions are restricted, the
better the range query performance gets, since each restriction is utilized by the UB-Tree (see
also Section 7.4.3). However, restricting a dimension to less than 2-l of its domain for a split
level of l in that dimension does not further reduce the number of pages, since the split level
defines the limit of resolution of the partitioning grid. The position of the query box on the
partitioning grid can increase or decrease the number of regions overlapped by the query box
even for uniformly distributed data and therefore influences the range query performance
[Fri97]. The finer the grid, the less this effect may be observed. Since the grid is finer for
larger databases or lower dimensionalities, dimensions that are not restricted by a query harm
the query performance: An entire slice of Z-regions with respect to the not restricted
dimension has to be retrieved. Summing up, the dimensions stored in the UB-Tree should be
used for restriction. Thus proper index modeling is still necessary with UB-Trees, since the
curse of high dimensionality forbids to add all attributes as dimensions to an index.

152 CHAPTER 7: PERFORMANCE MEASUREMENTS

(a) (b)

Figure 7-3: Range queries in sparsely (a) and densely (b) populated parts of a universe

In Figure 7-3 (a and b) range queries against the same non-uniformly distributed UB-Tree are
shown. In this Figure the Z-regions are shaded that intersect the query box. The query box of
Figure 7-3b has a result set of 617 points and overlaps 27 regions. Although the query box of
Figure 7-3a has the same volume, it only covers a sparsely populated part of the universe and
thus only 78 points in 3 regions are retrieved by the range query. Since a Z-region
corresponds to a leaf page of the UB-Tree, Figure 7-3 shows that the number of disk accesses
is proportional to the result set size of the range query.

(a) (b)

Figure 7-4: Query box volumes

SECTION 7.4: RANGE QUERY PERFORMANCE 153

Figure 7-4 (a and b) show two query boxes of different volume located in different parts of a
uniformly distributed UB-Tree. The larger the query box in volume, the more Z-regions are
overlapped by the query box and retrieved by the range query algorithm. Since with a larger
query box volume many Z-regions are entirely contained in the query box, one can also state
that the number of retrieved Z-regions is proportional to the result set of the query box.

(a) (b)

Figure 7-5: Range queries and scalability

Figure 7-5a displays a range query against a UB-Tree storing 1000 tuples on 25 Z-regions.
The UB-Tree in Figure 7-5b stores 50000 tuples on about 2500 Z-regions. Thus Figure 7-5
shows that the query box is approximated more closely by the Z-region partitioning as the
database increases.

7.4.1 Types of Measurements

Definition 7-1 (range method measurement for an access method): A range query
measurement for an access method is an experiment that executes a range query on a
single table with ranges in d attributes A1,...,Ad using a certain access method for table
access and measures certain parameters (e.g., response time or number of I/Os) of the
query execution. Depending on the access method used for the table access we speak
of

• FTS measurement for full table scans

• IOT Ai measurement for an index organized table on attribute Ai as first key in
concatenation order

• UB-Tree measurement for UB-Trees

• SSI Ai measurement for single secondary index on attribute Ai

• SII measurement for intersection of secondary indexes

154 CHAPTER 7: PERFORMANCE MEASUREMENTS

Definition 7-2 (measurement for a set of access methods): A measurement uses the same
restrictions to perform a range query measurement for each access method of a set of
access methods.

Definition 7-3 (measurement series): A measurement series is an ordered sequence of
measurements for a set of access methods.

In the following sections we investigate two types of measurement series on a relation with d
index attributes, namely c%-measurement series and cube measurements series.

Definition 7-4 (c%-measurement series): A c%-measurement series restricts d-1 attributes
to c% of their domain, whereas one attribute (the variable attribute) is varied from 0%
to 100%.

For independently uniformly distributed data the selectivity of a c%-measurement with a
selectivity of x% in the variable attribute is c%d-1⋅x%.

0

60

0% 100%selectivity of variable attribute

th
ou

sa
nd

 tu
pl

es
 in

re

su
lt

 s
et

0

500

1000

1500

2000

2500

0% 50% 100%
selectivity of the variable attribute

Z
-r

eg
io

ns
 in

te
rs

ec
tin

g
th

e
qu

er
y

bo
x

Figure 7-6: Characteristics of a c%-measurement series

The upper left part of Figure 7-6 shows the volume of the query box for three measurements
of a two-dimensional c%-measurement series. Below that two-dimensional visualization the
Figure shows the linearly growing result set size for a 35%-measurement series against a six-
dimensional database storing 107 tuples. The right part of Figure 7-6 shows the number of Z-
regions intersected by the query boxes of a 35%-measurement series against a six-
dimensional UB-Tree storing 107 uniformly distributed tuples on 211218 Z-regions. In the
Figure one can see a typical characteristic of c%-measurements for UB-Trees: The number of
Z-regions intersecting the query box is a staircase function for a c%-measurement series. This
staircase behavior is due to the fact, that for uniformly distributed data the Z-region
partitioning is a discrete d-dimensional grid with clearly defined partitioning points (which
are the points 50%, then 1/4 and 3/4, then 1/23, 3/23, 5/23 and 7/23, etc. depending on the data

variable
dimension

SECTION 7.4: RANGE QUERY PERFORMANCE 155

base size, cf. Section 6.1). A small enlargement of the query box in the variable dimension
does not exceed a grid point and thus does not cause any further Z-region to be intersected. As
soon as the query box exceeds a grid point, one additional slice of Z-regions is intersected.
The height of the staircase (i.e., the number of additionally intersected Z-regions) in the new
slice of the grid depends on c%, the restriction in the variable dimension and on the number of
dimensions of the grid. A larger value for c% means that the query box covers a larger part of
the multidimensional space and therefore a higher number of Z-regions will be intersected
when exceeding a grid point. Similarly, with a higher dimensionality more Z-regions are
intersected when partitioning point is exceeded. With a linearly growing result set the
staircase function approximates a linear function. Further analysis of the staircase
phenomenon can be found in [Fri97].

Definition 7-5 (cube measurement series): A cube measurement series varies the restriction
on all attributes from 0% to 100% at the same time.

For a cube measurement on independently uniformly distributed data the selectivity of the
restriction in each dimension is identical. Thus a selectivity of x% in each dimension results in
an overall selectivity of x%d for the query. In analogy to Figure 7-6, Figure 7-7 shows the
volumes for three measurements of a two dimensional cube measurement series. In addition it
shows the result set size and the number of intersected Z-regions for a cube measurement
series against a 6-dimensional UB-Tree of 107 tuples on 211218 pages. The number of
intersected Z-regions again shows a staircase behavior, which in this case approximates the
polynomial function.

0

10

0% 100%selectivity of all attributes

m
il

li
on

 tu
pl

es
 in

re

su
lt

 s
et

0

50000

100000

150000

200000

250000

0% 50% 100%
selectivity of all attributes

Z
-r

eg
io

ns
 in

te
rs

ec
tin

g
th

e
qu

er
y

bo
x

Figure 7-7: Characteristics of a cube measurement series

Thus with growing restriction in the variable attribute(s) the result set of a cube measurement
series grows polynomially, whereas the result set of a c% measurement series grows linearly.
This means, that cube measurement series are a good way to theoretically analyze the

 all
dimensions

156 CHAPTER 7: PERFORMANCE MEASUREMENTS

performance degeneration of a multidimensional index from very small to very large result
sets ranging from (1%)d (is usually just one or very few tuples) to 100% (the entire relation).
c% measurement series indicate whether an index degenerates if the restriction is varied only
in one attribute and therefore allow to judge the symmetry of a multidimensional index over
the dimensions.

7.4.2 Comparative Performance Measurements

With the prototype implementation of the UB-Tree performance measurements were
conducted on several commercial DBMS. Here we just list the results of DBMS1 and
DBMS2. The results on the other DBMS are qualitatively equivalent to either DBMS1 or
DBMS2 and can be found in [Ova99] and [Pfa99]. To get comparable results, precautions
were taken in order to eliminate caching effects. Descriptions of these precautions can be
found in [Fri97] for DBMS1 and [Pie98] for DBMS2.

Because of different resources and configurations of the database servers for DBMS2 and
DBMS1, the measurements on both DBMS are not comparable quantitatively. This holds
especially because of the different table sizes. However, a qualitative comparison is possible.
Qualitatively, the performance gain of the UB-Tree compared to an IOT is identical for
DBMS2 and DBMS1. The only qualitative difference is the performance of an FTS: DBMS1
implements relations as IOTs; an FTS retrieves the data in primary key order by tuple
clustered access. Thus an FTS in DBMS1 is identical to reading 100% of a relation via an
IOT. In contrast to that DBMS2 utilizes page clustering for FTSs. Therefore an FTS in
DBMS2 is more efficient than in DBMS1.

0

125

250

375

500

625

0% 25% 50% 75% 100%
restriction in %

ti
m

e
in

 s

SII
FTS
IOT A1
IOT A2 - A6
UB-Tree

0

250

500

750

1000

1250

0% 25% 50% 75% 100%
restriction in %

ti
m

e
in

 s

SII
FTS
IOT A1
UB-Tree

 (a) (b)
Figure 7-8: DBMS1

The measurements of Figure 7-8 were conducted on DBMS1 on a SUN ULTRA SPARC II
167 MHz with an IBM 8ms hard disk. The test table stores 10 million independently
uniformly distributed 6-dimensional tuples on 211218 pages. Figure 7-8a shows a 35%
measurement sequence, where A2 to A6 are the constant dimensions, whereas the restriction in
A1 is varied from 0% to 100%. As mentioned before, an FTS in DBMS1 is identical to an IOT
on A1 without any restriction in the index attribute. An IOT on A2, A3, A4, A5, or A6 has to

SECTION 7.4: RANGE QUERY PERFORMANCE 157

retrieve 35% of the database. This results in a response time 35% of that of an FTS. Actually
the FTS is not constant, but slightly increases with a growing selectivity in A1. The linearly
growing result set causes linearly growing CPU time for result set processing and inter-
process communication time for result set transfer. While this time is clearly visible for FTS
and IOT on A2, A3, A4, A5, or A6, it is also included in the response times of the other access
methods. Intersection of secondary indexes in DBMS1 requires the retrieval of the 35% of the
five secondary indexes on A2 to A6 and a certain percentage of the secondary index on A1.
After that an expensive intersection operation and a random access for each tuple of the result
set are performed. Therefore SII is worse than tuple clustered access of the IOTs already for
queries with a selectivity of less than 1%. The UB-Tree requires less time than any IOT, since
it allows a tuple clustered access to the result set defined by the restrictions in all attributes,
whereas an IOT on A1 only utilizes the restriction on A1 and therefore grows linearly on a
much larger scale than the UB-Tree. The performance figures for the UB-Tree do hardly
depend on the variable attribute: If A1 was left constant and any other attribute is varied, the
response time of the UB-Tree is similar to that reported in the figure (actually it depends on
the number of recursive splits in that attribute; see [Fri97] for measurement charts or Chapters
3 and 6 for an analytical explanation).

Selectivity in A1
UB-Tree IOT A1 IOT A2 SII FTS

20% 3,9 s 124,2 s 194,2 s 1890,3 s 458,9 s
40% 6,6 s 228,1 s 200,4 s 2120,9 s 477,3 s

Table 7-4: Response times for 35%-measurements on DBMS1 with A1 as variable attribute

Figure 7-8b shows a cube measurement sequence where the selectivity of each attribute is
varied from 0% to 100% at the same time. For a selectivity of less than 8% in each dimension
(an overall selectivity of (8%)6 < 1/3.5⋅10-6 for the query, i.e., a result set of about 3 tuples!)
SII is preferable to an FTS, since the part of each B-Tree that needs to be retrieved as well as
the result set are sufficiently small. Since the result set grows polynonially with the 6th power,
the response time of the FTS grows with the 6th power due to CPU time for result set
processing. This additional CPU time is also included in the response time of the other
indexes. For a selectivity of 100% FTS, IOT, and UB-Tree take the same time to respond to
the query, since the data is retrieved by tuple clustered access by all of these access methods.
Up to a selectivity of 75% in each dimension (an overall selectivity of (75%)6 = 17,7%, i.e., a
result set of 1.7 million tuples) the UB-Tree has a significant performance advantage, since
the restrictions in all attributes are used to limit the number of page accesses to answer the
query.

Selectivity
in each dimension

UB-
Tree

IOT SII FTS

20% 0,9 s 120,7 s 1235,1 s 449,8 s
40% 17,5 s 228,2 s 2753,3 s 475,9 s

Table 7-5: Response times for cube measurements on DBMS1

158 CHAPTER 7: PERFORMANCE MEASUREMENTS

Summing up, our measurements indicate that the range query performance of UB-Trees on
DBMS1 is more symmetrical than that of an IOT. It also shows a better absolute performance
than SII, when a sufficient number of attributes is specified. In our 6-dimensional test
database this is already true for 2 or 3 dimensions. The UB-Tree range query performance is
on the average several orders of magnitude faster than IOTs and SII. We measured an
increase in speed of several thousands compared to SSI and – depending on the restriction –
between two and one-hundred compared to a compound index. Performing an index scan over
the whole relation with a UB-Tree results in a performance similar to a scan over a clustered
primary compound B-Tree (see also [Fri97]).

0

50

100

150

200

250

300

0% 25% 50% 75% 100%
restriction in %

ti
m

e
in

 s

SSI
IOT A1
IOT A2-A6
FTS
UB

0

50

100

150

200

250

300

0% 25% 50% 75% 100%
restriction in %

ti
m

e
in

 s

SSI
IOT
FTS
UB

 (a) (b)
Figure 7-9: DBMS2

Figure 7-9 shows 35%-measurements and cube measurements on DBMS2 performed on a 4
CPU Pentium Pro 200 MHz with Windows NT 4.0. The test table stores 250 thousand
independently uniformly distributed 6-dimensional tuples on 27194 pages. Besides the more
efficient FTS and the use of a SSI instead of SII these measurement series are qualitatively
identical to those of DBMS1 on Solaris 2.5.1 as described above. The only difference to
DBMS1 is that DBMS2 does not perform an intersection of secondary indexes for this query.
Using bitmap indexes resulted in a performance worse than any of the IOT. Instead, we
measured the use of a single secondary index (SSI) on the most selective attribute. Further
measurements on DBMS2 (varying tuple size, varying table size, comparison between NT
and Solaris) showed the behavior as predicted by our cost model (see [Pie98]).

Selectivity in A1
UB-Tree IOT A1 IOT A2 SSI FTS

20% 1,4 s 55,0 s 98,3 s 415,7 s 21,4 s
40% 2,4 s 108,6 s 98,5 s 725,1 s 21,3 s

Table 7-6: Response times for 35%-measurements on DBMS2 with A1 as variable attribute

Selectivity
in each dimension

UB-
Tree

IOT SSI FTS

20% 0,1 s 55,8 s 428,4 s 20,9 s
40% 4,5 s 112,1 s 852,2 s 21,4 s

Table 7-7: Response times for cube measurements on DBMS2

SECTION 7.4: RANGE QUERY PERFORMANCE 159

7.4.3 Partial Range Queries

The following measurements illustrate the performance of the UB-Tree for partial range
queries. The measurements were also performed with DBMS2 on a 4 CPU Pentium Pro 200
MHz with Windows NT 4.0. The test table stores 250 thousand independently uniformly
distributed 6-dimensional tuples on 27194 pages.

While Section 7.4.2 restricted each of the d attributes of the UB-Tree to an interval smaller
than the domain of an attribute, some dimensions are not restricted on this measurement. The
measurement series here resembles a 35%-measurements series with the only difference that
less than d-1 dimensions are restricted to 35%. The number a in the legend entry “UB a + 1”
of Figure 7-10 shows how many dimensions are restricted to 35%. The other d-a-1
dimensions are not restricted. The graph shows a variation of a from 1 to 5 for the 6-
dimensional UB-Tree (note that “UB 5 + 1” is the actual 35%-measurement series of the
previous section). “IOT var” in the legend of the figure means that an IOT on the variable
attribute of the 35%-measurement is used for answering the query, whereas “IOT 35%” resp.
“IOT 100%” use an IOT on an attribute with a selectivity of 35% resp. 100% for processing
the query. The measurement shows that as soon as two dimensions are restricted the UB-Tree
is superior to IOTs, unless the restriction in the first attribute of the IOT is sufficiently small.
The performance increase of the UB-Tree with a growing number of restricted dimensions
shows that the UB-Tree indeed utilizes the restriction in all dimensions in order to reduce I/O.
As soon as at least 4 out of 6 dimensions are restricted, the UB-Tree is also superior to an FTS
even though the FTS of DBMS2 uses page clustering. The UB-Tree is also superior to an
FTS, if at least 3 out of 6 attributes are restricted with a selectivity of less than 50% or 2 out
of six attributes are restricted to a selectivity of less than 25%.

Figure 7-11 resembles a cube measurement series, where the “UB a” legend entry means that
only a out of d attributes are restricted. “UB 6” of that figure is equivalent to the cube
measurement series of the previous section .”IOT var” here means that an IOT on a variable
dimension is used for query processing, whereas “IOT const” uses an IOT on a non-restricted
attribute. Again the figure shows that further restricted attributes are used by the UB-Tree to
reduce the response time for query processing, while FTS and IOTs cannot take any
advantage of additional restrictions. An IOT on a variable attribute is superior to the UB-Tree,
if only this attribute is restricted by the query (i.e., the query defines a hyperplane, only one
dimension is restricted). Of course a specialized one-dimensional index like an IOT in this
case is better than a multidimensional UB-Tree. However, as soon as at least two out of six
attributes are restricted, the UB-Tree is superior to an IOT. As soon as at least 3 out of 6
attributes are restricted to a selectivity of less than 50%, the UB-Tree is also superior to an
FTS even though the FTS of DBMS2 uses page clustering.

160 CHAPTER 7: PERFORMANCE MEASUREMENTS

0

100

200

300

0% 100%restriction in %

ti
m

e
in

 s

IOT 100% UB 0 + 1
IOT 35 % UB 1 + 1
IOT var UB 2 + 1
FTS UB 3 + 1
UB 4 + 1 UB 5 + 1

Figure 7-10: Varying the number of restricted dimensions for 35% restrictions (DBMS2)

0

100

200

300

0% 100%restriction in %

tim
e

in
 s

IOT const
UB 1
IOT var
UB 2
UB 3
FTS
UB 4
UB 5
UB 6

Figure 7-11: Varying the number of restricted dimensions for cube restrictions (DBMS2)

CHAPTER 8: IMPACTS ON RELATIONAL QUERY PROCESSING 161

Change is not made without
inconvenience, even from worse to
better.

 (Richard Hooker)

Chapter 8

Impacts on Relational Query Processing

B-Trees and the Tetris algorithm can be used to accelerate almost any
query processing operation: Relational queries or SQL queries consist of
restrictions, projections, ordering, grouping and aggregation, and join
operations. In the presence of multidimensional restrictions or sorting
these operations are efficiently implemented by either using the range
query algorithm or the Tetris algorithm. In this chapter we investigate the

impacts of our approach on query processing in RDBMS. We present performance
measurements for two application scenarios: We selected three queries of the TPC-D
benchmark to show the potential of the UB-Tree range query algorithm and the Tetris
algorithm. We then show the benefits of Multidimensional Hierarchical Clustering by
performance measurements of queries in a star schema typical for data warehousing
applications. The performance results reported in this chapter were measured for one of our
project partners with our prototype implementation of UB-Trees on top of DBMS2. We
compare the performance of UB-Trees to native query processing techniques of DBMS2,
namely access via an index organized table (IOT), which essentially stores a relation in a clus-
tered B*-Tree, and access via a full table scan (FTS) of an entire relation. In addition we
measure the performance of a single secondary B*-Tree index (SSI) and of an intersection of
multiple bitmap indexes (BII) to answer multidimensional range queries.

U

162 CHAPTER 8: IMPACTS ON RELATIONAL QUERY PROCESSING

8.1 Relational Operations with UB-Trees and the Tetris-

Algorithm

In accordance with the definition of O(n) (e.g., [AHU74]) we define the terms CPU-
complexity, asymptotic CPU-complexity CPU(n), I/O complexity, asymptotic I/O-complexity
IO(n), space complexity and asymptotic space complexity SPACE(n). These operations will
be used to investigate the complexity of the operations of the relational algebra using UB-
Trees with the range query algorithm and the Tetris algorithm.

Definition 8-1 (CPU-complexity, asymptotic CPU-complexity CPU(n)): The CPU-
complexity of an algorithm is the CPU-time needed by an algorithm expressed as a
function of the size of the input data. An algorithm with a CPU-complexity defined by
a function g(n) has an asymptotic CPU-complexity CPU(f(n)), if there exists a
constant c such that g(n) ≤ c⋅f(n) for all but some finite (possibly empty) set of non-
negative values for n.

Definition 8-2 (I/O-complexity, asymptotic I/O-complexity IO(n)): The I/O-complexity of
an algorithm is the I/O-time (usually measured by the number of random disk
accesses) needed by an algorithm expressed as a function of the size of the input data.
An algorithm with a I/O-complexity defined by a function g(n) has an asymptotic I/O-
complexity IO(f(n)), if there exists a constant c such that g(n) ≤ c⋅f(n) for all but some
finite (possibly empty) set of non-negative values for n.

Definition 8-3 (SPACE-complexity, asymptotic SPACE-complexity SPACE(n)): The
SPACE-complexity of an algorithm is the temporary storage space needed by an
algorithm expressed as a function of the size of the input data. An algorithm with a
SPACE-complexity defined by a function g(n) has an asymptotic SPACE-complexity
SPACE(f(n)), if there exists a constant c such that g(n) ≤ c⋅f(n) for all but some finite
(possibly empty) set of non-negative values for n.

8.1.1 Asymptotic complexity of the UB-Tree Range Query Algorithm

In the following we assume a multidimensional query box with the selectivities s1, ..., sd over
a relation of T tuples stored on P pages. We consequently also assume Z-addresses to have a
length of a bits.

Thus the range query algorithm has a CPU-complexity which depends on the number of Z-
regions intersecting the query box. According to our cost functions of Section 6.1 this number
is related to the selectivity of the restrictions of the query box. In addition the CPU-
complexity of the range query algorithm linearly depends on the length of the Z-addresses.
The Z-address length is identical to the length of the index attributes of a tuple (see Section
5.3). Thus the range query algorithm also depends linearly on the tuple size (see Section 5.7).

The I/O-complexity solely depends on the number of Z-regions intersecting the query box and
only one Z-region needs to be stored to perform the range query algorithm. Thus the storage
space complexity of the range query algorithm is constant with respect to the problem size.

SECTION 8.1: RELATIONAL OPERATIONS WITH UB-TREES AND THE TETRIS-ALGORITHM163

Using the results of Section 6.1 and 5.7, the range query algorithm for a query box has an
asymptotic CPU-complexity of







⋅⋅ ∏

=

d

j
jsPa

1

CPU
)

 bit operations,

an asymptotic I/O-complexity of







⋅∏

=

d

j
jsP

1

IO
)

 random disk accesses,

and an asymptotic space complexity of

SPACE(1).

8.1.2 Asymptotic complexity of the Tetris Algorithm

The Tetris algorithm has to retrieve the same number of Z-regions as the range query
algorithm. The number of CPU-operations for determining the next Z-region in Tetris order
are also identical to those of the range query algorithm. Thus from a complexity point of view
the only difference between the Tetris algorithm and the range query algorithm is the storage
complexity, which in this case is determined by the Tetris cache.

We again assume a multidimensional query box with the selectivities s1, ..., sd over a relation
of T tuples stored on P pages. We also assume a UB-Tree with a Z-address length of a bits.
Then the Tetris algorithm to sort the query box with respect to attribute Ak has an asymptotic
CPU-complexity of







⋅⋅ ∏

=

d

j
jsPa

1

CPU
)

,

an asymptotic I/O-complexity of







⋅∏

=

d

j
jsP

1

IO
)

 random disk accesses,

and an asymptotic space complexity of

















 ⋅∏
=

k

d

j
j

l

sP
1SPACE

)

 disk pages.

In the above formula lk = nk(d, P, yk, zk) is the number of slices of the query box in dimension k
with respect to the multidimensional space partitioning (see Section 6.1).

164 CHAPTER 8: IMPACTS ON RELATIONAL QUERY PROCESSING

8.1.3 Asymptotic complexity of Operations of Relational Query Processing

The UB-Tree range query algorithm may be used to efficiently process multi-attribute
restrictions. The Tetris algorithm may be used to implement most operations of the relational
algebra or SQL with linear I/O-complexity, if the Tetris cache size suffices to hold one
processing slice of the Tetris algorithm [Bay97b]. This assumption is realistic, since our
measurements showed that sorting 50 % of a 1.3 GB table only requires a cache size of 2.6
MB (cf. Section 8.2.1). The actual cache size depends on the multidimensional partitioning of
the table and thus on the data distribution. While it is not possible to give an upper bound for
the cache size (besides the relation size), experiments with various database sizes showed that
usually a reasonable partitioning exists which keeps the cache size very low.

We denote the selection operations by σ, the join operation by , grouping by γ, ordering by
ω, set union by ∪, intersection by ∩ and difference by \. These operations are implemented
by operator trees processing several operators on tuple streams. Next to the access primitives
range and tetris (which implement the UB-Tree range query algorithm and the Tetris
algorithm) we use the operator merge to merge two sorted streams of tuples based on identity
in an attribute set, the operator remove-duplicate, which eliminates duplicates of a sorted
stream of tuples and aggregate, which performs grouping and performs the required
aggregations. In addition we use the tuple stream operators union, intersection and difference
that perform set union, intersection and difference on an ordered stream of tuples.

The range query algorithm and the Tetris algorithm can be used to implement the following
operations of SQL or the relational algebra, since an efficient implementation of this
algorithm may utilize a sorted stream of tuples:

• projecting R to attr with duplicate elimination: πattr(R)

• sorting R with respect to attr: ωattr(R)

• grouping R with respect to attr and aggregating attributes with aggregation functions as
specified in agg: γattr,agg(R)

• equi-joining R with S with respect to attr: R attr S

• set union of R and S: R ∪ S

• set intersection of R and S: R ∩ S

• set difference of R and S: R \ S

If multi-attribute restrictions on the relation(s) are used in combination with any of the above
operations, these restrictions are utilized on the fly and thus reduce both the Tetris-cache size
and number of page accesses necessary to perform the operation.

SECTION 8.1: RELATIONAL OPERATIONS WITH UB-TREES AND THE TETRIS-ALGORITHM165

σcond(R) = rangecond(R) (selection)

πattr(σcond(R)) = remove-duplicate(tetrisattr,cond(R)) (projection)

ωattr(σcond(R)) = tetriscond(R, attr) (ordering)

γattr,agg(σcond(R)) = aggregate(tetriscond(R, attr), agg) (grouping and aggregation)

σcond1(R) attr σcond2(S) = merge(tetriscond1(R, attr), tetriscond2(S, attr)) (join)

σcond1(R) ∪ σcond2(S) = union(rangecond1(R), rangecond2(S)) (set union)

σcond1(R) ∩ σcond2(S) = intersect(rangecond1(R), rangecond2(S)) (set intersection)

σcond1(R) ? σcond2(S) = difference(rangecond1(R), rangecond2(S)) (set difference)

Figure 8-1: Transformation rules for the implementation of algebraic operations

Figure 8-1 gives transformation rules for projection, ordering, grouping and aggregation and
join in combination with multi-attribute restrictions, so that the Tetris operator can be used for
efficient implementation of these operations. In the Figure R, S denote relations, cond, cond1,
cond2 denote conditions defining multidimensional intervals, attr denotes an attribute of R
respectively S and agg denotes a specification of attributes and an aggregation function for the
attributes. The rules given in this figure may be used as transformation rules for algebraic
query optimization.

Applying the transformation rules of Figure 8-1, Table 8-1 lists the asymptotic CPU-, I/O-
and space-complexity of the basic operations of relational query processing and opposes them
to their complexity with a B-Tree implementation.

In the table we write ∏
=

⋅=
d

j
jsPV

1

)
 to denote the size of the result set of condition cond

(analgously for VR, VS for condR and condS). We assume the B-Tree to be built on the attribute
i and denote the selectivity of that attribute by si. If the index attribute i is also the sort
attribute attr, then si = 0 and V = P. We denote the length of a tuple in bits by a.

166 CHAPTER 8: IMPACTS ON RELATIONAL QUERY PROCESSING

UB-Tree/Tetris B-Tree/Mergesort

CPU I/O SPACE CPU I/O SPA-

CE

σcond(R) O(V ⋅ a) O(V) O(1) O((P⋅si+V⋅log V)⋅a) O(P⋅si+V⋅log V) O(V)

πattr(σcond(R)) O(a⋅V⋅log V) O(V)









attrl

V
O O((P⋅si+V⋅log V)⋅a) O(P⋅si+V⋅log V) O(V)

ωattr(σcond(R)) O(a⋅V⋅log V) O(V)









attrl

V
O O((P⋅si+V⋅log V)⋅a) O(P⋅si+V⋅log V) O(V)

γattr,agg(σcond(R)) O(a⋅V⋅log V) O(V)









attrl

V
O O((P⋅si+V⋅log V)⋅a) O(P⋅si+V⋅log V) O(V)

σcond1(R)

attr

σcond2(S)

O(a⋅VR⋅log VR)

+

O(a⋅VS⋅log VS)

O(VR+VS)








+

attr

S

attr

R

k

V

l

V
O O((PR⋅si+VR⋅log VR)⋅a)

+

O((PS⋅si+VS⋅log VS)⋅a)

O(PR⋅si+VR⋅log VR)

+

O(PS⋅si+VS⋅log VS)

O(V)

σcond1(R)

∪
σcond2(S)

O(a⋅VR)

+

O(a⋅VS)

O(VR+VS) O(1) O((PR⋅si+VR⋅log VR)⋅a)

+

O((PS⋅si+VS⋅log VS)⋅a)

O(PR⋅si+VR⋅log VR)

+

O(PS⋅si+VS⋅log VS)

O(V)

σcond1(R)

∩
σcond2(S)

O(a⋅VR)

+

O(a⋅VS)

O(VR+VS) O(1) O((PR⋅si+VR⋅log VR)⋅a)

+

O((PS⋅si+VS⋅log VS)⋅a)

O(PR⋅si+VR⋅log VR)

+

O(PS⋅si+VS⋅log VS)

O(V)

σcond1(R)

?
σcond2(S)

O(a⋅VR)

+

O(a⋅VS)

O(VR+VS) O(1) O((PR⋅si+VR⋅log VR)⋅a)

+

O((PS⋅si+VS⋅log VS)⋅a)

O(PR⋅si+VR⋅log VR)

+

O(PS⋅si+VS⋅log VS)

O(V)

Table 8-1: Complexities of relational operators

Thus UB-Trees and the Tetris algorithm have the potential to speed up any operation
involving multi-attribute restrictions and sort operations. In Section 8.2 we will show
performance measurements and comparisons for queries using some these operations. In
Section 8.3 we will investigate a special variant of a multiway join-operation, the so-called
star-join, and reduce it to multi-attribute restrictions with the technique of multidimensional
hierarchical clustering as described in Section 5.3.4.

SECTION 8.2: COMPLEX QUERIES ON GENERATED DATA: THE TPC-D BENCHMARK 167

8.2 Complex Queries on Generated Data: The TPC-D

Benchmark

We analyzed the entire TPC-D benchmark [TPC97] for the usability of multidimensional
access methods. From our analysis we expect that 12 out of 17 queries will benefit from
multidimensional indexing techniques and the Tetris algorithm. The five queries that will not
benefit from multidimensional indexes either only restrict a single attribute without complex
joins/sort operations or retrieve a result set whose size makes an FTS preferable to any access
method. To show the performance gain of UB-Trees and the Tetris algorithm we selected the
TPC-D queries Q3, Q4 and Q6.

We used a SUN ULTRA SPARC II with 512 MB main memory and an array of five 4 GB
hard disks with an average positioning time of 8ms and a transfer rate of 0.7ms per page to
generate the ORDER, LINEITEM, and CUSTOMER tables (cf. Figure 2-2) for several
scaling factors of the TPC-D benchmark. Actually the Tetris performance is even better than
reported in this section: The measurements were conducted with UB-Trees emulated on top of
DBMS2 and are compared against IOTs and FTS integrated into the DBMS2 kernel.

8.2.1 Joins and Restrictions

Query Q3 (cf. Figure 8-2) of the TPC-D benchmark is a shipping priority query, which
retrieves the shipping priority and potential revenue of the orders having the largest revenue
among those that had not been shipped as of a given data. This query consists of restrictions
and join operations involving three relations and is efficiently processed by the Tetris
algorithm.

SELECT L_ORDERKEY, SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,
O_ORDERDATE, O_SHIPPRIORITY

FROM CUSTOMER, ORDER, LINEITEM
WHERE

C_MKTSEGMENT = ’FOOD’ AND
C_CUSTKEY = O_CUSTKEY AND

 L_ORDERKEY = O_ORDERKEY AND
 O_ORDERDATE < DATE 1.5.98 AND
 L_SHIPDATE > DATE 1.6.98
GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY
ORDER BY REVENUE DESC, O_ORDERDATE

Figure 8-2: Query Q3 of the TPC-D benchmark

The operator tree for Q3 which is generated by a standard RDBMS like DBMS2 is illustrated
in Figure 8-3a. The query is processed by first applying the restrictions on each table and then
performing a hash join or a sort-merge join on the intermediate result. The join order of
Figure 8-3a is due to the fact that the LINEITEM relation is four times larger than the
ORDER relation and 40 times larger than the CUSTOMER relation. The intermediate result
of the second join is used for grouping with aggregation and final ordering.

168 CHAPTER 8: IMPACTS ON RELATIONAL QUERY PROCESSING

CUSTOMER ORDER LINEITEM

τωCUSTKEY,

σMKTSEGEMT

τωCUSTKEY,

σORDERDATE

 µCUSTKEY

µORDERKEY

τωORDERKEY,

σSJIPDATE

γORDERKEY, ORDERDATE,

SHIPPRIORITY

ωREVENUE, ORDERDATE,

 ωORDERKEY

CUSTOMER ORDER LINEITEM

σMKTSEGEMT σORDERDATE

 CUSTKEY

(ωCUSTKEY, µCUSTKEY)

><

 ORDERKEY

(ωORDERKEY, µORDERKEY)

><

σSHIPDATE

γORDERKEY, ORDERDATE,

SHIPPRIORITY

ωREVENUE, ORDERDATE,

 (a) (b)
Figure 8-3: Operator trees for Q3

With UB-Trees on CUSTOMER(CUSTKEY, MKTSEGMENT), ORDER(ORDERKEY,
CUSTKEY, ORDERDATE), and LINEITEM(SHIPDATE, ODERKEY) Figure 8-3b and
Figure 8-4 illustrate the Tetris operator τσ,ω, which combines selection and sorting. Reading
the restricted part of each relation in sort order of the join attribute causes a sorted stream of
tuples. This stream is transferred to the merge operator µ and processed further.

O_ORDERKEY

O
_C

U
S

T
K

E
Y

O_O
RDERDATE

C_MKTSEG.

C
_C

U
S

T
K

E
Y

L_ORDERKEY

L
_S

H
IP

D
A

T
E

sort direction

CUSTOMER

ORDER

LINEITEM

1

2

Figure 8-4: Processing Q3 with the Tetris algorithm

SECTION 8.2: COMPLEX QUERIES ON GENERATED DATA: THE TPC-D BENCHMARK 169

We measured the sorted table accesses of query Q3 for different TPC-D scaling factors (SF)
from 0.1 to 1 (SF = 1 means a size of 1GB for LINEITEM). We do not want to enter the
debate whether sort-merge joins or hash joins perform better [Mer81, DKO+84]. We chose a
large main memory for our test environment, since according to [CHH+91] sort-merge join
and hash join have a similar performance for computer systems with large main memories.
Consequently we use a sort-merge join because this method is easier to handle by our test
environment.

Since the LINEITEM table is the major bottleneck for Q3, we focus on this relation for our
performance comparison. We created four instances of LINEITEM: an IOT on SHIPDATE,
an IOT on ORDERKEY and a relation with secondary indexes on each restricted or sorted
attribute. The optimizer favored an FTS over secondary indexes, which our theoretical
considerations and measurements proved to be the right decision (forcing DBMS2 to process
Q3 with a secondary index on SHIPDATE or ORDERKEY took more than 6 hours for SF =
1). We therefore exclude secondary indexes from further considerations.

Figure 8-5 and Table 8-2 show that the Tetris algorithm for UB-Trees is most preferable to
answer this query. The 50% restriction on SHIPDATE is not selective enough for an IOT on
SHIPDATE to be competitive. The presorted IOT on ORDERKEY does not require a merge
sort and therefore shows response times similar to an FTS with merge sort. Using Tetris for
sorting LINEITEM is more than three times faster than FTS or any IOT. The first response of
Tetris is already produced after few seconds, two to three orders of magnitude faster than with
FTS or any IOT. While the intermediate storage requirements of Tetris are not exactly zero as
for an IOT on ORDERKEY, they are extremely low: Compared to an FTS or an IOT on
SHIPDATE they are several orders of magnitude lower.

0

1000

2000

3000

4000

0 0,25 0,5 0,75 1
TPC-D scaling factor

ti
m

e
in

 s

IOT SHIPDATE
IOT ORDERKEY
FTS
Tetris

0

25

50

75

100

0 0,25 0,5 0,75 1
TPC-D scaling factor

te
m

po
ra

ry
 s

to
ra

ge
 in

 M
B

IOT SHIPDATE and FTS

Tetris
IOT ORDERKEY

Figure 8-5: Response times and temporary storage for sorting 50 % of LINEITEM for Q3

Since for FTS and IOT on SHIPDATE storage requirements grow linearly with tablesize, the
main memory is exceeded soon. To conduct our measurements we had to enlarge the
temporary DBMS2 tablespaces several times. In contrast to that the Tetris cache grows with

tablesize (cf. Section 6.4.1) and fits into the main memory of current computer systems even
for table sizes of several Terabytes.

170 CHAPTER 8: IMPACTS ON RELATIONAL QUERY PROCESSING

Table Size

Scaling Factor (SF)

33 MB

(0.025)

81 MB

(0.0625)

131 MB

(0.1)

163 MB

(0.125)

326 MB

(0.25)

651MB

(0.5)

1302MB

(1)

Tetris 1st response 0.3s 0.5s 0.7s 1,1s 1,3s 1,3s 3,3s

Tetris Slices 64 128 128 128 256 256 512

Time IOT ORDERKEY 64.7s 184.3s 306.7s 356.2s 834.3s 1753.6s 3604.1s

Time IOT SHIPDATE 72.5s 226.9s 401.3s 554..3s 1223.7s 2569.8s 5286.4s

Time FTS-Sort 34.1s 126.7s 234.0s 381.1s 816.5s 1479.4s 3276.4s

Time Tetris 23.1s 64.4s 92.5s 106.2s 257.5s 441.2s 1062.2s

Cache Tetris 0.3.MB 0.3MB 0.9MB 1.1MB 1.4MB 2.1MB 2.6MB

Temp Storage IOT/FTS 17MB 40MB 65MB 81MB 183MB 326MB 751MB

Table 8-2: Interactive response times and cache sizes for sorting 50 % of LINEITEM

8.2.2 Joins, Grouping, and Restrictions

The query Q4 (cf. Figure 8-6) of the TPC-D benchmark is an order priority checking query,
i.e., it counts the number of orders placed in a given quarter of a given year in which at least
one line item was received by the customer later than its committed date. The query lists the
count of such orders for each order priority sorted in ascending priority order. Since Q4
involves restrictions, joins, and grouping, it is efficiently supported by the Tetris algorithm.

SELECT O_ORDERPRIORITY, COUNT(*) AS ORDER_COUNT
FROM ORDER
WHERE
O_ORDERDATE >= DATE ’[date]’ AND
O_ORDERDATE < DATE ’[date]’ + INTERVAL ’3’ MONTH AND
EXISTS (SELECT *

FROM LINEITEM
WHERE

L_ORDERKEY = O_ORDERKEY AND
L_COMMITDATE < L_RECEIPTDATE)

GROUP BY O_ORDERPRIORITY
ORDER BY O_ORDERPRIORITY

Figure 8-6: Q4 of the TPC-D benchmark

Assuming a three dimensional organization of ORDER (ORDERDATE, ORDERPRIORITY,
ORDERKEY) and LINEITEM (COMMITDATE, RECEIPTDATE, ORDERKEY), query
processing with the Tetris algorithm is shown in Figure 8-7. Q4 groups the restricted ORDER
table depending on tuple existence in the LINEITEM table. Efficiently processing this query
means processing ORDER in ORDERKEY order while using the 3.5%-restriction on
ORDERDATE. To evaluate the existential restriction, LINEITEM is processed in
ORDERKEY order and semi-joined to ORDER. The Tetris-algorithm can be used to process
the triangular search space defined by COMMITDATE < RECEIPTDATE in ORDERKEY
order. Processing each ORDERDATE-slice in ORDERPRIORITY order reduces the number
of CPU operations, since groups can be built without comparisons. When processing the last
ORDERDATE slice, completing an ORDERPRIORITY slice allows one to transfer the
corresponding group immediately to the user.

SECTION 8.2: COMPLEX QUERIES ON GENERATED DATA: THE TPC-D BENCHMARK 171

L_COMMITDATE

L
_R

E
C

E
IP

T
D

A
T

E60
%

L_ORDERKEY

O_ÔRDERDATE

O
_O

D
E

R
P

R
IO

R
IT

Y

O_O
RDERKEY

LINEITEM ORDER

3.5%

Figure 8-7: Processing Q4

We just report the response times and cache sizes of sorting ORDER in Figure 8-8 and Table
8-3, since the enhancement of the Tetris algorithm for non-rectangular query spaces has not
been implemented yet. The restrictions on ORDER are selective enough for an IOT on
ORDERDATE to be superior to FTS and IOT on ORDERKEY. In accordance with our cost
functions the sudden increase of the FTS for SF = 0.5 is due to the fact that at this point the
main memory is not sufficient anymore to sort the result internally. The Tetris algorithm is
superior to FTS and any IOT, since it utilizes restrictions and sorts the data at the same time.
Even for this quite selective ORDERDATE restriction the Tetris algorithm is more than three
times faster than the IOT on ORDERDATE. Tetris also is 11 times faster than an FTS and
about 30 times faster than an IOT on ORDERKEY.

0

250

500

750

1000

1250

1500

0 1 2 3 4
TPC-D scaling factor

ti
m

e
in

 s

IOT ORDERKEY
FTS
IOT ORDERDATE
Tetris

0

2

4

6

8

10

0 1 2 3 4
TPC-D scaling factor

te
m

po
ra

ry
 s

to
ra

ge
 in

 M
B

IOT ORDERDATE and FTS
Tetris
IOT ORDERKEY

Figure 8-8: Responses time and temporary storage for sorting 3.5% of ORDER for Q4

As predicted by our cost functions (cf. Section 6.4.1), the Tetris cache of Figure 8-8 is more
than 60 times lower than the intermediate storage of an IOT on ORDERDATE or FTS. Even
for a ORDER table of 1.5GB (SF = 4) the 0.3 MB Tetris cache easily fits into main memory.

172 CHAPTER 8: IMPACTS ON RELATIONAL QUERY PROCESSING

Table Size

Scaling Factor (SF)

32 MB

(0.1)

79 MB

(0.25)

131 MB

(0.4)

161 MB

(0.5)

322 MB

(1)

750MB

(2)

1498MB

(4)

Tetris 1st response 0,2s 0,4s 0,1s 0,1s 0.1s 0.2s 0.3s

Tetris Slices 64 128 128 128 256 256 512

Time IOT ORDERKEY 62.0s 178.4s 295.9s 406.9s 813.8s 1627.5s 3254.9s

Time IOT ORDERDATE 3.2s 9.2s 16.8s 34.3s 95.4s 194.2s 390.4s

Time FTS-Sort 5.2s 12.5s 19.9s 146.4s 335.2s 758.6s 1396.7s

Time Tetris 3.3s 7.8s 10.5s 12.2s 29.7s 47.8s 113.9s

Cache Tetris 0.1MB 0.1MB 0.2MB 0.2MB 0.2MB 0.2MB 0.3MB

Temp Storage IOT/FTS 1.3MB 3.2MB 5.2MB 6.4MB 12.9MB 30.1MB 60.1MB

Table 8-3: Interactive response times and cache sizes for sorting 3.5% of ORDER

8.2.3 Multi-attribute Restrictions

Query Q6 (cf. Figure 8-9) of the TPC-D benchmark is a forecasting revenue query, which
lists the amount by which the total revenue would have increased if the discounts had been
eliminated for line items with a quantity less than a given quantity in a given year with a
discount deviating 0.01 from a given discount. The UB-Tree range query algorithms may be
used to efficiently process this query involving multi-attribute restrictions and aggregations.

SELECT SUM(L_EXTENDEDPRICE*L_DISCOUNT) AS REVENUE
FROM LINEITEM
WHERE

L_SHIPDATE >= [date] AND
L_SHIPDATE <= [date] + INVERVAL 1 YEAR AND
L_DISCOUNT BETWEEN [discount] –0.01

AND [discount] + 0.01 AND
L_QUANTITY < [quantity]

Figure 8-9: Query Q6 of the TPC-D benchmark

Q6 is processed by either using an IOT on SHIPDATE to materialize the result and then
check the conditions on DISCOUNT and QUANTITY, or perform an FTS, if no such index
exists. Performing an index intersection on three secondary B*-Trees is not very efficient,
since the selectivity of an individual attribute is relatively low (20% for SHIPDATE, 33% for
DISCOUNT and 50% for QUANTITY). An intersection of bitmap indexes is not a good
choice either, since the number of distinct values for SHIPDATE, DISCOUNT, and
QUANTITY is quite high. Since 1/30th of all tuples of LINEITEM satisfy the restrictions of
Q6, 200k tuples have to be retrieved to process the query for SF = 1. Bitmap indexes and
secondary B-Trees do not cluster the data. Therefore an FTS is preferable to both access
methods. Multidimensional indexes cluster data symmetrically with respect to all index
attributes. With 8kB pages 80 tuples of the LINEITEM relation are stored together on one
page. Accessing 200k tuples then means 2.5k random disk accesses. Thus it makes sense to
use a multidimensional index for this type of query.

SECTION 8.2: COMPLEX QUERIES ON GENERATED DATA: THE TPC-D BENCHMARK 173

For Q6 we created five instances of LINEITEM, namely a UB-Tree, an IOT on each restricted
attribute, and a table with three secondary B-Trees, one on each restricted attribute. As
expected it was not possible to make the optimizer perform an index intersection. The
optimizer always preferred an FTS instead. Forcing the optimizer to use a single secondary
index on SHIPDATE (the most selective attribute) was much less efficient than an FTS. Since
this verifies our theoretical expectations, as before we exclude secondary indexes also from
our performance comparison for Q6.

LINEITEMTetris

L_SHIPDATE L
_D

IS
C

O
U

N
T

L_Q
UANTIT

Y

LINEITEM IOT

L_SHIPDATE L
_D

IS
C

O
U

N
T

L_Q
UANTIT

Y

LINEITEMFTS

L_SHIPDATE L
_D

IS
C

O
U

N
T

L_Q
UANTIT

Y

Figure 8-10: Processing Q6 with UB-Tree, IOT and FTS

The shaded part of Figure 8-10 shows the part of LINEITEM that is retrieved by the Tetris
algorithm, the IOT on SHIPDATE, and the FTS in order to process Q6. Although an FTS
retrieves the entire relation, prefetching strategies substantially reduce the number of random
accesses and make the FTS superior to any IOT.

Table Size

Scaling Factor (SF)

33 MB

(0.025)

81 MB

(0.0625)

131 MB

(0.1)

163 MB

(0.125)

326 MB

(0.25)

651MB

(0.5)

1302MB

(1)

Time IOT QUANTITY 43,6s 109,2s 180,1s 225,2s 460,7s 921,4s 1842,8s

Time IOT DISCOUNT 31,2s 78,3s 126,4s 158,2s 339,2s 678,4s 1356,8s

Time IOT SHIPDATE 21,2s 53,7s 81,6s 102,1s 208,1s 416,3s 832,5s

Time FTS 5,2s 12,1s 19,2s 23,8s 47,7s 93,9s 187,6s

Time UB-Tree 1,1s 2,5s 4,5s 5,8s 12,0s 21,3s 30,5s

Table 8-4: Interactive response times for Q6

Table 8-4 and Figure 8-11 again show the superiority of a multidimensional organization over
classical access methods by a sixfold speedup of the Tetris algorithm over an FTS and by a
speedup of two to three orders of magnitude over any IOT. The results also show that an FTS
is superior to any one dimensional index, since the FTS uses page clustering whereas indexes
only use tuple clustering. In accordance with our cost formulas from Section 6.3, the
restriction in any dimension is not selective enough for an IOT to make up the page clustering
advantage of the FTS. However, a multidimensional organization of the table with a UB-Tree
utilizes the restriction in all dimensions and thus clearly outperforms the FTS. In addition, an
FTS puts an enormous load on the system in both I/O-resources and CPU-resources, since
each tuple of the relation is retrieved and processed in main memory (cf. [Pie98]). Thus,
especially for multi-user environments indexes may be preferable to an FTS because of
concurrency considerations.

174 CHAPTER 8: IMPACTS ON RELATIONAL QUERY PROCESSING

0

50

100

150

200

0 0,25 0,5 0,75 1
TPC-D scaling factor

ti
m

e
in

 s

IOT QUANTITY IOT DISCOUNT
IOT SHIPDATE FTS
UB-Tree

Figure 8-11: Performance of Q6

8.2.4 Summary: TPC-D Performance Measurements

Our performance measurements of three TPC-D queries have shown that UB-Trees and the
Tetris algorithm are superior to one-dimensional access methods with respect to both response
time and systems resources for storing intermediate results. With the Tetris algorithm a new
operator may be introduced into query processing, the so-called Tetris operator. This operator
combines the evaluation of multi-attribute restriction with a sort operation in one processing
step, if a relation is organized by a multidimensional index.

Usually no more than 3 to 6 foreign keys are used to describe the foreign keys relationships
between tables. For these dimensionalities only I/O-time linear in the size of the result set and
sublinear temporary storage are necessary to perform the Tetris algorithm. In contrast to a
merge-sort algorithm results are produced in a continuous flow of operation. Therefore
sorting is no longer a blocking operation. Compared to existing techniques, the first results are
available much earlier and thus allow better interactive response times and better internal
pipelining of the data. The benchmark results for three queries of the TPC-D benchmark show
speedups of up to two orders of magnitude in response time. Depending on the query,
temporary storage requirements are reduced by several orders of magnitude

.

SECTION 8.3: A REAL WORLD DATA WAREHOUSE: THE JUICE & MORE BENCHMARK 175

8.3 A Real World Data Warehouse: The Juice & More

Benchmark

The most established relational data models for data warehousing applications are the star
schema and the snowflake schema. In both approaches there is a central fact table that
contains the measures and the dimension tables are situated around it. The connection
between a fact tuple and the corresponding dimension members is realized via foreign key
relationships. In the star schema the dimension tables are completely denormalized while in
the snowflake schema they may be normalized. Queries usually contain restrictions on
multiple dimension tables (e.g., only sales for specific customer group and for a specific time
period are asked) that are then used as restrictions on the usually very large fact table. This
operation (star join) is typical for such models. In ROLAP hierarchies are usually modeled
implicitly by a set of attributes A1, ..., An where Ai corresponds to hierarchy level i.

In this section we investigate, how our technique of multidimensional hierarchical clustering
of Section 5.3.4 may be used to accelerate star-joins, the most frequent operation of query
processing for relational data warehouses.

We use the schema of the beverages supplier ‘Juice & More’, a real customer of one of our
project partners18. In the data warehouse of ‘Juice & More’ data is organized along the
following four dimensions: CUSTOMER, PRODUCT, DISTRIBUTION and TIME. Figure
8-12a shows the hierarchies over the dimensions (the number in parentheses specifies the
maximal number of level members).

Year (3)

Month (12)

TIME

Region (8)

Nation (7)

Trade Type (2)

Business Type (7)

CUSTOMER

Type (5)

Brand (8)

Category (19)

Container (10)

PRODUCT

Sales
Organization (5)

Distribution
Channel (3)

DISTRIBUTION

(a) (b)

PRODKEY

CUSTKEY

DISTKEY

TIMEKEY

SALES

DISTCOST

PRODKEY

PRODUCT
5600 rows

TYPE

BRAND

CATEGORY

CONTAINER

...

CUSTKEY

CUSTOMER
7030 rows

REGION

NATION

TRADE-TYPE

BUSINESS-TYPE

...

DISTKEY

DISTRIBUTION
12 rows

SALESORG

CHANNEL

...

TIMEKEY

TIME
36 rows

YEAR

MONTH

FACT
26M rows

...

Figure 8-12 Hierarchies in the ‘Juice & More’ schema and the corresponding star schema

The ROLAP data model for the ‘Juice & More’ schema (Figure 8-12b) is a typical star
schema with one fact table FACT and a table for each of the 4 dimensions. Let ‘SALES’ and
‘DISTCOST’ be some of the measures in the fact table. We used the methodologies of

18 The company and the data presented here has been made anonymous.

176 CHAPTER 8: IMPACTS ON RELATIONAL QUERY PROCESSING

surrogates and multidimensional hierarchical clustering as described in Section 5.3.4 for
clustering the fact table of ‘Juice & More’ with UB-Trees.

In the following we describe some example queries involving star joins for the ‘Juice &
More’ schema. These queries were taken from the real-world decision support system of
‘Juice & More’. The database schema and data of ‘Juice & More’ are real world data which
we obtained from our project partners. Thus next to the investigation of multidimensional
hierarchical clustering this section is interesting from a second point of view: The highly
skewed data distribution of the ‘Juice & More’ will prove that UB-Trees and the Tetris
algorithm are not only applicable to laboratory environment tests with generated data, but also
prove their efficiency in the practical application scenarios. In order to show the highly
skewed data distribution we included an entire section displaying the one-dimensional data
distribution of ‘Juice & More’ for every dimension.

We then present measurements performed with our prototype implementation of the UB-Tree
on top of DBMS2. For the evaluation of our clustering technique we defined a benchmark
with 36 queries. In comparison we also conducted measurements with native DBMS2 access
methods: full table scan (FTS) and bitmap indexes (BII). For these measurements we used a
completely denormalized fact table, that is, no additional joins had to be performed to answer
the queries. The bitmap indexes were created on each hierarchy level. We did not include
secondary indexes in our comparison measurements because earlier experiments showed that
they are neither competitive to the UB-Tree nor to FTS or BII [MZB99].

8.3.1 Queries on the ‘Juice & More’ Schema

In the following we present typical queries that are taken from real applications for the
schema given in the previous section. We will use these queries to illustrate our approach and
we will present performance measurements for exactly these queries in Section 8.3.4.

Query 1 (Q1, cf. Figure 8-13) computes the sales for a given product group (TYPE and
BRAND specified as (X1, X2)) and a given customer group (NATION and REGION
specified as (Y1, Y2)) for the months from October to December of 1993.

SELECT SUM(Sales)
FROM Fact F, Customer C, Product P, Time T
WHERE F.ProdKey = P.ProdKey AND F.CustKey = C.CustKey AND

P.Type = X1 AND P.Brand = X2 AND
C.Region = Y1 AND C.Nation = Y2 AND

 F.TimeKey = T.TimeKey AND T.Year = 1993 AND
 T.Month >= October AND T.Month <= December

Figure 8-13: Time Interval (Q1)

Query 2 (Q2, cf. Figure 8-14) calculates the cost of distribution of the products of type X for
each distribution channel.

SECTION 8.3: A REAL WORLD DATA WAREHOUSE: THE JUICE & MORE BENCHMARK 177

SELECT SALESORG, CHANNEL, SUM(DistCost)
FROM Fact F, Distribution D, Product P
WHERE F.DistKey = D.DistKey AND
 F.ProductKey = P.ProductKey AND

P.Type = X
GROUP BY D.SalesOrg,D.Channel

Figure 8-14: Distribution cost (Q2)

Query 3 (Q3, cf. Figure 8-15) restricts all dimensions on the first level of the hierarchies.

SELECT SUM(SALES)
FROM Fact F, Distribution D, Product P, Customer C, Time T
WHERE F.DistKey = D.DistKey AND F.TimeKey = T. TimeKey

AND F.CustKey = C.CustKey AND F.ProdKey = P.ProdKey
AND P.Type = t AND D.SalesOrg = s AND T.Year = y
AND C.Region = r

Figure 8-15: Partial match query in the first hierarchy level (Q3)

8.3.2 Data Distribution

The data of ‘Juice & More’ is real world data from one of our project partners. In contrast to
the data distributions used for most of the performance analyses and measurements in the
previous sections, the ‘Juice & More’ data distribution of both the fact table and the
dimension tables is highly skewed: The dimensions neither distributed uniformly nor are
independent. The original fact table consisted of 823.464 tuples (about 175 MB). To get a
realistic large data cube, the fact table was enlarged to 26.350.848 tuples (about 5,6 GB). Our
project partner implemented an augmentation algorithm with minimal impact on the data
distribution (see [Pie98]).

In the following we show some charts which describe the one-dimensional data distribution
for each dimension. However, we once more stress that the dimensions are not independent
(e.g., some customers always order the same subset of products, some customers or products
only exist for a certain time, etc.). Thus in general, the overall selectivity of a query restricting
several dimensions is not the product of the selectivities of the one-dimensional restrictions
(which is shown in the following charts). We will see this deviation in Section 8.3.3.

The fact table of ‘Juice & More’ stores several measures (e.g., distribution cost, sales)
aggregated on a daily basis with respect to the dimensions time, customer, product and
distribution. Since the data is sensitive real-world business data, it is not possible to show the
labels/names of the hierarchy members in the charts.

178 CHAPTER 8: IMPACTS ON RELATIONAL QUERY PROCESSING

8.3.2.1 The Time Dimension

The time dimension of ‘Juice & More’ consists of a two-level hierarchy of months and years.
The test data stored the years from 1993 to 1995. As shown in Figure 8-12a, the days of the
time dimension are organized by a two level hierarchy (year and month). Figure 8-16 shows
the cumulated data distribution of the fact table with respect to the time dimension grouped by
year and month. The horizontal axis displays the hierarchy members, with “All” at the very
bottom (i.e., the lowest level), the years 1993, 1994, and 1995 in the middle and the twelve
months for each year above the year. The arrows in the horizontal axis indicate the
relationship between the members of neighboring hierarchy levels.

Thus the fact table of ‘Juice & More’ is almost uniformly distributed with respect to the time
dimension. The minimum number of facts for one month is 2,70% of the fact table (in January
1993, December 1993 and January 1995), whereas the maximum number of facts per month
is 2,83% (in March of each of the three years). Thus with a multidimensional clustering using
5 split levels (cf. sections 3.10 and 6.1) restrictions to one month in the time dimension
(=1/36) can be expected to reduce the amount of data to around 1/25 = 1/32.

2,
70

%

2,
75

%

2,
83

%

2,
79

%

2,
81

%

2,
82

%

2,
78

%

2,
77

%

2,
71

%

2,
75

%

2,
80

%

2,
81

%

2,
70

%

2,
75

%

2,
83

%

2,
79

%

2,
81

%

2,
82

%

2,
78

%

2,
77

%

2,
71

%

2,
75

%

2,
80

%

2,
81

%

2,
70

%

2,
75

%

2,
83

%

2,
79

%

2,
82

%

2,
82

%

2,
78

%

2,
77

%

2,
72

%

2,
75

%

2,
80

%

2,
81

%

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

1
9
9
3
0
0
1

1
9
9
3
0
0
2

1
9
9
3
0
0
3

1
9
9
3
0
0
4

1
9
9
3
0
0
5

1
9
9
3
0
0
6

1
9
9
3
0
0
7

1
9
9
3
0
0
8

1
9
9
3
0
0
9

1
9
9
3
0
1
0

1
9
9
3
0
1
1

1
9
9
3
0
1
2

1
9
9
4
0
0
1

1
9
9
4
0
0
2

1
9
9
4
0
0
3

1
9
9
4
0
0
4

1
9
9
4
0
0
5

1
9
9
4
0
0
6

1
9
9
4
0
0
7

1
9
9
4
0
0
8

1
9
9
4
0
0
9

1
9
9
4
0
1
0

1
9
9
4
0
1
1

1
9
9
4
0
1
2

1
9
9
5
0
0
1

1
9
9
5
0
0
2

1
9
9
5
0
0
3

1
9
9
5
0
0
4

1
9
9
5
0
0
5

1
9
9
5
0
0
6

1
9
9
5
0
0
7

1
9
9
5
0
0
8

1
9
9
5
0
0
9

1
9
9
5
0
1
0

1
9
9
5
0
1
1

1
9
9
5
0
1
2

Figure 8-16: Data distribution of the time dimension

8.3.2.2 The Product Dimension

The top level of the hierarchy on product has five entries. The data distribution is quite
skewed, there are three product groups to which 93% of all tuples of the fact table belong. 1%
of the data is unclassified. The distribution of the first level of the product hierarchy is
illustrated in Figure 8-17a. Multidimensional hierarchical clustering as described in 5.3.4

SECTION 8.3: A REAL WORLD DATA WAREHOUSE: THE JUICE & MORE BENCHMARK 179

ensures that a restriction in the first hierarchy level will result in a 1%, 27%, 6%, 32%
respectively 34% reduction of I/Os which are necessary to retrieve the result set. Without
exactly showing the relationship between the hierarchy members, we show the skew of the
data distribution over the first four product levels in Figure 8-17b. The distribution of the first
two hierarchy levels is illustrated in Figure 8-18. The horizontal axis again displays the
relationship of the members of the first two hierarchy levels.

1%

32%

6%

27%34%
unclassified
910
912
920
922

0%

1%

2%

3%

4%

product

(a) first hierarchy level (b) first four hierarchy levels

Figure 8-17: Data distribution of the product dimension

0,
71

%

11
,4

0%

1,
24

%

3,
65

%

7,
11

%

1,
97

%

1,
47

%

0,
01

%

0,
00

%

6,
37

%

0,
03

%

1,
84

%

4,
09

%

5,
60

%

0,
01

%

1,
03

%

2,
34

%

0,
13

%

4,
15

%

2,
28

%

0,
00

%

16
,5

6%

27
,9

9%

0%

2%

4%

6%

8%

10%

12%

14%

0
2

9
1
0

0
4

9
1
0

0
5

9
1
0

0
6

9
1
0

0
8

9
1
0

1
0

9
1
0

8
0

9
1
0

8
5

9
1
0

0
1

9
1
2

5
0

9
1
2

1
2

9
2
0

1
4

9
2
0

2
1

9
2
0

2
2

9
2
0

2
5

9
2
0

2
6

9
2
0

3
6

9
2
0

4
0

9
2
0

6
0

9
2
2

7
5

9
2
2

8
0

9
2
2

9
0

9
2
2

Figure 8-18: Data distribution of the first two hierarchy levels of the product dimension

180 CHAPTER 8: IMPACTS ON RELATIONAL QUERY PROCESSING

8.3.2.3 The Customer Dimension

According to business administration literature 20% of the customers contribute to 80% of the
business. The customer dimension of ‘Juice & More’ is a typical example for a classification
of customers in such a company. A high number of customers (in this case 88%, the very left
entry of Figure 8-19) are not classified (maybe they are not interesting for the company
because of small turnover or it is not possible to find a classification). The classified customer
groups contain 0% to 3% of the tuples stored in the table.19 The hierarchical relationships on
the horizontal axis show that the hierarchy of the customer dimension is not balanced, since
several hierarchy members just have one child.

The consequence of the small number of classified customers is that in queries the customer
dimension will be restricted to a small range (3%) and therefore the result set will be small.

0,
28

%

0,
04

%

0,
73

%

1,
64

%

0,
00

% 0,
15

%

1,
72

%

0,
03

%

0,
09

%

1,
27

%

0,
27

%

0,
07

%

0,
21

%

0,
55

% 0,
77

%

0,
07

%

0,
76

%

2,
96

%

0,
06

%

0,
14

%

0,
16

%

0,
06

%

0,
08

%

0,
05

%

0,
13

%

0,
02

%

0,
06

%

0,
12

%

0,
13

%

0,
04

%

0,
02

%

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

87
,3

3%

Figure 8-19: Data distribution of the customer dimension

8.3.2.4 The Distribution Dimension

There are seven entries on the first level of the distribution hierarchy. The data distribution of
the fact table with respect to the distribution dimension is highly skewed. Figure 8-20a shows
the distribution of the first hierarchy level (i.e., sales organization), while Figure 8-20b shows
the distribution of facts in the fact table for each distribution channel of each sales
organization. Again the arrows indicate the hierarchical relationship of the members of
neighboring hierarchy levels with the hierarchy root “All” at the bottom of the Figure.

19 Note that the data in the ‘Juice & More’ warehouse is aggregated on a daily basis, thus the amount of data is
usually compressed for large customers, thus the proportion of large customers is reduced.

SECTION 8.3: A REAL WORLD DATA WAREHOUSE: THE JUICE & MORE BENCHMARK 181

37% 6%

7%

13%

13%8%

16%

1 2 3 4 5 6 8

10
,3

0%

2,
20

%

10
,3

0%

2,
20

%

6,
66

%

5,
84

%

4,
05

%

8,
45

%12
,5

0%

12
,5

0%

12
,5

0%

12
,5

0%

0,0%

2,5%

5,0%

7,5%

10,0%

12,5%

09 1

10 1

09 2

10 2

12 3

11 4

13 5

14 5

15 5

16 6

17 6

19 8

 (a) (b)

Figure 8-20: Data distribution of the distribution dimension

8.3.3 Multidimensional Hierarchical Clustering of ‘Juice & More’

Figure 8-21 shows the compound surrogates for the ‘Juice & More’ data warehouse, which
are calculated as fixed length compound surrogates as described in Section 5.3.4. For any of
the 4 hierarchies the length of the compound surrogate does not exceed 15 bits and thus can
be stored in a single integer value. These compound surrogates are used as attributes for each
of the four dimensions of ‘Juice & More’ to calculate the Z-address for each tuple of the
‘Juice & More’ fact table.

{

321321

321

321321321321

4342144344214342143421

2 level

 12

 1 level

345ondistributi

2 level

1234

1 level

56time

4 level

123

 3 level

4

2 level

567

1 level

8910customer

4 level

1234

3 level

56789

2 level

101112

1 level

131415product

dddddcs

ttttttcs

cccccccccccs

pppppppppppppppcs

=

=

=

=

Figure 8-21: Compound surrogates for each dimension of ‘Juice & More’

The UB-Tree for the ‘Juice & More’ fact table consists of P = 878362 pages, which
corresponds to:

l = log2 P = log2878362 = 19,7

hierarchical split levels. With bit interleaving in the order of dimensions product, customer,
time, and distribution the Z-address α for a tuple of the ‘Juice & More’ fact table is
calculated as:

{ 4444444 34444444 2144444444 344444444 21
ondistributi data on the depending dpartitione

12345162738491510

splitpartly

1

ondistributi dataany for dpartitione completely

2611237123481345914561015 pppppcpcpcpcptcpdtcpdtcpdtcpdtcpdtcp=α

182 CHAPTER 8: IMPACTS ON RELATIONAL QUERY PROCESSING

The first 19 bits of the Z-address are guaranteed to be used to partition the four dimensional
universe of the ‘Juice & More’ fact table. This means that the binary strings p15p14p13p12p11 of
the compound surrogate of product, c10c9c8c7c6 of customer, t6t5t4t3t2 of time and d5d4d3d2 of
distribution are used to partition the universe. For each of the four dimensions the first
hierarchy level is completely used for the partitioning. The second hierarchy level is used to a
large extent to partition the universe. Therefore a restriction in the first hierarchy level will
result in a reduction of the number of pages as determined by the data distribution of Section
8.3.2, i.e., a restriction of the product main group to “910” will reduce the number of pages to
be retrieved to 27%, a restriction to “912” will result in a reduction to 6,41%. This holds for
the restriction of the first hierarchy level in any dimension. If the top hierarchy level is
restricted in several dimensions and the independence assumptions holds for these
dimensions, the reduction is multiplicative. Table 8-5 shows the predicted selectivity
calculated as the product of the selectivity in each dimension, the actual selectivity and the
loaded pages in percent of the entire pages in the database for two queries, which restrict the
first hierarchy level of three out of four dimensions.

scustomer sproduct sdistribution stime pages loaded predicted
selectivity

actual
selectivity

loaded
pages in %

0,78% 6,41% 37,5% 100% 178 0,0182% 0,0199% 0,0207%

87,34% 6,41% 37,5% 100% 18996 2,0981% 2,1618% 2,1627%

Table 8-5: Restrictions in the first hierarchy level in 3 of 4 dimensions

However, the data is not independently distributed in the entire 4-dimensional universe of
‘Juice & More’. In this case the predicted selectivity does not describe the actual selectivity
anymore. Thus some bits of the first 19 bits are correlated. This means that not all
combinations of these bits occur and some partitioning will take places in the bits below bit
number 19 of the Z-address. In this case the second level may already be completely
partitioned and even a third hierarchy level partitioning may have started for some
dimensions. A typical part of the multidimensional space where this will happen is the
customer hierarchy “unclassified”, which stores 87,34% of the customers. At most the three
bits c10c9c8 of the customer hierarchy are needed to distinguish these customers from all other
customers. Thus for the unspecified customers the bits c7c6 of the first 19 bits of the Z-address
are correlated to c10c9c8 and two further bits may be used for partitioning. Thus d1 will be split
completely, p10 will be used for the partitioning and t1 will be partly split (c5 is also correlated
to c10c9c8). Actually, this is a puff-pastry effect, which due to the surrogate calculation is
beneficial for query performance since it allows to have further partitioning steps for
correlated hierarchy levels. Our measurements show that this effect also holds for other
dimensions. Table 8-6 shows queries where the first two hierarchy levels of customer, product
and time are restricted, whereas the distribution dimension is not restricted. The selectivity
predicted by the cost functions here differs from the actual selectivity of the query because of
dependencies in the data distribution. However, the percentage of pages loaded is similar to
the actual selectivity of each query.

SECTION 8.3: A REAL WORLD DATA WAREHOUSE: THE JUICE & MORE BENCHMARK 183

scustomer sproduct sdistribution stime pages loaded predicted
selectivity

actual
selectivity

loaded
pages in %

2,95% 3,64% 100% 38,41% 312 0,0414% 0,0310% 0,0355%

2,95% 27,99% 100% 38,41% 782 0,0318% 0,0851% 0,0890%

Table 8-6: Restriction in the first two hierarchy levels in 3 of 4 dimensions

Each of the 878362 pages of the ‘Juice & More’ fact table stores 30 tuples. All of the
measurements showed that when restricting the first hierarchy level in each dimension in
average 99,99% of the tuples on the pages contributed to the result set. A standard deviation
of less than 0,001 for these measurements means that the multidimensional hierarchical
clustering is perfect for multidimensional restrictions in the first hierarchy level. When
additionally restricting the second hierarchy level in average 557 pages were loaded, where
10,7% of the tuples did not contribute to the result set. The standard deviation here was 0,06.
Additionally restricting the third hierarchy level of each dimension usually created result sets
with only one page.

Thus multidimensional hierarchical restrictions are very well processed by UB-Trees storing
compound surrogates which are created by the multidimensional hierarchical clustering
technique introduced in Section 5.3.4. Again, the basic consideration about the UB-Tree in
terms of dimensionality (cf. Section 3.9) and restricted dimensions (cf. Section 7.4.3) hold.
For star schemas as used in present data warehousing applications this approach may
significantly speed up query performance and reduce resource requirements in disk space and
processing time. We are currently refining the technique of multidimensional hierarchical
clustering by using hash clusters for the calculation of each individual surrogate. This
refinement will be implemented to hierarchically cluster a data warehouse of marketing data
provided by one of our project partners.

8.3.4 Performance Measurements

The measurements for ‘Juice & More’ were performed on a SUN Enterprise with four 300
MHz UltraSPARC processors and 2 GB RAM under Solaris 2.6. As secondary storage a
partition on a SPARCstorage array with RAID level 0 (6 disks striping, 5-6 MB/s transfer rate
per disk) was used. All measurements were done in a single-user environment.

It is important to note that our implementation still causes significant overhead due to the fact
that we have implemented the UB-Tree on top of a DBMS and not in the kernel itself. First,
the number of SQL statements that have to be processed (UB: 1 statement for each page in the
result set, DBMS2 methods: 1 statement in total) leads to extensive inter-process
communication (about 30% of the total processing time) and DBMS overhead (e.g., parsing
of statements). Second, our table is larger than the one for the FTS and the bitmap indexes
due to unimplemented compressing techniques in the UB-Tree (for 8 KB pages: UB: 878362
pages, FTS: 723539 pages, BII: FTS+31134 pages).

184 CHAPTER 8: IMPACTS ON RELATIONAL QUERY PROCESSING

Figure 8-22 shows result set sizes and response times of the three example queries (Section
8.3.1). Q1 shows that the UB-Tree with multidimensional clustering is over 2 times faster
than BII even for very small result sets. Q3 which is processed by the unoptimized UB-Tree
at least 10 times faster than with any other access method undermines this observation.

285 232 275

5

186

10
2

118
1

0

100

200

300

R
ep

o
n

se
 T

im
e

in
 s

Q1 Q2 Q3

UB
Bitmap

FTS

Query Loaded Tuples
Percentage
of Database

Q1 8160 0,03%
Q2 1696416 6,52%
Q3 19752 0,08%

Figure 8-22: Query response times and result set sizes

The result set of query Q2 is quite large but the almost perfect clustering factor of the UB-
Tree (in average more than 29 out of 30 tuples/page belong to the result set) still leads to a
speed up of more than 30 % in comparison to BII. The time for FTS for Q2 differs from the
times for Q1 and Q3 due to the less complex WHERE clause of the statement. The number of
comparison operations is therefore much smaller than for the other queries which causes the
faster execution.

All these results on real data show how well the multidimensional hierarchical clustering with
UB-Trees works in practice and the accuracy of our theoretical cost model. In total more than
77% of all benchmark queries (28 out of 36) showed a speed up between a factor of 1.3 and
10 over traditional techniques [Pie98]. Figure 8-23 lists two instances for each of five further
queries of that benchmark. For each query Table 8-7 lists the number of hierarchy levels that
by each query are restricted to a point for each dimension. Since the data is non-uniformly
distributed, the selectivity of each query depends on the exact point restriction, not only on
the number of restricted hierarchy levels. We thus present two instances of the queries, each
of which has a different selectivity.

Customer Product Distribution Time Selectivity
Instance 1

Selectivity
Instance 2

Q4 2 2 0 1 0,0414% 0,3176%

Q5 1 1 1 1 0,0070% 3,4383%

Q6 1 1 1 0 0,0182% 2,0981%

Q7 1 0 0 1 1,1346% 1,1346%

Q8 0 1 0 1 6,0000% 34,0000%

Table 8-7: Restricted hierarchies and selectivities for five queries against the
‘Juice & More’ data warehouse

SECTION 8.3: A REAL WORLD DATA WAREHOUSE: THE JUICE & MORE BENCHMARK 185

2 1 1

56

118

5 5 4

44

186

284,53
277,01

269,05 274,44

231,65

0

50

100

150

200

250

300

Q4 (0,0414%) Q5 (0,0070%) Q6 (0,0182%) Q7 (1,1346%) Q8 (6,0000%)

T
im

e
in

 S
ec

on
ds

UB

BM

FTS

3

472

6

44

313

274

56
39

69

288

171

78

283

242

287

0

100

200

300

400

500

Q4 (0,3176%) Q5 (3,4383%) Q6 (2,0981%) Q7 (1,1346%) Q8 (34,000%)

ti
m

e
in

 s
ec

on
ds

UB

BM

FTS

Figure 8-23: ‘Juice & More’ performance

186 CHAPTER 8: IMPACTS ON RELATIONAL QUERY PROCESSING

8.3.5 Summary: Data Warehouse Performance Measurements

Our performance measurements have shown that multidimensional hierarchical clustering
reduces the number of random accesses to the fact table for star joins and other queries with
restrictions in multiple hierarchies. In addition, sort operations as necessary for grouping and
aggregation are performed on the fly without additional I/O. For dimensionalities typical for
data warehousing only I/O-time linear in size of the result set prior to aggregation and
sublinear temporary storage are necessary to aggregate parts of a data cube. Thus secondary
storage space and pre-computation time for many aggregates and bitmap indexes can be
avoided. In addition the widely discussed view maintenance problem is minimized. The
benchmark results for typical queries of a 7 GB real world retail data warehouse confirmed
our analytical expectations and showed significant speedups up to a factor 10 in response
time. Depending on the query, temporary storage requirements for sorting are reduced by
several orders of magnitude. Our clustering approach also holds not only for ROLAP but also
for MOLAP implementations of a data warehouse since both ROLAP fact tables and MOLAP
data cubes can be clustered in this way.

CHAPTER 9: SUMMARY 187

A thousand things ... suddenly
added up like a column of figures
in her mind.

(William Humphrey)

Chapter 9

Summary

efore drawing conclusions and describing future research work, we briefly
summarize the contribution of this thesis to the research in database
management systems: We have analyzed the application of a
multidimensional access method to RDBMS. After introduction of a formal
model for multidimensionally partitioned relations we discussed several
query types and identified the significance of multidimensional range

queries and sort operations for query processing. Discussing current access methods we
motivated the need for a multidimensional partitioning of relations. We described the UB-
Tree in combination with algorithms for insertion, deletion, point queries, and range queries.
We further introduced two new algorithms, the spiral algorithm for nearest neighbor queries
with UB-Trees and the Tetris algorithm for efficient access to a table in arbitrary sort order.
We also gave a detailed analysis of the UB-Tree space partitioning. We defined a cost model
and compared the cost of range queries and sort operations for UB-Trees to the state of the art
in current DBMS. The practical applicability of our approach was shown by performance
measurements on a prototype implementation of UB-Trees on top of the RDBMS DBMS1
and DBMS2. These experiments with artificial data, for the TPC-D benchmark and for a star
schema data warehouse confirmed the theoretically expected superiority of UB-Trees and the
algorithms developed in this thesis over traditional access techniques with respect to both
response times and storage requirements.

B

188 CHAPTER 9: SUMMARY

9.1 Conclusions

Next to a prototype implementation of most of the algorithms discussed in this thesis, our
main contributions are the analytical cost model (Chapter 6), the Tetris algorithm (Section
4.7) and the technique of multidimensional hierarchical clustering (Section 5.3.4). The
performance measurements of Chapters 7 and 8 proved, that all of these techniques are
feasible and of practical relevance. Moreover, the expectations derived from our theoretical
cost model in Chapter 6 are met by these performance measurements. In addition, some
interesting algorithmic problems were solved during the work on this thesis (e.g., bit-
interleaving for address calculation (cf. Section 5.3) or the reduction of the complexity of the
calculation of the next Z-region intersection from exponential to linear (cf. Section 5.7.1).

The cost model may be used as a basis for cost-based query optimization. Using histograms
[PIH+97] to determine the selectivity of the multidimensional restrictions, the selectivity
based cost formula (Section 6.1.4) will also give a reasonable cost estimation for non-
uniformly distributed partitioned multidimensional universes.

With enumeration types (cf. Section 5.3.3), multidimensional hierarchical clustering (cf.
Section 5.3.4) and variable UB-Trees (cf. Section 5.3.5) we have introduced three techniques
to overcome the puff-pastry effect which is inherent in Z-ordered data spaces (cf. Section
3.10). Suitable data modeling should ensure that these techniques are applicable in order to
obtain a suitable multidimensional partitioning of a relation.

By the virtue of the cost model and by experiments we found that multidimensional indexes
are useful for partitioning data according to up to 10 dimensions (cf. Section 3.9). For large
dimensionalities a subset of the attributes should by chosen by proper physical data modeling
techniques. However, dimensionalities of 6 – 10 dimensions are usual in relational data
models, since one relation seldom has more than 6 – 10 foreign keys. Note that the number of
key attributes is not identical to the dimensionality of the data space, which is often much
smaller if foreign keys are composite keys.

The Tetris algorithm allows to accelerate most operations of relational query processing, if
multidimensional range restrictions and/or sort operations are involved. Due to that fact one
of our project partners has started to integrate UB-Trees and the Tetris algorithm into the
kernel of its RDBMS. With suitable heuristics for query optimization, the Tetris algorithm
thus may substantially speed up query processing in RDBMS. For dimensionalities typical for
relational databases only I/O-time linear in the size of the result set and sublinear temporary
storage are necessary to perform the Tetris algorithm. In contrast to a merge-sort algorithm,
the sorted relation is produced in a continuous flow of operation. Therefore, using the Tetris
algorithm, sorting is no longer a blocking operation. Thus internal pipelining is tremendously
improved, since results are earlier transferred to other nodes of the operator tree or even to the
user. Thereby the Tetris algorithm offers the chance to efficiently process iceberg queries for
ranking [FSG+98], if the desired measure is used as a further dimension of the UB-Tree. The

CHAPTER 9: SUMMARY 189

Tetris algorithm then does not read the entire query box in the sorting dimension, but
terminates after processing the first slices.

Aggregations can be calculated on-the-fly and allow better interactive response times. When
sorting a relation or joining relations, restrictions in multiple attributes can be efficiently util-
ized in order to reduce I/O-cost and CPU-cost. The benchmark results for three queries of the
TPC-D benchmark show speedups of up to two orders of magnitude in response time.
Depending on the query, temporary storage requirements are reduced by several orders of
magnitude. Further analysis indicates that our approach is useful for an even broader range of
queries.

A star join with a point restriction of some hierarchy level of each dimension table results in a
range restriction on each compound surrogate, if the fact table is organized with
multidimensional hierarchical clustering using surrogate encoding for the foreign keys. In the
same way intervals on the children of one hierarchy level result in a range of the corre-
sponding compound surrogates. Thus, with multidimensional hierarchical clustering a star
join on a schema with d dimensions creates a d-dimensional interval restriction on the fact
table. Therefore star-joins in data warehouse benefit from the Tetris algorithm and the range
query algorithm for UB-Trees as described in the previous paragraph. For dimensionalities
typical for data warehousing only I/O-time linear in size of the result set prior to aggregation
and sublinear temporary storage are necessary to aggregate parts of a data cube. Secondary
storage space and pre-computation time for many aggregates and bitmap indexes can be
avoided. In addition the widely discussed view maintenance problem is minimized. The
benchmark results for typical queries of a 7 GB real world retail data warehouse confirmed
our analytical expectations and showed significant speedups up to a factor 10 in response
time. Depending on the query, temporary storage requirements for sorting are reduced by
several orders of magnitude. Our clustering approach also holds not only for ROLAP but also
for MOLAP implementations of a data warehouse since both ROLAP fact tables and MOLAP
data cubes can be clustered in this way.

9.2 Future Work

In our future work we are particularly interested in a detailed study of relational query
processing with multidimensional indexes. We are in the process of investigating a
methodology for query optimization with multidimensional access methods, both for
heuristics-based and cost-based query optimizers. We will do performance measurements in
multi-user environments where we expect even more significant speedups. In a joint research
project with TransAction Software we are currently integrating the UB-Tree into the DBMS1
kernel in order to reduce the overhead of the current implementation.

An interesting enhancement of UB-Trees might be the use of Hilbert curves [Hil91] as space
filling curves for the UB-addresses. As our theoretical considerations in Section 3.3 showed,
Hilbert curves will result in a better space partitioning because spatial proximity for both
neighbors on the Hilbert curve is guaranteed. However, the algorithms for dealing with

190 CHAPTER 9: SUMMARY

Hilbert addresses (H-addresses) are more complicated than these for Z-addresses, since the
subcube in space defined by each step of an H-address depends on the previous steps of the
H-address. A prototype implementation and performance measurements of the overhead for
H-address calculation and next intersection calculation of the range query algorithm will have
to show if the better space partitioning pays off.

Query optimization with multidimensional access methods is an area which has not been
researched in detail yet. The ability to handle multi-attribute restrictions with tuple clustered
access methods will have to be taken into account by query optimizers. The Tetris operator of
sections 4.7 and Chapter 8 shows that query optimization with multidimensional access
methods will allow more complex operations to be handled by a single operator. In order to
take advantage of multidimensional access methods, it is not sufficient for cost based
optimizers to rely on one-dimensional statistical information. In addition, approaches like
multidimensional histograms [PIH+96, Poo97] should be used here. For these applications
our cost model of Chapter 6 could be further refined and adapted.

Multidimensional access methods can also be used for the organization of intermediate
results. Very often a node of an operator tree gets an input stream sorted with respect to one
attribute Aj, whereas a sorted processing with respect to another attribute Ak is required. A
refinement of the Tetris algorithm could be used to perform a sorted writing of the
intermediate result in sort order of Ak while taking advantage of the sorted input in order to
reduce the cache size and to avoid the external sorting process. The implementation of this
refinement of the Tetris algorithm for sorted writing as well as the implementation and
analysis of the operators of the relational algebra with multidimensional access methods will
be an interesting task of future research.

Another issue which has not been addressed in this thesis are the issue of parallelization and
data partitioning. In our opinion many of the algorithms proposed in this thesis have a high
potential for parallelization (e.g., the UB-Tree range query algorithm and the Tetris
algorithm). Multidimensionally partitioning data with respect to several disks or RAID
systems [PGK88] will also allow to exploit parallelism. Another issue with respect to data
partitioning is the organization of huge databases on tertiary storage. Indexing of tertiary
storage archives might also take our approach of multidimensional clustering into account.

Further research can also be done in the field of locking, where locking strategies might take
advantage of the multidimensional organization of a relation. Spatial locking is a special kind
of predicate locking which efficiently takes the physical organization of the relation into
account in order to reduce contention problems. Page locking then corresponds to locking
regions in multidimensional space. Spatial locking with UB-Trees might result in a
hierarchical spatial locking concept which might be an improvement over classical locking
mechanisms in both CPU-time for lock operations as well as space required for maintaining
the locking information.

SECTION 9.2: FUTURE WORK 191

During the work for the thesis we also envisioned the lack of a universal physical data model.
While a broad variety of data models has been introduced on the conceptual and logical level
(e.g., E/R-model, relational model, object-oriented data models, multidimensional data
models) no standardized physical data model has been established. Since for any logical
model the data must be mapped to primary, secondary and tertiary storage, a universal
physical data model would allow to use a single physical DBMS engine to implement any
logical model. With appropriate mapping strategies a (time optimal, space optimal, etc.)
physical model for a certain system configuration (logical DBMS schema, set of queries, set
of access methods, hardware configuration) could be automatically derived (in analogy to the
Auto Admin tool of Microsoft’s SQL Server 7 [MS98a]). This might result in cost savings for
DBMS application development, since a DBMS could offer views of the same physical data
in several logical models. In addition, cost for DBMS administration might be reduced, since
performance tuning is separated from the application data model and can be solely performed
on the physical model.

REFERENCES 193

Time present and time past are
both perhaps present in time
future. And time future contained
in time past.

 (T. S. Eliot)

References

[AFS93] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence databases.
Proc. 4th Int. Conf. on Foundations of Data Organization and Algorithms, LNCS 730, 1993, pp.
69-84.

[AGM+90] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. A Basic Local Alignment
Search Tool. Journal of Molecular Biology 215(3), 1990, pp. 403-410.

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA, 1974.

[AM90] D.J. Abel and D.M. Mark. A comparative Analysis of some two-dimensional Orderings. Intl.
Journal Geographical Information Systems, 4(1), 1990, pp. 21-31.

[APB96] OLAP Council. OLAP Council APB-1 Benchmark Information. 1996.

URL: http://www.olapcouncil.org/bmark.html

[ARS97] K. Alsabti, S. Ranka, and V. Singh. A One-Pass Algorithm for Accurately Estimating Quantiles
for Disk-Resident Data. VLDB, 1997, pp. 346-355.

[AS83] D.J. Abel and J.L. Smith. A Data Structure and Algorithm based on a linear Key for a Rectangle
Retrieval Problem. Computer Vision 24, 1983, pp. 1-13.

194 REFERENCES

[AS95] R. Agrawal and A.N. Swami. A One-Pass Space-Efficient Algorithm for Finding Quantiles.
COMAD, 1995.

[Bau97] M. Bauer. A Mass Loading Tool for UB-Trees. Internship Report, FORWISS München, 1997.

[Bau98] M. Bauer. Variable UB-Trees. Master Thesis, TU München, 1998.

[Bay96] R. Bayer. The universal B-Tree for multidimensional Indexing. Technical Report TUM-I9637,
Institut für Informatik, TU München, 1996.

[Bay97a] R. Bayer. The universal B-Tree for multidimensional Indexing: General Concepts. World-Wide
Computing and Its Applications '97 (WWCA '97). Tsukuba, Japan, 10-11, Lecture Notes on
Computer Science, Springer Verlag, March, 1997.

[Bay97b] R. Bayer. UB-Trees and UB-Cache – A new Processing Paradigm for Database Systems.
Technical Report TUM-I9722, Institut für Informatik, TU München, 1997.

[BCE77] M.W. Blasgen, R.G. Casey, and K.P. Eswaran. An Encoding Method for Multifield Sorting and
Indexing. Comm. of ACM 20(11), 1977, pp. 874-877.

[BDK92] F. Bancilon, C. Delobel, and P. Kanellakis (eds.). Building an object-oriented Database System:
The Story of O2. Addison-Wesley, 1992.

[Ben75] J.L. Bentley. Multidimensional Binary Search Trees Used for Associative Searching. Comm.
of ACM 18(9), 1975, pp. 509-517.

[Ben79] J.L. Bentley. Multidimensional Binary Search Trees in Database Applications. IEEE TSE
5(4), 1979, pp. 333-340.

[BGW+81] P.A. Bernstein, N. Goodman, E. Wong, C.L. Reeve, and J.B. Rothnie. Query Processing in a
System for Distributed Databases (SSD-1). ACM TODS 6(4), 1981, pp. 602-625.

[BK89] E. Bertino and W. Kim. Indexing Technique for Queries on Nested Objects. IEEE Transactions
on Knowledge and Data Engineering, 1989, pp. 196-214.

[BKK96] S.D. Berchtold, D. Keim, and H.-P. Kriegel. The X-Tree. An Index Structure for high-
dimensional Data. Proc. of 22nd VLDB Conf., 1996.

[BKK97] S. Berchtold, D. Keim, and H.-P. Kriegel. Using Extended Feature Objects for Partial Similarity
Retrieval. VLDB Journal Vol. 6(4), 1997, pp. 333-348.

[BKS+90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree. An efficient and robust
Access Method for Points and Rectangles. Proc. of ACM SIGMOD Conf., 1990, pp. 322-331.

[BKS93] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient Processing of Spatial Joins using R-Trees.
Proc. of ACM SIGMOD Conf., 1993, pp. 237-246.

[BM72] R. Bayer and E. McCreight. Organization and Maintainance of large ordered Indexes. Acta
Informatica 1, 1972, pp. 173 – 189.

[BM98] R. Bayer and V. Markl. The UB-Tree. Performance of Multidimensional Range Queries.
Technical Report TUM-I9814, Institut für Informatik, TU München, 1998.

[Böh98] C. Böhm. Efficiently Indexing High-Dimensional Data Spaces. Ph.D. Thesis, LMU München,
1998.

[BSH+98] M. Blaschka, C. Sapia, G. Höfling, and B. Dinter. Finding Your Way through Multidimensional
Data Models. Proc. Intl. Workshop on Data Warehouse Design and OLAP Technology, Vienna,
August 1998.

REFERENCES 195

[BSW97] J. van den Bercken, B. Seeger, and P. Widmayer. A General Approach to Bulk Loading
Multidimensional Index Structures. Proc. of 23rd VLDB Conf., Athens, Greece, 1997.

[BU77] R. Bayer and K. Unterauer. Prefix B-Trees. ACM TODS 2(1), 1977, pp. 11-26.

[CD97] S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP Technologies. ACM
SIGMOD Record 26(1), Marc 1997.

[CHH+91] J. Cheng, D. Haderle, R. Hedges, B.R. Iyer, T. Messinger, C. Mohan and Y. Wang. An efficient
hybrid hash join algorithm: a DB2 prototype. Proc. of the 7th ICDE, Kobe, 1991, pp. 171-180.

[CI98] C. Chan and Y. Ioannidis. Bitmap Index Design and Evaluation. Proc. of ACM SIGMOD Conf.,
1998.

[Cod70] E.F. Codd. A Relational Model of Data for Large Shared Databanks. Comm. of ACM 13(6),
1970, pp. 377-387.

[Com79] D. Comer. The ubiquitous B-Tree. ACM Computing Surveys, 11(2), 1979, pp. 121-138.

[CVS98] CVS, a version control system in the free software community. 1998.

URL: http://www.cyclic.com/

[Dat88] C.J. Date. A Guide to the SQL Standard,2nd edition. Addison-Wesley, 1988.

[Dev97] B. Devlin. Data Warehouse from Architecture to Implementation. Addision-Wesley Longman,
Inc. 1997.

[DKO+85] D.J. DeWitt, R.H. Katz, F. Olken, L.D. Shapiro, M.R. Stonebraker, and D. Wood. Implementa-
tion Techniques for Main Memory Database Systems. Proc. of ACM SIGMOD Conf., 1984, pp.
1-8.

[Ell82] C. Ellis. Extendible Hashing for Concurrent Operations and Distributed Data. Proc. of ACM
SIGMOD Conf. 1, 1982, pp. 106-115.

[Eva94] G. Evangelidis. The hBπ-Tree: A Concurrent and Recoverable Multi-Attribute Index Structure.
Ph.D. thesis, North-Eastern University, Boston, MA, 1994.

[Fal85] C. Faloutsos. Multi-attribute Hashing Using Gray Codes. Proc. of ACM SIGMOD Conf., 1985,
pp. 227-238.

[Fal88] C. Faloutsos. Gray Codes for Partial Match and Range Queries. IEEE TSE 14(10), 1988, pp.
1381-1393.

[FB74] R. Finkel and J.L. Bentley. Quad-Trees: A Data Structure for Retrieval of Composite Keys.
Acta Informatica 4(1), 1974, pp. 1-9.

[Fen98] R. Fenk. Design and Implementation of a UB-Tree Range Query Algorithm for a Set of Query
Boxes. Master Thesis, Technische Universität München, 1998.

[FG86] J.C. Freytag and N. Goodman. Rule-Based Translation of Relational Queries into Iterative

Programs. Proc. of ACM SIGMOD Conf., 1986, pp. 206-214.

[FG89] J.C. Freytag and N. Goodman. On the Translation of Relational Queries into Iterative
Programs. TODS 14(1), 1989, pp. 1-27.

[FG96] C. Faloutsos and V. Gaede. Analysis of n-dimensional Quad-Trees using the Hausdorff Fractal
Dimension. Proc. of 22nd VLDB Conf., Bombay, India, 1996, pp. 40-50.

[FK94] C. Faloutsos and I. Kamel. Beyond Uniformity and Independence: Analysis of R-Trees using the
Concept of the Fractal Dimension. Proc. of ACM SIGMOD-PODS Conf., Minneapolis,
Minnesota, 1994, pp. 4-13.

196 REFERENCES

[FNP+79] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible Hashing – A Fast Access
Method for Dynamic Files. ACM TODS 4(3), 1979, pp. 315-344.

[FR89] C. Faloutsos and S. Roseman. Fractals for Secondary Key Retrieval. Proc. of 8th ACM
SIGMOD-PODS Conf., 1989, pp. 247-252.

[Fre87] M. Freeston. The BANG File: A new Kind of Grid File. Proc. of ACM SIGMOD Conf., San
Francisco, CA, 1987, pp. 260-269.

[Fre95] M. Freeston. A General Solution of the n-dimensional B-Tree Problem. Proc. of the ACM

SIGMOD Conf., 1995, pp. 80-91

[Fre89] J.C. Freytag. The Basic Principles of Query Optimization in Relational Database Management

Systems. IFIP, 1989, pp. 801-807

[Fri97] N. Frielinghaus: Evaluierung der Einsatzfähigkeit des UB-Baums für das SAP-System R/3.
Master Thesis, TU München, 1997.

[FSG+98] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. Ullman. Computing Iceberg
Queries Efficiently. Proc. of VLDB Conf., 1998, pp. 299-310.

[FSR87] C. Faloutsos, T. Sellis and N. Roussopoulos. Analysis of Object-Oriented Spatial Access
Methods. Proc. of ACM SIGMOD Conf., 1987.

[Gae95] V. Gaede. Optimal Redundancy in Spatial Database Systems. Proc. SSD’95, Portland, LNCS
Volume 951, 1995, pp. 96-116.

[Gar82] I. Gargantini. An effective Way to Represent Quad-Trees. Comm. of ACM 25(12), 1982, pp.
905-910.

[GBL+96] J. Gray, A. Bosworth, A. Layman, H. Pirahesh: Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Total. Proc. of ICDE 1996, pp. 152-159

[GG97] V. Gaede and O. Günther. Multidimensional Access Methods. ACM Computing Surveys 30(2),
1997.

[GHR+97] H. Gupta, V. Harinarayan, A. Rajaraman, and D. Ullman. Index Selection for OLAP. Proc. of
ICDE, 1997.

[GR97] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. 3rd edition. Morgan
Kaufmann Publishers, 1997.

[Gra91] J. Gray. The Benchmark Handbook for Database and Transaction Processing Systems. Morgan
Kaufmann, San Mateo, CA, 1991.

[Gra93] G. Graefe. Query Evaluation Techniques for Large Databases. ACM Computing Surveys 25,
1993, pp. 73-170.

[Gre89] D. Greene. An Implementation and Performance Analysis of Spatial Data Access Methods.
Proc. of 5th ICDE, 1989.

[Gün93] O. Günther. Efficient Computations of Spatial Joins. Proc. of 9th ICDE, Vienna, 1993.

[Gup97] H. Gupta. Selection of Views to Materialize in a Data Warehouse. Proc. of the Intl. Conference
on Database Theory, Athens, Greece, January 1997.

[Gut84] A. Guttman. R-Trees: A dynamic Index Structure for spatial Searching. Proc. of ACM SIGMOD
Conf., 1984, pp. 47-57.

[HAM+97] C.T. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range Queries in OLAP Data Cubes. Proc.
of ACM SIGMOD Conf., Tucson, Arizona, 1997, pp. 73-88.

REFERENCES 197

[Hil91] D. Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück. Math. Annln., 38,
1891, pp. 459-460.

[Hin85] K. Hinrichs. Implementation of the Grid File: Design Concepts and Experience. BIT 25, 1985,
pp. 569-592

[HNK+90] L. Harada, M. Nakano, M. Kitsuregawa, and M. Takagi. Query Processing Methods for Multi-
Attribute Clustered Relations. Proc. of 16th VLDB Conf., 1990, pp. 59-70.

[HR96] E.P. Harris and K. Ramamohanarao. Join algorithm costs revisited. VLDB Journal, 5, 1996.

[HSW88a] A. Hutflesz, H.-W. Six, and P. Widmayer. Globally Order Preserving Multidimensional Linear
Hashing. Proc. of 4th ICDE, 1988, pp. 572-579.

[HSW88b] A. Hutflesz, H.-W. Six, and P. Widmayer. Twin Grid Files: Space Optimizing Access Schemes.
Proc. of ACM SIGMOD Conf., 1988.

[HSW89] A. Hutflesz, H.-W. Six, and P. Widmayer. The LSD-Tree: Spatial Access to Multidimensional
Point and non-Point Objects. Proc. of 15th VLDB Conf., Amsterdam, Netherlands, 1989, pp. 45-
53.

[IBM97] IBM Corporation. IBM DB2 Universal Database for UNIX Documentation. IBM Corporation,
1997.

[Inf97] Informix Software Incorporation. A New Generation of Decision Support Indexing for
Enterprise-wide Data Warehouses. 1997.

URL: http://www.informix.com/informix/corpinfo/zines/whitpprs/wpsps.pdf

[Inf98] Informix Corporation. Informix Documentation: Dynamic Server 7.22 and Later., 1998.

[Inm96] W.H. Inmon. Building the Data Warehouse. John Wiley & Sons, Inc., 2nd edition, 1996.

[Jag89] H.V. Jagadish. Incorporating Hierarchy in a Relational Model of Data. Proc. of ACM
SIGMOD Conf., Portland, Oregon, 1989.

[Jag90] H.V. Jagadish. Linear Clustering of Objects with multiple Attributes. Proc. of ACM SIGMOD
Conf., 1990, pp. 332 – 342.

[Jag91] H.V. Jagadish. A Retrieval Technique for Similar Shapes. Proc. of ACM SIGMOD Conf., 1991,
pp. 108-217.

[JC85] R. Jain and I. Chlamtac. The P² Algorithm for Dynamic Calculation of Quantiiles and
Histograms Without Storing Observations. Comm. of ACM 28(10), 1985, pp. 1076-1085.

[JK84] M. Jarke and J. Koch. Query Optimization in Database Systems. ACM Computing Surveys
16(2), 1984, pp. 111-152.

[JL98] M. Jürgens and H.J. Lenz. The R*a-Tree: An improved R*-Tree with Materialized Data for Sup-
porting Range Queries on OLAP-Data. DWDOT Workshop, Vienna, 1998.

[KE97] A. Kemper, A. Eickler. Datenbanksysteme : Eine Einführung. 2. aktual. u. erw. Aufl.,

Oldenbourg Verlag , München, 1997, p. 504

[KF94] I. Kamel and C. Faloutsos. Hilbert R-Tree: An Improved R-Tree using Fractals. Proc. of 20th

VLDB Conf., 1994, pp. 500-509.

[Kim96] R. Kimball. The Data Warehouse Toolkit : PRACTICAL TECHNIQUES FOR BUILDING
DIMENSIONAL DATA WAREHOUSES. JOHN WILEY & SONS, INC., New York, 1996, p.
388.

[Kim96] R. Kimball. The Data Warehouse Toolkit. John Wiley & Sons, New York. 1996.

198 REFERENCES

[KKD89] W. Kim, C. Kim, and A. Dale. Indexing techniques for object-oriented database. In Object-
Oriented Concepts, Databases and Applications. Addison-Wesley, 1989, pp. 371-394.

[Knu68] D.E. Knuth. The Art of Computer Programming Volume 1: Fundamental Algorithms. Addison-
Wesley, Reading, MA, 1968.

[Knu73] D.E. Knuth. The Art of Computer Programming Volume 3: Sorting and Searching. Addison-
Wesley, Reading, MA, 1973.

[KP88] M.H. Kim and S. Pramanik. Optimal File Distribution for Partial Match Retrieval. Proc. of
ACM SIGMOD Conf., Boston, NA, 1984, pp. 186-196.

[Kri84] H.-P. Kriegel. Performance Comparison of Index Structures for Multi-Key Retrieval. Proc. of
ACM SIGMOD Conf., Boston, MA, 1984, pp. 186-196.

[KS87] H.-P. Kriegel and B. Seeger. Multidimensional Dynamic Quantile Hashing is Very Efficient for
Non-Uniform Record Distributions. ICDE, pp. 10-17, 1987.

[KSF+96] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas. Fast Nearest Neighbor
Search in Medical Image Databases. Proc. of 22nd VLDB Conf., Bombay, India, 1996, pp. 215-
226.

[LS90] D. Lomet and B. Salzberg. The hB-Tree: A Multiattribute Indexing Method with good
guaranteed Performance. ACM TODS, 15(4), 1990, pp. 625 – 658.

[Lum70] Y.V. Lum. Multi-Attribute Retrieval with Combined indexes. Comm. of ACM 13(11),
November 1970, pp. 660-665.

[MB97a] V. Markl. The Tetris-Algorithm for multidimensional Sorted Reading from UB-Trees. Internal
Report, FORWISS München, 1997.

[MB97b] V. Markl and R. Bayer. A Cost Model for multidimensional Queries in Relational Database
Systems. Internal Report, FORWISS München, 1997.

[MB97c] V. Markl and R. Bayer. Variable UB-Trees for the efficient Indexing of arbitrarily distributed
multidimensional Data. Internal Report, FORWISS München, 1997.

[MB98] V. Markl and R. Bayer. The Tetris-Algorithm for Sorted Reading from UB-Trees. In
“Grundlagen von Datenbanken”, 10th GI Workshop, Konstanz, 1998.

[McG96] F. McGuff. Data Modeling Patterns for Data Warehouses. Comprehensive Systems Inc., July
1996.

[ME92] P. Mishra and M.H. Eich. Join Processing in Relational Databases. ACM Computing Surveys,
Vol. 24 No.1, 1992, pp. 194-211.

[Mer81] T.H. Merret. Why Sort-Merge gives the best Implementation of the Natural Join. ACM
SIGMOD Record 13(2), 1981, pp. 39-51.

[MHW+90] C. Mohan, D. Haderle, Y. Wang, and J. Cheng. Single Table Access Using Multiple Indexes:
Optimization, Execution and Concurrency Control Techniques. International Conference on
Extending Database Technology, 1990, pp. 29-43.

[MOD99] MISTRAL Online Documentation. TU München, 1999.

URL: http://mistral.informatik.tu-muenchen.de

[Moe98] G. Moerkotte. Small Materialized Aggregates: A Light Weight Index Structure for Data
Warehousing. Proc. of 24th VLDB Conf., New York, USA, 1998.

REFERENCES 199

[MS98a] Microsoft Corporation. SQL Server 7.0. 1998.

URL: http://www.microsoft.com/sql/

[MS98b] Microsoft Corporation. OLE DB for OLAP Programmer’s Reference. February 1998.

URL: http://www.microsoft.com/data/oledb/olap

[Mul71] J.K. Mullin. Retrieval-Update Speed Tradeoffs Using Combined Indexes. Comm. of ACM
14(12), Dec. 1971, pp. 775-776.

[MZB99] V. Markl, M. Zirkel, and R. Bayer. Processing Operations with Restrictions in Relational
Database Management Systems without external Sorting. Proc. of ICDE, Sydney, Australia,
1999.

[NHS84] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid-File. ACM TODS, 9(1), March
1984, pp. 38-71.

[OLA98] The OLAP Council. MDAPI TM The OLAP Application Program Interface Version 2.0
Specification. January 1998.

[OM84] J. A. Orenstein and T.H. Merret. A Class of Data Structures for Associate Searching. Proc. of
ACM SIGMOD-PODS Conf., Portland, Oregon, 1984, pp. 294-305.

[OQ97] P. O´Neill and D. Quass. Improved Query Performance with Variant Indexes. Proc. of ACM
SIGMOD Conf., Tucson, Arizona,1997, pp. 38-49.

[Ora97] Oracle Corporation. Oracle 8 Documentation. Oracle Corporation, 1997.

[Ore89] J. Orenstein. Redundancy in spatial Databases. Proc. of ACM SIGMOD Conf., 1989, pp. 294-
305.

[Ova99] D. Ovadya. Porting the UB-Tree to DB2. Internship Report, FORWISS München, 1999.

[PDF+98] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. The Multidimensional
Database System RasDaMan. Proc. of ACM SIGMOD Conf., 1998, pp. 575-577.

[Pfa99] M. Pfadenhauer. Porting the UB-Tree to Informix Universal Server. Internship Report,
FORWISS München, 1999.

[PGK88] D.A. Patterson, G.A. Gibson, and R.H. Katz. A Case for Redundant Arrays of Inexpensive Disks
(RAID). Proc. of ACM SIGMOD Conf., 1988, pp. 109-116.

[PH90] D.A. Patterson and J.L. Hennessy. Computer architecture: a quantitative approach. Kaufmann,
San Mateo, Calif., 1990.

[Pie97] R. Pieringer. Porting the UB-Tree to Oracle. Internship Report, TU München, 1997.

[Pie98] R. Pieringer. Evaluation of the UB-Tree in the SAP Environment. Master Thesis, TU München,
1998.

[PIH+96] V. Poosala, Y.E. Ioannidis, P.J. Haas, and E.J. Shekita. Improved Histograms for Selectivity
Estimation of Range Predicates. Proc. of ACM SIGMOD Conf., 1996, pp. 294-305.

[Poo97] V. Poosala. Histogram-Based Estimation Techniques in Database Systems. Ph.D thesis, Univ.
of Wisconsin-Madison, 1997.

[PS85] F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction. Springer-Verlag,
New York, 1985.

[PST+93] B.U. Pagel, H.W. Six, H. Toben, and P. Widmayer. Towards an Analyis of Range Query
Performance in Spatial Data Structures. Proc. of 12th ACM SIGMOD-PODS Conf., Washington
D.C., 1993, pp. 214-221.

200 REFERENCES

[Red97] Redbrick Systems. Star Schema processing for Complex Queries. 1997.

URL: http://www.redbrick.com/rbsg/whitepapers/starJoin.pdf

[Rit89] G. Ritter. Information Processing 89, Proc. of IFIP, World Computer Congress, San

Francisco, USA, August 28 - September 1, 1989.

[Rob81] J.T. Robinson. The K-D-B-Tree: A Search Structure for large multidimensional dynamic
indexes. Proc. of ACM SIGMOD Conf., 1981, pp. 10-18.

[Rot91] D. Rotem. Spatial Join Indices. Proc. of ICDE, 1991, pp. 500-509.

[Sag94] H. Sagan. Space Filling Curves. Springer Verlag, Berlin/Heidelberg/New York, 1994.

[Sal88] B. Salzberg. File Structures: An Analytic Approach. Prentice Hall, 1988.

[Sam90] H. Samet. The Design and Analysis of Spatial Data Structures. Addison Wesley, 1990

[SAP99] SAP AG. SAP Homepage. 1999

URL: http://www.sap.com/

[Sar97] S. Sarawagi. Indexing OLAP data. Data Engineering Bulletin 20 (1), 1997, pp. 36-43.

[Sch98] M. Schramm. UB-Tree Insertion and Deletion Functions. Internship Report, TU München,
1998.

[SDN+96] A. Shukla, P. Deshpande, J. Naughton, and K. Ramasamy. Storage Estimation for
Multidimensional Aggregates in the Presence of Hierarchies. Proc. of 22nd VLDB Conf.,
Mumbai (Bombay), India, 1996.

[SDN+98] A. Shukla, P. Deshpande, and J. Naughton. Materialized View Selection for Multidimensional
Datasets. Proc. of ACM SIGMOD Conf., 1998.

[SH94] H. Shawney and J. Hafner. Efficient Color Histogram Indexing. Proc. Int. Conf. on Image
Processing, 1994, pp. 66-70.

[SK90] B. Seeger and H.-P. Kriegel. The Buddy Tree: An Efficient and Robust Access Methods for
Spatial Database Systems. Proc. of 14th VLDB Conf., 1988, pp. 360-371

[Spe91] G. Specht. LOLA, LDL, NAIL!, RDL, ADITI and STARBURST: A Comparison of Deductive
Database Systems. Institut für Informatik. TU-München 1991.

[SRF87] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-Tree: A Dynamic Index for Multi-
Dimensional Objects. Proc. of 13th VLDB Conf., Brighton, England, 1987, pp. 507-518.

[Sto94] M. Stonebraker (ed.). Readings in Database Systems 2nd edition. Morgan Kaufmann, 1994.

[Str99] M. Streichsbier. Implementation and Analysis of the Spiral Algorithm for Nearest-Neighbor
Queries with UB-Trees. Master Thesis, TU München, 1999.

[Tam82] M. Tamminen. The extendible cell method for closest point problems. BIT 22, 1982, pp. 27-42

[TAS98] TransAction Software GmbH. TransBase Relational Database System Version 4.3, Manual.
Transaction Software GmbH, München, Germany, 1998.

[TH81] H. Tropf and H. Herzog. Multidimensional Range Search in Dynamically Balanced Trees.
Angewante Informatik, 2/1981.

[TPC97] Transaction Processing Performance Council. TPC Benchmark D (Decision Support). Standard
Specification, Revision 1.2.3. June 1997.

URL: http://www.tpc.org

REFERENCES 201

[Ull88] J.D. Ullman. Database and Knowledge Based Systems Volume I. Computer Science Press,
Rockville, MD, 1988.

[Ull89] J.D. Ullman. Database and Knowledge Based Systems Volume II. Computer Science Press,
Rockville, MD, 1989

[WB97] M.C. Wu and A.P. Buchmann. Research Issues in Data Warehousing. BTW’97. 1997.

[WB98] M.C. Wu and A.P. Buchmann. Encoded Bitmap Indexing for Data Warehouses. Proc. of ICDE,
Orlando, 1998.

[Wid95] J. Widom. Research Problems in Data Warehousing. Proc. of 4th CIKM, November 1995.

[WSB98] R. Weber, H.J. Schek, and S. Blott. A Quantitative Analysis and Performance Study for
Similarity-Search Methods in High-Dimensional Spaces. Proc. of VLDB Conf., New York, 1998

[WZ98] R. Wunderling and M. Zöckler. DOC++, a free source code documentation tool. 1998.

URL: http://www.zib.de/Visual/software/doc++/

[ZDN+98] Y. Zhao, R. Deshpande, J. Naughton, and A. Shukla. Silmutaneous Optimization and Evaluation
of Multiple Dimensional Queries. Proc. of ACM SIGMOD Conf., 1998.

[ZSL98] C. Zou, B. Salzberg, and R. Ladin. Back to the Future: Dynamic Hierarchical Clustering. Proc.
of ICDE, 1998, pp. 578-587.

[Zwi96] D. Zwillinger (ed.). Standard Mathematical Tables and Formulae. 30th edition, CRC Press,
1996.

INDEXES 203

List of Figures

Figure 2-1: Query Categories .. 22
Figure 2-2: Schema of the TPC-D Benchmark.. 24
Figure 2-3: Partial Match Queries (a, b) and exact match queries (c, d) ... 25
Figure 2-4: Range queries (a, b) and partial range queries (c, d) .. 26
Figure 2-5: Sets of query boxes (a, b) and arbitrary query spaces (c, d) ... 27
Figure 2-6: Nearest neighbor query... 29
Figure 2-7: Joins and range queries in multidimensional space .. 30
Figure 2-8: A hard disk.. 32
Figure 2-9: Clustering and dimensionality .. 34
Figure 2-10: Theoretical performance of random access, tuple clustering and page clustering............ 36
Figure 2-11: Using multiple B-Trees for answering range queries ... 39
Figure 3-1: Space filling curves... 44
Figure 3-2: Distance shrinking and distance enlargement... 47
Figure 3-3: C-values, Z-values and H-values .. 50
Figure 3-4: Relative degree of the symmetry σz/σc ... 55
Figure 3-5: C-regions and Z-regions ... 56
Figure 3-6: Z-regions and query spaces .. 56
Figure 3-7: Connected and disconnected Z-regions .. 57
Figure 3-8: Z-areas and Z-regions ... 60
Figure 3-9: Address representation.. 66
Figure 3-10: Uniformly and Gaussian distributed data ... 70
Figure 3-11: Idealized uniform partitioning .. 72
Figure 3-12: Dependent dimensions.. 73
Figure 3-13: Split depth per dimension for idealized uniformly distributed regions 75
Figure 3-14: Utilization of the multidimensional space .. 79
Figure 4-1: The UB-Tree... 84
Figure 4-2: Insertion into UB-Trees .. 86
Figure 4-3: Processing a range query .. 88
Figure 4-4: Zoom into Figure 4-3.. 89
Figure 4-5: Transforming a query box into a set of Z-intervals .. 90
Figure 4-6: Three nearest neighbor queries ... 92
Figure 4-7: Sorted reading with the Tetris algorithm .. 95
Figure 4-8: Reading a query box in sort order... 95
Figure 4-9: Z-Ordering / Tetris Ordering .. 96
Figure 5-1: Architecture of the pilot implementation.. 99
Figure 5-2: Cache requirements and UB-Tree secondary index table... 102
Figure 5-3: CPU time to calculate Z(x) and Z-1(α).. 104
Figure 5-4: Dealing with arbitrary data types.. 106
Figure 5-5: Example hierarchy in member set representation... 109
Figure 5-6: Part of a hierarchy... 111
Figure 5-7: Complex hierarchy graphs .. 112
Figure 5-8: Slowly changing dimensions .. 113

204 INDEXES

Figure 5-9: Processing a query box in sort order with the Tetris algorithm.. 115
Figure 5-10: Calculation of split points for various data distributions .. 117
Figure 5-11: UB-Tree and VUB-Tree for Gaussian/uniform data distribution 118
Figure 5-12: UB-Tree and VUB-Tree for Gaussian data distribution ... 118
Figure 5-13: UB-Tree and VUB-Tree for centered Gaussian data distribution 119
Figure 5-14: Splitting Z-regions with ε = 0%, ε = 1% and ε = 40% .. 122
Figure 5-15: Implementation of the point query algorithm... 123
Figure 6-1: The cost function for perfect idealized uniform partitioning.. 131
Figure 6-2: The cost function for probabilistic uniform partitioning .. 134
Figure 6-3: Cost function and reality... 135
Figure 6-4: ε-split and cost function.. 136
Figure 6-5 Bitmap index intersection .. 138
Figure 6-6: Access methods and clustering ... 139
Figure 6-7: Cost functions for retrieval of a multidimensional interval .. 140
Figure 6-8: prefetch(T, P, s1, ..., sd) and cluster(T, P, s1, ..., sd) .. 141
Figure 6-9: Simulation of a four dimensional range query.. 142
Figure 6-10: Simulation of sorting a four dimensional query box .. 144
Figure 6-11: Temporary storage required for the sorter cache (simulation).. 145
Figure 7-1: Insert performance .. 148
Figure 7-2: Time distribution for UB-Tree insertion... 149
Figure 7-3: Range queries in sparsely (a) and densely (b) populated parts of a universe 152
Figure 7-4: Query box volumes... 152
Figure 7-5: Range queries and scalability ... 153
Figure 7-6: Characteristics of a c%-measurement series... 154
Figure 7-7: Characteristics of a cube measurement series... 155
Figure 7-8: DBMS1... 156
Figure 7-9: DBMS2... 158
Figure 7-10: Varying the number of restricted dimensions for 35% restrictions (DBMS2) 160
Figure 7-11: Varying the number of restricted dimensions for cube restrictions (DBMS2) 160
Figure 8-1: Transformation rules for the implementation of algebraic operations.............................. 165
Figure 8-2: Query Q3 of the TPC-D benchmark ... 167
Figure 8-3: Operator trees for Q3 .. 168
Figure 8-4: Processing Q3 with the Tetris algorithm .. 168
Figure 8-5: Response times and temporary storage for sorting 50 % of LINEITEM for Q3 169
Figure 8-6: Q4 of the TPC-D benchmark .. 170
Figure 8-7: Processing Q4 ... 171
Figure 8-8: Responses time and temporary storage for sorting 3.5% of ORDER for Q4 171
Figure 8-9: Query Q6 of the TPC-D benchmark ... 172
Figure 8-10: Processing Q6 with UB-Tree, IOT and FTS... 173
Figure 8-11: Performance of Q6.. 174
Figure 8-12 Hierarchies in the ‘Juice & More’ schema and the corresponding star schema 175
Figure 8-13: Time Interval (Q1).. 176
Figure 8-14: Distribution cost (Q2) ... 177
Figure 8-15: Partial match query in the first hierarchy level (Q3) .. 177

INDEXES 205

Figure 8-16: Data distribution of the time dimension ... 178
Figure 8-17: Data distribution of the product dimension .. 179
Figure 8-18: Data distribution of the first two hierarchy levels of the product dimension 179
Figure 8-19: Data distribution of the customer dimension.. 180
Figure 8-20: Data distribution of the distribution dimension .. 181
Figure 8-21: Compound surrogates for each dimension of ‘Juice & More’.. 181
Figure 8-22: Query response times and result set sizes... 184
Figure 8-23: ‘Juice & More’ performance... 185

206 INDEXES

List of Tables

Table 2-1: Number of dimensions restricted to points, intervals or unrestricted for several types of
partial range queries... 27

Table 2-2: Indexes in present RDBMS.. 40
Table 3-1: Transformation from Zi-addresses to Zs-addresses .. 67
Table 5-1: Schema of a UB-Tree index table .. 100
Table 5-2: Prototype implementation concepts ...101
Table 5-3: Two surrogate mappings for an enumeration type... 107
Table 5-4: Heights of a Split Point Tree for various Database Sizes and Dimensions........................ 120
Table 6-1: Split levels.. 133
Table 7-1: Table Sizes of a 1 million 28 Byte tuples relation on DBMS1 (2kB pages)...................... 150
Table 7-2: Table Sizes of a 10 million 28 Byte tuples relation on DBMS1 (2kB pages).................... 150
Table 7-3: Table Sizes of several tables on DBMS2 (8kB pages)... 150
Table 7-4: Response times for 35%-measurements on DBMS1 with A1 as variable attribute 157
Table 7-5: Response times for cube measurements on DBMS1 ... 157
Table 7-6: Response times for 35%-measurements on DBMS2 with A1 as variable attribute 158
Table 7-7: Response times for cube measurements on DBMS2 ... 158
Table 8-1: Complexities of relational operators .. 166
Table 8-2: Interactive response times and cache sizes for sorting 50 % of LINEITEM 170
Table 8-3: Interactive response times and cache sizes for sorting 3.5% of ORDER........................... 172
Table 8-4: Interactive response times for Q6 .. 173
Table 8-5: Restrictions in the first hierarchy level in 3 of 4 dimensions... 182
Table 8-6: Restriction in the first two hierarchy levels in 3 of 4 dimensions...................................... 183
Table 8-7: Restricted hierarchies and selectivities for five queries against the ‘Juice & More’ data

warehouse.. 184

INDEXES 207

List of Definitions

Definition 2-1 (multidimensional domain, Ω)... 17
Definition 2-2 (-order of Ω) ... 17
Definition 2-3 (<-neighbors) ... 17
Definition 2-4 (distance of two values) ... 18
Definition 2-5 (scalar normalization) .. 18
Definition 2-6 (tuple normalization).. 18
Definition 2-7 (one-dimensional intervals) ... 18
Definition 2-8 (multi-dimensional interval) .. 18
Definition 2-9 (volume of a linear interval) .. 19
Definition 2-10 (volume of a multidimensional interval).. 19
Definition 2-11 (volume of a set of multidimensional intervals) .. 19
Definition 2-12 (average) .. 20
Definition 2-13 (standard deviation) ... 20
Definition 2-14 (region)... 20
Definition 2-15 (page; page capacity) ... 20
Definition 2-16 (correspondence between pages and regions).. 20
Definition 2-17 (region partitioning) ... 21
Definition 2-18 (query, result set) ... 21
Definition 2-19 (selectivity) .. 22
Definition 2-20 (restriction)... 22
Definition 2-21 (restriction interval, query box) ... 23
Definition 2-22 (index candidate, index attribute, result attribute) ... 23
Definition 2-23 (tuple clustering; page clustering).. 33
Definition 3-1 (space filling function)... 42
Definition 3-2 (C-value, C-address) .. 42
Definition 3-4(compound curve and Z-curve).. 44
Definition 3-5 (Z-ordering,) .. 45
Definition 3-6 (continuity)... 46
Definition 3-7 (monotonicity) ... 46
Definition 3-8 (successor and predecessor of a value) ..47
Definition 3-9 (successor and predecessor of a tuple in one dimension) .. 47
Definition 3-10 (neighbors in one dimension of Ω) .. 47
Definition 3-11 (average neighbor distance for a point in one dimension) ... 48
Definition 3-12 (bit of an expression) ... 48
Definition 3-13 (∆i).. 48
Definition 3-14 (cumulated neighbor distance for one dimension)... 51
Definition 3-15 (degree of symmetry of a space filling curve) ... 52
Definition 3-16 (C-Region) ... 55
Definition 3-17 (Z-Region) ... 55
Definition 3-18 (connection in space) ... 57
Definition 3-19 (Z-area; increment Z-address (Zi-address)) ... 59

208 INDEXES

Definition 3-20 (step and length of a Zi-address) .. 60
Definition 3-21 (tuple, Z-address of a tuple) ... 61
Definition 3-22 (mapping between tuples and addresses) ... 62
Definition 3-23 (Z-region)... 62
Definition 3-24 (number of steps for an attribute)... 63
Definition 3-25 (length of a step) .. 63
Definition 3-26 (standard representation of a Z-address (Zs-address)) ... 63
Definition 3-27 (contribution of a dimension to a Zs-address) .. 64
Definition 3-28 (address incrementation and decrementation).. 65
Definition 3-29 (dependence and independence of dimensions)... 69
Definition 3-30 (idealized uniform partitioning)... 71
Definition 3-31 (linear dependency).. 72
Definition 3-32 (sine dependency) .. 73
Definition 3-33 (total split depth; ideal split depth per dimension)... 74
Definition 3-34 (actual domain of a dimension).. 75
Definition 3-35 (partition of an actual domain)... 75
Definition 3-36 (prefix length of a partition)... 75
Definition 3-37 (actual split depth) ... 76
Definition 3-38 (normalized actual split depth per dimension and normalized actual split depth) 77
Definition 3-39 (puff pastry, puff pastry degree) .. 78
Definition 4-1 (UB-Tree)... 84
Definition 4-2 (subcube of an address).. 87
Definition 5-1 (lexicographic character order C1 Cn, lexicographic byte order B1 Bn, lexicographic

bit order b1 ... bn) ... 105
Definition 5-2 (transformation function) ... 106
Definition 5-3 (enumeration type) ... 107
Definition 5-4 (hierarchical dependence) .. 108
Definition 5-5 (hierarchical independence) ... 108
Definition 5-6 (compound surrogate) .. 110
Definition 5-7 (path through a hierarchy).. 111
Definition 5-8 (variable UB-Tree, VUB-Tree).. 116
Definition 5-9 (split point tree).. 119
Definition 6-1 (perfect idealized uniform partitioning)... 130
Definition 6-2 (semi-perfect and probabilistic idealized uniform partitioning) 132
Definition 6-3 (probabilistic dimension) ... 132
Definition 7-1 (range method measurement for an access method) .. 153
Definition 7-2 (measurement for a set of access methods).. 154
Definition 7-3 (measurement series) ... 154
Definition 7-4 (c%-measurement series) ... 154
Definition 7-5 (cube measurement series)... 155
Definition 8-1 (CPU-complexity, asymptotic CPU-complexity CPU(n))... 162
Definition 8-2 (I/O-complexity, asymptotic I/O-complexity IO(n)) ... 162
Definition 8-3 (SPACE-complexity, asymptotic SPACE-complexity SPACE(n))............................. 162

INDEXES 209

List of Theorems and Lemmas

Theorem 3-1 (symmetry theorem): For practical values for d ∈ {2, ..., 10} and r ∈ {2, ..., 109} the
Z-curve has a higher degree of symmetry than the compound curve. ... 53

Theorem 3-2 (connection theorem): Any Z-region consists of at most two spatially disconnected sets
of points and such Z-regions exist. .. 58

Theorem 3-3 (mapping between tuples and addresses): There exists a one-to-one map between
Cartesian coordinates of a tuple and Z-addresses.. 61

Theorem 3-4 (isomorphism between Zs-addresses and Zi-addresses): For Z-addresses ≠ εi the
standard representation and the increment representation of Z-addresses are isomorphic............ 66

Theorem 4-1 (range query theorem): The range query algorithm transforms the multidimensional
interval [[y, z]] into a set of one-dimensional address intervals {]α, β],]β, γ], ...}, which with
respect to the given region partitioning is the smallest cover for [[y, z]]. 90

Lemma 2-1 (�neighbors): Two points x, y ∈ Ω with x y are �neighbors, if and only if, there
exists an index i so that xj = yj for all j ∈ D\{i} and xi and yi are <-neighbors. 17

Lemma 2-2: A point x in d-dimensional space has at most 2⋅d �neighbors...................................... 18
Lemma 2-3: The volume of the difference of two point-sets S and Q ⊆ S is the difference of the

volumes of S and Q.. 19
Lemma 3-1: A space filling function defines a one-dimensional ordering for a multidimensional

space. ... 42
Lemma 3-2: For a ∈ {0, ..., 2s⋅d-1} with the binary representation a = as⋅d-1...a0 the inverse function x =

C-1(a) is calculated as:. .. 43
Lemma 3-3: For a ∈ {0, ..., 2s⋅d-1} with the binary representation a = as⋅d-1...a0 the inverse function x =

Z-1(a) is calculated as:.. 43
Lemma 3-4: C(Ω) = Z(Ω) = {0, ..., 2s⋅d-1} ⊂ R.. 44
Lemma 3-5: The C-curve creates the ordering Ad°...°A2°A1 on the multidimensional space Ω.............. 45
Lemma 3-6 (C-distance of two points): For two points x, y ∈ Ω with x A1°A2,..., °Ad y their distance on

the C-curve is:.. 45
Lemma 3-7 (Z-distance of two points): For two points x, y ∈ Ω with x y their distance on the Z-

curve is: ... 45
Lemma 3-8: The compound curve and the Z-curve are not continuous... 46
Lemma 3-9: The compound curve and the Z-curve are monotonous... 46
Lemma 3-10: For a point x the average distance of a neighbor on the C-curve with respect to

dimension i is:.. 48
Lemma 3-11: For a point x the average distance of a neighbor on the Z-curve with respect to

dimension i is... 48
Lemma 3-12: The average neighbor distance for the Z-curve for dimension i is: 51
Lemma 3-13: The average neighbor distance for the C-curve for dimension i is: 52
Lemma 3-14: A Z-region [α : β] covers the multidimensional interval defined by the boundaries Z-

1(α) and Z-1(β) with Z-1(α) Z-1(β) .. 56

210 INDEXES

Lemma 3-15: A C-region [α :C β] covers the multidimensional interval defined by the boundaries C-

1(α) and C-1(β) ... 57
Lemma 3-16: If for any i > 0 αi ≠ 2d, the Zi-addresses α = α1. ... αi+1 and α* = α1.αi.2

d define the
same area. .. 60

Lemma 3-17: The lexicographic ordering of Z-addresses (denoted by
) and set containment of
areas in space (denoted by ⊆) are isomorphic: .. 61

Lemma 3-18: Since the two maps are inverses of each other we get: .. 62
Lemma 3-19: For Zs-addresses the contribution of an attribute is just the attribute itself.................... 64
Lemma 3-20 (domain of a step of a standard address): Zs-addresses result in a subcube numbering

between 0 and 2d-1... 64
Lemma 3-21 (length of a Zs-address): The length in bits of Zs-addresses is identical for each tuple of

a given universe. .. 65
Lemma 3-22 (open regions and closed regions):] α : β] = [α 1 : β]... 67
Lemma 3-23: The ordering of Z-values of Section 3.1 is identical to the ordering
 defined by

Algorithm 3-1. ... 67
Lemma 3-24: If β1...βk is the bit-sequence of a Zs-address numbered from left to right, the volume of

the corresponding area is calculated as.. 68
Lemma 3-25: If α1...αk and β1...βk are the bit sequences of the addresses α and β, the volume of the Z-

region]α : β] is calculated as: ... 69
Lemma 5-1: For positive integer numbers with a fixed length binary representation the bit

lexicographic order on the binary representation is identical to the <-order on integer numbers.
... 105

Lemma 5-2: For character strings the bit lexicographic order on the binary representation is identical
to the <-order on integer numbers. .. 105

Lemma 6-1: Each probabilistic idealized uniform partitioning has exactly one probabilistic
dimension. ... 132

GLOSSARY 211

Index

Term Description Symbol see also

area, geometric ⇒volume Section 2.1.3

arity number of attributes of a relation d, d’, dR Section 2.1

BII bitmap index intersection Section 2.4.2,
Section 8.3.4,
Section 6.3

bit interleaving efficient implementation of the
Z-address calculation

Section 5.3.1

C-address index of a point on the compound
curve

Definition
3-2

cardinality number of elements in a set Section 2.1.1

C-curve synonym to ⇒compound curve

clustering data that is likely to be accessed
together is placed physically
close to each other

Section 2.3.2

clustering, page pages are stored in index order
on physical storage

Definition
2-23, Section
2.3.2.3,
Section 6.2

clustering, tuple tuples are stored in index order
on a page

Definition
2-23, Section
2.3.2.2,
Section 6.2

column synonym to ⇒attribute Section 2.1

212 GLOSSARY

compound curve space filling curve created by
concatenating the co-ordinates of
the points in some fixed order

Definition
3-4

compound ordering linear ordering of the
multidimensional space created
by the C-curve

Section 2.3.2,
Example 2-6

coordinate value of a point in one dimension xi, yi, zi Section 2.1

correspondence between pages
and regions

↔ Definition
2-16

CSI composite secondary index (see
also ⇒IOT)

Section 7.4.2,
Section 6.3,
Section 2.3

C-value synonym to ⇒C-address

dimension Section 2.1

dimensionality synonym to ⇒arity Section 2.1

distance Section 2.1.3

domain , i,
Ωi

Section 2.1.1

domain, actual subset of a domain actually used
in a relation

i Definition
3-34

domain, maximum value υi Section 2.1.1

domain, minimum value λi Section 2.1.1

domain, multidimensional cross product of one-dimensional
domains

Ω Section 2.1.1

FTS full table scan Section 2.3,
Section 2.4,
Section 7.4.2,
Section 6.3

GLOSSARY 213

H-address index of a point on the Hilbert
curve

Section 3.1

H-curve synonym to ⇒Hilbert curve

Hilbert curve space filling curve created by the
leitmotif of D. Hilbert [Hil91]

Section 3.1

H-value synonym to ⇒H-address

idealized uniform partitioning special region distribution of a
multidimensionally partitioned
universe

Section 3.7.3,
Section 6.1

index candidate attribute restricted or sorted
during the processing of a query

Definition
2-22

interval, multidimensional [[x, y]],
]]x, y]],
[[x, y[[,
]]x, y[[

Definition
2-8

interval, one-dimensional [a, b],
]a, b],
[a, b[,
]a, b[

Definition
2-7

IOT index organized table, clustering
B*-Tree

Section 7.4.2,
Section 2.4.1

Lebesgue curve synonym to ⇒Z-curve

length ⇒volume vol Section 2.1.3

lexicographic ordering synonym to ⇒compound
ordering

Section 2.3.2,
Example 2-6

MSI multiple secondary index
intersection (see also ⇒BII)

Section 2.4.2,
Section 7.4.2,
Section 6.3

Multidimensional Hierarchical
Clustering

encoding technique for
multidimensional hierarchies

Section 5.3.4

214 GLOSSARY

neighbor of a point point, which only differs in one
coordinate from a given point
and the difference between the
two points in this coordinate is
the limit of resolution

Section 2.1.1

normalization, scalar â Definition
2-5

normalization, tuple ^ Definition
2-6

page byte container or (ordered) set
storing tuples of a relation

Definition
2-15

point, d-dimensional vector of coordinates which
defines a location in d-
dimensional space

x, y, z Section 2.1

predecessor, point Definition
3-9

predecessor, value Definition
3-8

puff pastry degree degree of unsymmetry of a Z-
ordered space

Section 3.10

query Definition
2-18

query box Q Definition
2-21

query, arbitrary volume Section 2.2.3

query, exact match Section 2.2.1

query, partial match Section 2.2.1

query, partial range Section 2.2.2

GLOSSARY 215

query, range Section 2.2.2

region subspace of Ω Definition
2-14

relation set of tuples R, S Section 2.1

relation, base space ⇒multidimensional domain of a
relation

Section 2.1.1

relation, multidimensionally
partitioned

set of tuples stored on a set of
pages, where each page
corresponds to a region in
multidimensional space

PR, PS Section 2.1.5,
Definition
2-17

relation, partitioned set of tuples stored on a set of
pages

PR, PS Section 2.1.5,
Definition
2-17

restriction logical predicate defined by a
query

Definition
2-20

restriction interval subspace defined by a query Definition
2-21

result attribute attribut projected into the result
set of a query

Definition
2-22

result set tuples satisfying a query
condition

Definition
2-18

row synonym to ⇒tuple Section 2.1

selectivity percentage of tuples in the
database satisfying a restriction

Definition
2-19

spiral algorithm algorithm to process nearest
neighbor queries on
multidimensionally partitioned
data spaces

Section 4.6

SSI single secondary index Section 6.3,
Section 2.3

216 GLOSSARY

successor, point Definition
3-9

successor, value Definition
3-8

table synonym to ⇒relation R, S Section 2.1

Tetris algorithm algorithm to process sort
operations while processing
multi-attribute restriction on
multidimensionally partitioned
data spaces

Section 4.7,
Section
5.3.4.6,
Section 6.4

tuple, d-dimensional x, y, z Section 2.1.1

type type of an attribute Section 2.1

UB-Tree multidimensional access method
based on Z-ordering

Definition
4-1

variable UB-Tree encoding technique for
independent, arbitrarily
distributed dimensions

Section 5.3.5

volume percentage of space covered by a
subspace compared to the entire
multidimensional space

vol section 2.1.3

Z-address index of a point on the Z-curve Definition
3-3,
Definition
3-19,
Definition
3-20

Z-area subspace of the multidimensional
space constructed by a Z-address

Λ1, Λ2,
Λ3, ...

Definition
3-19

Z-curve space filling curve created by bit-
interleaving of the co-ordinates
of the points

Definition
3-4

GLOSSARY 217

Z-ordering linear ordering of
multidimensional space created
by the Z-curve

Definition
3-5

Z-region (closed) subspace covered by the part of
the Z-curve starting with Z-
address α and ending with Z-
address β

[α : β] Definition
3-17, Section
3.6

Z-region (open) subspace covered by the part of
the Z-curve starting with Z-
address α and ending with Z-
address β, where α is not
included in the region

]α : β] Definition
3-23

Z-value synonym to ⇒Z-address

