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Preface

Classical one dimensional B-trees have been the standard access method of all
commercial database systems for many years. This dissertation is a very promising
effort to introduce universal B-trees (UB-trees), the multidimensional variant of B-
trees, as a basic access method into the core of fundamental DB-technology. The
universal relevance of UB-trees is a consequence of the fact, that every relation can
be considered as a set of points in multidimensional space. UB-trees organize this
space for efficient processing of the data, resulting for many types of queries in
orders of magnitude improvement over classical methods.

The thesis lays the theoretical foundations of UB-tress, predicts their performance by
analytical models and validates these models by experiments using large real world
databases and real life applications and queries from the field of datawarehousing.
The need to sort data and intermediate results frequently is an annoying drawback
of today‘s query processing methods. In combination with the Tetris algorithm UB-
trees allow to avoid sorting in most cases, leading to dramatic improvements of
response time, storage requirement and overall query processing time.

Adding a new access method requires to consider all aspects of database systems:

- architecture of subsystems

- query optimization

- query processing

- multiuser operation and synchronization
- bulk loading

- storage requirement

- parallelism, etc.

Since UB-trees rely on classical B-trees for their implementation, all of these issues
can be solved in a satisfactory way and can be dealt with elegantly.

The performance experiments reported in this thesis were carried out with an
implementation of UB-trees as a middleware layer on top of SQL. Additional
performance improvements can be gained by integrating the UB-tree technology in
the kernel of database systems.

This thesis is a cornerstone of the MISTRAL project. MISTRAL has the goal to
introduce UB-trees as a new access method into database systems with the
fascinating vision, to extend fundamental database technology in an essential way.
MISTRAL is financially supported by SAP, Teijin, NEC, Hitachi, the European
Commission, Project MDA, TAS, Gfk and Microsoft.

Munich, July 25, 1999 Prof. Rudolf Bayer, Ph.D.
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Abstract:

A multidimensional access method offering significant performance increases by intelligently
partitioning the query space is applied to relational database management systems (RDBMS). We
introduce a formal model for multidimensional partitioned relations and discuss several typica query
patterns. The model identifies the significance of multidimensional range queries and sort operations.
The discussion of current access methods gives rise to the need for a multidimensional partitioning of
relations. A detailed analysis of space partitioning focussing especially on Z-ordering illustrates the
principle benefits of multidimensional indexes. After describing the UB-Tree and its standard
algorithms for insertion, deletion, point queries, and range queries, we introduce the spiral agorithm
for nearest neighbor queries with UB-Trees and the Tetris algorithm for efficient access to atable in
arbitrary sort order. We then describe the complexity of the involved algorithms and give solutions to
selected agorithmic problems for a prototype implementation of UB-Trees on top of several
RDBMSs. A cost model for sort operations with and without range restrictions is used both for
analyzing our algorithms and for comparing UB-Trees with state-of-the-art query processing.
Performance comparisons with traditional access methods practically confirm the theoreticaly
expected superiority of UB-Trees and our agorithms over traditiona access methods. Query
processing in RDBMS is accelerated by severa orders of magnitude, while the resource regquirements
in main memory space and disk space are substantially reduced. Benchmarks on some queries of the
TPC-D benchmark as well as the data warehousing scenario of a fruit juice company illustrate the
potential impact of our work on relational algebra, SQL, and commercia applications. The results of
this thesis were developed by the author managing the MISTRAL project, a joint research and
development project with SAP AG (Germany), Teijin Systems Technology Ltd. (Japan), NEC (Japan),
Hitachi (Japan), Gesellschaft fir Konsumforschung (Germany), and TransAction Software GmbH
(Germany).
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CHAPTER 1: INTRODUCTION 3

Of course a film should have a
beginning, a middle and an end.
But not necessarily in that order.

(Jean-Luc Godard)

Chapter 1

| ntroduction

M

ultidimensional access methods are useful for a broad range of database
applications, e.g., data warehousing, geographical information systems,
data mining, archiving systems, lifecycle management databases. In
general these access methods are beneficial, if queries define (and thus
process) some part of a large data set by restrictions with respect to
several categories (e.g., the sales for one year for a certain product, all

cities near Munich with a population larger than 100.000 people). We focus on using
multidimensional indexes for query processing in relational database management systems
(DBMYS). This introduction defines the scope and objective of the thesis. The applicability of
multidimensional access methods for query processing is motivated by examples from data
warehousing, non-standard DBMS applications and relational databases in general. The
introduction also surveys related work in the fields of multidimensional access methods,
relational DBMS and query processing, data warehousing and benchmarking. The chapter is
concluded by giving aroadmap on the following chapters of the thesis.
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1.1 Motivation

Complex business applications like SAP R/3 [SAP99], data warehousing (DW) and data
mining as well as non-standard DBMS applications like geographical information systems
(GIS) and statistical databases have created a strong demand for efficient processing of
complex queries on huge databases. These complex queries set new requirements on the
guery processing and access method algorithms of aDBMS.

The main reason of indexing a table of a database is to accelerate query execution. This is
achieved by utilizing the restrictions imposed by aquery in order to reduce the number of disk
accesses. We focus on using multidimensional indexes to organize any table of a database. In
the following we use the terminology of relationa DBMS because of their commercial
importance. Since access methods are relevant to any DBMS regardless of the DBMS
paradigm, the methodology described in this thesis can also be used to accelerate deductive
DBMS (DDBMS, e.g., [UII89, Spedl]), object-oriented DBMS (OODBMS, e.g., [BDK92)])
or multidimensional DBMS (MDBMS, e.g., [PDF+98]).

We consider each tuple of a table to be a point in multidimensional space. Then a table
describes a certain subspace of a multidimensional space defined by the cross product of the
domains of all attributes. We use a multidimensional access method to organize that
multidimensional space, which allows to cluster the data with respect to multiple attributes at
the same time. As we will show, this multidimensional organization of arelational tableisin
many cases superior to one-dimensiona clustering (i.e., organizing the data on disk for
efficient access with respect to one attribute). However, current commercial DBMS do either
not support multidimensional indexes at all or only use them as an add-on in the context of
geo-spatial applications [Ora97, IBM97].

In the following we describe how data warehousing, non-standard DBMS as well as standard
DBMS may benefit from the techniques described in this thesis.

1.1.1 Data Warehousing Applications

Data-warehousing applications [Inm96, Kim96, Dev97] cope with enormous amounts of data
ranging in Gigabytes and Terabytes. While transactional (OLTP, online transaction
processing) DBMS like bank applications usually use simple query patterns to retrieve a very
small part of a database (usually one record) by a primary key access, data processing in data
warehousing (OLAP, online analytical processing) involves complex queries that usually
access alarge portion of the database [CD97, WB97, GBL+96].

On the conceptual level a multidimensional (MD) view on the data models has been
established by academia and the industry for OLAP applications [CD97]. In the MD model
the numeric (quantitative) data (measures) (e.g., sales, cost), which is the focus of the
anaysis, is organized along multiple dimensions. The dimensions provide categorical
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(qualitative) data (e.g., container size of a product), which determines the context of the
measures. Therefore the measures can be seen as a value in a multidimensional space — one

often refers to this model as a multidimensiotidde. An important concept of OLAP data
models is the notion aimension hierarchies. Hierarchies are used to provide structure to the
otherwise flat dimensions. Often the data in the dimensions can be categorized/classified
according to some additional characteristics (e.g., shops could be classified according to their
location). Usually OLAP users are not interested in the single measures but in some form of
summarized data (e.g., sales in a certain area). Hierarchies provide an appropriate method of
describing the level of aggregation for a dimension.

Data processing in DW applications retrieves aggregated measures organized or classified
according to several dimensions or hierarchies over the dimensions (e.g., the total sales for all
coffee shops in Bavaria in 1999). For this reason multidimensional data models [BSH+98],
multidimensional query languages (e.g., MDX [MS98b] or the OLAP Council approach
[OLA98]) and even multidimensional DBMS (MDBMS) have been developed by the
research community and implemented as commercial products. Typical OLAP operations are
drill-down, roll-up and slice-and-dice [Kim96] and usually multiple dimensions are restricted

at the same time. In general one can state that these operations in a MD model lead to range
restrictions on the lowest hierarchy level of each dimension [Sar97].

To a large extent, relational DBMS are used for decision support applications, since these
systems are well researched and are reported to provide more efficiency for huge databases
than MDBMS. Regardless whether a multidimensional or relational paradigm is used to
model and query OLAP data, queries result in multidimensional range restrictions in
combination with sort operations and aggregations. Therefore any DBMS storing OLAP data
must efficiently handle this typical query pattern.

Pre-computation, clustering and indexing are common techniques to speed up query
processing. Pre-computation results in the best query response time at the expense of load
performance and secondary storage space. For DW applications, pre-computation is mostly
discussed for aggregation operations [CD97]. However, one requirement of DW is to effi-
ciently deal with ad-hoc queries. Deciding which queries to pre-compute becomes extremely
difficult then. Pre-computation also leads to a view maintenance problem.

In Section 8.2 we will illustrate the applicability of our technique to OLAP scenarios by using

a multidimensional index to cluster the data cube of a data warehouse in order to efficiently
process OLAP queries. We present a methodology to cluster data organized along multiple
hierarchical dimensions. For clustering the fact table of a relational OLAP implementation we
present performance measurements for a fruit juice company using a star schema with a fact
table of 26 million records (an overall size of 7 GB). On this real-world data we experienced a
performance increase up to a factor of ten compared to traditional techniques.
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1.1.2 Non-Standard DBM S

Non-standard DBMS deal with complex objects which usually are not simply stored in tables
or relations due to their interaction, relationship or size. Typical examples of non-standard
DBMS are multimedia DBMS, CAD/CAM DBMS or geographical information systems
(GIS). The systems usually aim towards specific applications, like similarity search, for
example searching a picture or sound similar to an example picture/sound specified by a
query. In many application areas like CAD [BKK97], computer vision [Jag91], multimedia
archives [SH94], medical imaging [KSF+96], molecular biology [AGM+90] or time sequence
analysis [AFS93], these problems can usually be reduced to search problems by feature
transformation. However, often feature transformation results in high-dimensional data space
which should be indexed with index structures specificaly designed for these data spaces
[Boh98, WSB98].

This thesis does not deal with high dimensional data spaces (see [B6h98] for a survey on
indexing methods on high dimensional spaces). However, often proper data modeling allows
to reduce dimensionality to below 10 dimensions. In this case, the methods described in this
thesis may also be applied to non-standard DBMS applications. Moreover, since we aim to
integrate our approach into standard DBMS, our technology may enable standard DBMS to
deal with some subset of non-standard applications.

1.1.3 Relational DBMSand DBMSin General

Since tuples in a relation and points in multidimensional space are merely two different views
on a data set, the data stored in databases can be considered to be of multidimensional nature.
The expressiveness of query languages allows to write complex queries which mostly deal
with more than one attribute. SQL queries, for instance, often involve multi-attribute
restrictions and aggregations. These restrictions usually map onto ranges in several
dimensions. In Section 2.1.4 we will show some SQL range queries against a database
schema which is typical for decision support applications. Numeric attributes and time values
are prime candidates to be restricted to ranges. Yet also restrictions in hierarchical data types
will map onto ranges, if the data modeling of Section 5.3.4 is used. The index structures used
in present commercial database systems are mostly based on B-Trees, which do not support
multidimensional range queries efficiently. In Chapters 7 and 8 we will show the benefit of
multidimensional index structures for processing complex queries with multi-attribute
restrictions.

A sort operator utilizing multi-attribute restrictions is one of the most important operations for
the physical layer of a DBMS, since sorting is required for an efficient implementation of
most operations of the relational algebra (like for ordering a table, for grouping and
aggregation, for projection as well as for sort-merge joins of several tables). In Section 4.7 we
describe a single operator for efficiently processing sort operations with multi-attribute
restrictions, the so-called Tetris algorithm [MB98]. The Tetris algorithm is a generalization of
a multidimensional range query algorithm that efficiently combines sort operations with the
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evaluation of multi-attribute restrictions. The basic idea is to use the partial sort order
imposed by a multidimensional partitioning in order to process a table in some total sort
order. With the Tetris algorithm a multidimensional index can reduce resource requirements
for virtually any operation of the relational algebra. Compared to the native access methods of
acommercial DBMS, our prototype implementation of the Tetris algorithm shows significant
speedups for queries of the TPC-D benchmark. In addition, temporary storage requirements
for the sorting process are reduced and first results of a sort operation are available much
earlier for further processing. In Section 6.4 we will see how multidimensiona index
structures and the Tetris algorithm can be used to accelerate virtually any operation of the
relational algebra.

Sort operations and multi-attribute restrictions are not only useful for RDBMS
implementation, but for DBMS in genera. Query processing in OODBMS, DDBMS or
MDBMS also relies on efficient access to data in some sort order (e.g., for duplicate
elimination or set operations). Thus the results of thisthesis are applicable to any DBMS.

1.2 Objective

The goal of this work is to show the potential of integrating multidimensional indexes as first
class indexes into the kernel of a database system. We intend to provide a deeper insight into
the problems and chances of multidimensiona indexing. Therefore this thesis includes two
analytical chapters. Chapter 3 studies multidimensional space partitioning and Chapter 6
derives a cost model for range queries with and without sort operations. This cost model is
further used to analyze the range query performance in order to have a benchmark to judge
our practical measurements.

Another objective is to show the practical feasibility of our approach. We therefore describe
the main challenges of our prototype implementation in Chapter 4 and give real performance
figures for both artificial and real-world data in Chapters 6 and 7. In order to illustrate further
work in this area and give hints for further reading we survey related work in Section 1.3.

In addition we aim at introducing two new technologies, which were developed by the author
during hiswork on the thesis, namely:

» the Tetris algorithm for processing queries with multi-attribute restrictions and sort
operations (see Section 4.7)

* multidimensiona hierarchical clustering for clustering data organized according to
multiple hierarchical dimensions (see Section 5.3.4)

These techniques may significantly speed up query processing and DBMS and therefore may
be of great commercia value. While the Tetris agorithm is a technique which extends the
already patented UB-cache idea [Bay97b], a patent application for multidimensional
hierarchical clustering is planned by the author and his supervisor.
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Many literature has been published about surveying or comparing multidimensional access
methods. We just briefly describe the main papers and main approaches in the next section.
Instead, our focus is to study the impact of multidimensional index structures on relational
guery processing. For performance comparisons of multidimensional indexes we also refer to
the related work listed in Section 1.3.

1.3 Related Work

In the following we survey related work in the field of multidimensional access methods,
relational DBM S and query processing, which may be used for reference or further reading.

1.3.1 RDBM Sand Query Processing

An important task of query processing in RDBMS is to efficiently implement algorithms for
the basic operations of the relational algebra [Cod70]. Usually, these algorithms apply to
particular storage structures or access methods. [Gra93] gives a concise survey of query
processing. The selection operation is either implemented by a table scan, or, if an index is
available, by an index scan.

Indexing is used to efficiently process a query if the result set defined by the query restrictions
is fairly small. Most OLTP applications use B-Trees [BM72, Com79] as their standard
indexing scheme. For point-restrictions it is also possible to use hash indexes [FNP+79, ].Fa-
voring retrieval response time over update response time allows to build severa indexes on
one table or data cube of a DW. Bitmap indexes (e.g., [OQ97, CI98, WB98]) are widely
discussed as an improvement over B-Trees for DW applications, since they efficiently evalu-
ate queries with multi-attribute restrictions. However, the overal result set still must be
relatively small. Thisis a mgor drawback of bitmap indexes, since usualy arelatively large
part of a cube must be accessed in order to calcul ate aggregated measures.

Clustering places data that is likely to be accessed together physically close to each other. The
goal of clustering is to limit the number of disk accesses required to process a query by
increasing the likelihood that query results have already been cached. Clustering has been
well researched in the field of file structures and access methods (e.g., [Sal88, GR97, Sto94].
B-Trees, for instance, provide one-dimensional clustering. Multidimensional clustering has
been discussed in the field of multidimensional access methods (e.g., [GG97, Sam90]

A great deal of research has been done in the field of access methods and access path se-
lection. Especially for DW environments, specialized access methods have been proposed
[Inf97, OQ97]. Often several indexes are created on one table in order to speed up query
processing [Lum70, Mul 71, MHW+90, Red97, GHR+97].

If the selection condition specifies a range in a single attribute, a clustering index greatly
speeds up query processing. Conjunctive selection conditions are efficiently processed by
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composite indexes, intersection of record pointers or multidimensional indexes. We will
investigate processing of multi-attribute restrictions in more detail in Section 2.4 and Chapter
6.

One of the most important operations in RDBMS is the join operation, which is used to
combine several relation which were normalized during data modeling. The join operation is
usually implemented by nested loop algorithms, join indexes, sort-merge agorithms, or hash
algorithms. [ME92] surveys join processing in relational databases.

The relational operations of projection, union, intersection and set difference are efficiently
implemented by processing a relation in some sort order and then either use an index scan or
merge-sort algorithm [Gra93]. Efficient sort operations and the use of restrictions to limit
result sets are crucial to many query processing agorithms. Very often queries combine
several operations of the relational algebralike join and restriction.

1.3.2 Multidimensional Access M ethods

Multidimensional access methods are well researched in the field of spatial databases. [GG9I7]

and [Sam90] provide excellent surveys of almost al of these methods. Multidimensional

indexes are used to utilize spatial restrictions (e.g., range restrictions, intersection, overlap)

and to efficiently compute spatial joins [Rot91, Gin93, BKS93]. Multidimensional data
structures are usually classified @nt access methods storing points in multidimensional

space andspatial access methods storing multidimensional extended objects of arbitrary
volume, e.g., boxes, spheres, etc. Usually one also distinguishes between main memory
structures, which are used to manage multidimensional data in main memory, and secondary
storage structures, which are used for efficiently accessing large multidimensional databases
on secondary storage.

Thus, a lot of effort has been put into indexing spatial data. It is argued that these data
structures can also be used to index point data. However, point data has special properties that
should be exploited by a multidimensional index. The most important property is that the
multidimensional space can be partitioned into disjoint subspaces without introducing
redundancy when storing objects. Thus redundancy considerations as required for
multidimensional extended objects [Ore89] are not necessary. A disjoint partitioning of a
multidimensional space is very desirable since it enables to give logarithmic performance
guarantees for insertion, deletion and exact match queries [Bay96]. Furthermore, any
relational table in a RDBMS stores multidimensional point data. Therefore this type of data is
of great commercial interest. So multidimensional indexes for point data are useful in a large
market segment. Therefore in this thesis we focus on indexing multidimensional point data.

[GG97] distinguishes three categories of multidimensional point access methods: Techniques
based orhashing (grid files [NHS84], EXCELL [Tam82], multi-level grid files [Hin85], twin

grid files [HSW88b] and multidimensional hashing [Fal85, Fal88]grarchical access
methods (K-D-B-Tree [Rob81], LSD-Tree [HSW89], Buddy Tree [SK90], BANG File
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[Fre87], hB-Tree [LS90], R-Trees [Gut84, SRF87, BKS+90, BKK96]) and space filling
curves in combination with one-dimensional access methods [TH81, OM84, Jag90, AS83,
FR89]. Yet another access technique is to use a combination of several one-dimensional
access methods like inverted files[Lum70, MHW+90] or bitmap index intersection [OQ97].

We just briefly sketch the problems of the main approaches here. A detailed description is
found in the original papers, a detailed comparison isfound in [GG97].

Grid-files give a two-access-guarantee for retrieval, but have an extremely bad worst-case
behavior for updates. Inserting a point may result in a non-local split of the grid and thus
require a reorganization of the grid-file. Furthermore, grid files have problems with
dependencies in the multidimensional data distribution. For linearly dependent data the grid
may require more storage than the tuples stored in the grid.

k-d-B-Trees exhibit a forced split effect, which does not alow one to give any space
utilization guarantees. In worst case alarge amount of pages may be completely empty.

hB-Trees have a complex organization and extremely difficult algorithms, since they are a
hybrid data structure. In addition hB-Trees may store several references of a node to the same
child node, which may result in a superlinear growth of the index nodes with respect to the
number of regionsin space.

R-Trees cannot give any performance guarantee for the basic operations, since they do not
partition the multidimensional space in digoint parts, but allow overlapping rectangles.
Successors of the R-Tree like the R*-Tree [BKS+90] and the X-Tree [BKK96] use
complicated algorithms or even introduce buckets of varying size to minimize overlaps.
However, complicated algorithms cannot overcome this problem in general. Introducing
buckets of varying size may cause the index to degenerate. So the basic problem of R-Trees
till remains.

Y et avery promising approach to store multidimensional point data is to map the data onto a
one-dimensional space filling curve [Sag94] like the Z-curve or the Hilbert curve and use the
properties of this curve for efficient retrieval. The biggest advantage of space-filling curves
over the techniques described before is that they alow a digoint partitioning of the
multidimensional space. In addition the storage requirements do not degenerate for any data
distribution. Well known one-dimensional indexing methods can be applied and
multidimensional search problems are reduced to linear search problems. Hence
multidimensional insertion, deletion and point query algorithms inherit the complexities of the
corresponding one-dimensional access method. Using B-Trees as one-dimensional access
method alows to give logarithmic performance guarantees for the basic operations of
insertion, deletion and point queries.

Our approach also relies on space filling curves. Our pilot implementation has some similarity
to the zkd-B-Tree approach described in [OM84]. We aso use the Z-curve to to transform
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multidimensional point data into one-dimensional data. In contrast to zkd-B-Trees, we do not
store tuples in Z-representation, but only use Z-addresses to define a partitioning concept for
the multidimensional space. This yields a better space partitioning: Our approach has more
freedom of choice to pick a suitable split-point for the partitioning. In addition it allows more
efficient tuple extraction algorithms, since it is not necessary to store the Z-representation of
every tuple.

The major problem of multidimensional index methods in general is the curse of
dimensionality (e.g., [WSB98]), since the number of possible partitionings explodes
exponentially with the number of dimensions. This dimensiona curse forbids clustering of
high-dimensional data. However, often problems that seem high-dimensional at first glance
have a reduced dimensionality, if proper data modeling is used. In data warehousing
applications one seldom has more then 10 independent dimensions, usually even much fewer.
If a data warehouse utilizes more dimensions, there are usually some dependencies between
the dimensions. Customers, for example, tend to buy the same product. In the same way,
many customers exist only for a certain time. If a data structure is to organize the
multidimensional space, it would be beneficial if those dependencies are taken into account in
order to limit the number of partitions.

1.4 Outline

This thesis is divided into three parts. Part One consists of the first three chapters and
describes preliminaries of our work. The second part describes our approach to relational
guery processing with multidimensional indexes. In the third part we investigate our
technique of Part Two both theoretically by a cost analysis and practically by examples and
performance measurements. In the following we briefly sketch the contents of each chapter.

Chapter 2 gives basic definitions which will be used throughout the thesis. In addition we
provide an overview on query processing concepts with a specia focus on multidimensional
range queries.

Chapter 3 gives a detailed analysis of multidimensional space partitioning. We identify space
filling curves to create a linear ordering of a multidimensional space. Relying on one specia
kind of space filling curve, namely the Z-curve, we then introduce the concept of Z-regions to
define a partitioning of the multidimensional space. We investigate and prove severa
important properties of Z-regions, especialy their local proximity and connection in space.
We also investigate the limitations of our approach to multidimensional space partitioning
with respect to data distributions and increasing dimensionality.

The UB-Tree, a multidimensional index based on space filling curves and B-Trees, is
described in Chapter 4 together with its basic algorithms for insertion, deletion, point queries
and range queries. In addition we introduce two new agorithms for UB-Trees in this chapter,
namely the spiral algorithm for the evaluation of nearest neighbor queries and the Tetris
algorithm for processing sort-operations with multi-attribute restrictions.
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Chapter 5 describes selected algorithmic problems of our prototype implementation on top of
several commercial RDBMS. In this chapter we also investigate how to deal with various data
types and data distributions. We especially consider how to organize a multidimensional
space, whose dimensions can be organized hierarchically. This concept of multidimensional
hierarchical clustering is especially applicable to data warehousing applications. In Chapter 8
it is used to cluster the fact table of arelational data warehouse.

In Chapter 6 we derive a cost function for multi-attribute restrictions in multidimensionally
partitioned universes. We further define a cost model and cost functions for the techniques
that prevail in current RDBMS for the processing of multi-attribute restrictions. We then
anayze the performance of the range query agorithm and the Tetris algorithm for UB-Trees
and compare it to other access methods that prevail in present RDBMS.

Performance measurements in a laboratory environment with generated, uniformly distributed
test data are presented in Chapter 7. Although we mainly investigate the range query
performance, we aso briefly sketch point queries and insertion there. This chapter is more of
analytical interest and is aimed at providing a better practical understanding of the effects of
multidimensional clustering. In addition, by actual performance measurements it undermines
the correctness of the results that were derived in Chapter 6 using our cost mode!.

Chapter 8 describes the impact of our approach on query processing. We list transformation
rules which may be used to implement the basic relational operators (selection, projection,
ordering, grouping and aggregation, equi-join, set operations) with UB-Trees. We used these
transformation rules to apply our multidimensional query processing techniques in two real
world applications scenarios, the TPC-D benchmark and a star schema data warehouse.
Performance measurements and comparisons for the TPC-D schema with 2 GB of generated
data and the data warehouse with 7 GB of real world data are also presented in that chapter.

Chapter 9 concludes the thesis with a summary and an outlook on future work.

1.5 How to Read the Thesis

We tried to use well-accepted technical terms whenever possible in order to avoid confusion
with other research work in the field of multidimensional indexes and RDBMS. Thus
experienced readers may skip most of Chapter 2, which essentially gives basic mathematical
definitions as well as a quick overview of the state of the art in query processing and defines a
basic terminology. However, in order to fully judge our approach of multidimensional
clustering we recommend to read Section 2.3 in any case.

Chapter 3 is mainly relevant to the mathematically interested reader, who wants to get a
deeper insight into the field of space filling curves and their relevance to multidimensional
data processing. It is aso helpful to judge the chances and limitations of multidimensional
indexing.
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Chapter 4 is to understand how UB-Trees and query processing with UB-Trees work. UB-
Trees are defined via space filling curves in this thesis. Therefore it might be helpful to have
read the sections 3.1 and 3.4 before reading Chapter 4.

Chapter 5 describes some pitfalls that occurred when implementing a prototype of the UB-
Tree access method on top of several RDBMS. This chapter might also be useful to anyone
wanting to apply UB-Trees for a specific database schema, since it also introduces the
concept of transformation functions, which in the case of variable UB-Trees and
multidimensional hierarchical clustering has relevance to physical data modeling.

In Chapter 6 the mathematically interested reader finds a formal treatment of range query
performance. Readers with a special focus on the field of query processing and query
optimization might also have alook at this chapter, since it defines and analyzes a cost model
for UB-Trees aswell as other access structures,

The performance measurements of Chapters 7 and 8 are of interest to anybody wanting to
evaluate the quality of our approach. Chapter 7 is to undermine the correctness of our cost
model laid out in Chapter 6. The performance figures and query processing proposals of
Chapter 8 are especially relevant to practitioners in the field of RDBMS development and
RBDMS applications.
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Every science, like a recurring
decimal, has a beginning and no
end.

(Anton Chekov)

Chapter 2

Terminology and Basic Concepts

n relational database schemas, tables often bear composite primary keys

concatenated of several attributes. For efficient query processing this
composite key is used as primary index to physically organize the table on
secondary storage. In the same way, secondary indexes for a table often

consist of a concatenation of attributes. This thesis investigates the usability

of a multidimensional access method for multi-attribute keys. This chapter

introduces the duality of pointsin multidimensional space and tuples of arelation. We explain

our terminology and give basic definitions which will be used in the following chapters of this

thesis. We also provide a classification for query types common in today’s database

applications. We address the problem of indexing in general and look on range queries more

closely.
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2.1 The Multidimensional Space: Duality of Points and

Tuples

Relational database management systems (RDBMS) have a large market share for
commercia applications. Although the techniques described in this thesis are very well
applicable to speed up database management systems in general (e.g., hierarchical databases,
CODASY L databases, or object oriented databases, see e.g., [UI188]), we use the terminology
of RDBMS in the following. In the relational world datais stored in a set of relations. We use
the term table synonymously to relation. Each table is organized into rows and columns. We
use the terms tuple synonymously to row and attribute synonymously to column. The number
and type of the attributes is fixed for each relation; thus each tuple has the same number of
typed attributes. We call this number of attributes arity of arelation. The type of each attribute
represents the set of permissible values called domain.

In this thesis we consider a tuple to be a point in multidimensional space. We use the term
universe to denote the multidimensiona space defined by the domains of the attributes. Each
attribute determines one dimension. The value of an attribute of a tuple is therefore the
coordinate of a point in multidimensional space. The duality of points and tuples causes the
following terms to be used synonymously in this thesis:

* (multidimensional) domain, universe, multidimensional space
* relation, table, subset of multidimensional space

* row, tuple, point

» dtribute, column, coordinate, dimension

* arity, dimensionality

In general we write | to denote the cardinality of any set S. For any string s we write |g] to
denote the length of s.

2.1.1 Relations, Tuples, Attributes and the Multidimensional Space

Let R be arelation having d attributes Ay,..., Aq of domains Ay,..., Aq. Ris aset of tuples x =
(X1,..., Xg). Let <; be atotal order on A; and A; resp. u; the minimum resp. maximum value of
Aj. Wecall dthearity of R. |R| isthe cardinality of R, i.e., the number of tuples stored in R.

When writing tuple literals we sometimes omit the brackets and commas. For instance, we
write “ab” as abbreviation for the tuple literal “(a, b)”.

For notational convenience we define the set of dimension indié2s-s ..., d}.

To simplify theoretical analysis, we consider the domaiof A;, i O D to be mapped tQ;, a
set of non-negative integer numbers. Thus, for each xabfé\ we get:

X O Qi= {O, ...,ri-l} 0 No

Thus forQ; we getd; = 0 andy; =r;-1.
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In addition we require r; = 2" for some arbitrary v 0 No. Thisis not a restriction, since every
finite' totally ordered domain (4; = {as,..a} ,<) with r = |4 < r; can be mapped
monotonically to Q; by :

f: Aj - Qj, sothat f(aj)<f(ak) e a <

Definition 2-1 (multidimensional domain, Q): The multidimensional domain Q of the entire
relation is the cross product

Q=0Q; x..xQy={0,..,r-1} x... x{0,...,rq-1}.
We call Q the base space of R. Thus Risafinite subset of Q,i.e., RO Q

The cardinality of Q then can be calculated as:

|Q| = I_lidzlri

Definition 2-2 (Z-order of Q): For the multidimensional space Q we define a partial order:
Forx,y O Q

x<ye x<yforaliOD
x<dy e x<yfordlilD
In the following we use the symbol D to denote a domain of values.

Definition 2-3 (<-neighbors): For any ordering relation < and an ordered domain (ID, <) two
values a, b 0 ID are <-neighbors, if and only if, a < b and there exists no ¢ I I with
a<c<b. ForaD define:

<-neighbors(a) = {b 0 ID | b and a are <-neighbors or a and b are <-neighbors}

If the ordering relation < is obvious, we just write neighbors(a) instead of <-neighbors(a).

Lemma 2-1 (<-neighbors): Two points x, y [J Q with x < y are <—neighbors, if and only if,
there existsan index i so that x; = y; for all j O D\{i} and x and y; are <-neighbors.

Pr oof:

The proof is adirect consequence of Definition 2-2 and Definition 2-3. m

! Theoretically, the approach described in this thesis could also operate on infinite domains. Then one only needs
a split function which partitions an interval of the domain into two digoint intervals (see in Section 3.6).
However, it suffices to consider finite domains, since in a computer every domain like real humbers, integer
numbers, character strings, etc. is represented by afinite domain.
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Lemma 2-2: A point x in d-dimensional space has at most 2[d <—neighbors.

Proof:
The proof is adirect consequence of Lemma 2-1. O

Definition 2-4 (distance of two values): For any totally ordered set (ID, <) and a, b 0 I with

a< b wedefine
<c< +1,a#b
distance(a, b, <) = %{Cla c<b}
0 0 ,a=b

We often are not interested in the specific domains of the attributes. For an easy mathematical
treatment we therefore define ”, a normalization operation of each domain to a value of the
interval [0, 1].

Definition 2-5 (scalar normalization): If aisavaueinadomain D = [@min, amax] 0 No, then
we normalize in the following way:

a-a,,+1
a ax _amin +1

a=

m

For any attribute value x; [0 Q; ={0,...,ri-1}, i O D, of A of atuple x [0 Q we get:

2.1.2 Intervals

Definition 2-7 (one-dimensional intervals): For any totally ordered domain (ID, <) and a pair
of values a, b O I with a < b we define the one-dimensional interval:

[a,b] ={cOD]a<sc<hb}

If the point describing the lower bound (or the upper bound or both bounds) is not
included in the interval, we write:

lJabl={cOD]|a<c<hb}
[a,b[={cOD|asc<hb}
lab[={cOD|a<c<b}
Definition 2-8 (multi-dimensional interval): For two pointsy, z [0 Q with y < z we extend
Definition 2-7 to multidimensiona intervals:

[y, 2] = [y1, z2] % ... ¥ [Ya, Zd] ={(Xa,-..%a) | Vi = X < z for al i O D}.

We define]ly, 41, [[y, 4[ and ]]y, Z[ analogoudly.
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Note that multidimensional intervals are iso-oriented with respect to al dimensions, i.e., their
faces are parallel to the coordinate axes. Because of their rectangular nature we also use the
term box to denote a multidimensional interval.

2.1.3 Volumes

We use the term volume for all dimensionalities instead of using the terms length for linear
spaces, area for two-dimensional spaces, volume for three-dimensional spaces or Jordan-
content for higher dimensional spaces. For simplicity by volume of a part of a space we mean
the normalized volume with respect to the entire space. Because of our discrete model we
consider asingle value of adomain ID to have the volume 1/[D).

Definition 2-9 (volume of alinear interval): For alinear (one-dimensional) interval [x;, yi] [
Q; ={0,...,ri-1} we defineits volume:

vol(x, v ) =5 =% +=

The volume of the empty set is zero:
vol((0) =0

Thus a volume is a normalized number between 0 and 1. We generalize this one-dimensional
volume definition to multi-dimensiona intervas|[[x, y]]:

Definition 2-10 (volume of a multidimensional interval):

d

vol([[x, y]]) = |‘J vol([x, y;])

Definition 2-11 (volume of a set of multidimensional intervals): We define the volume of a
union of k disoint multidimensiona intervals §, j O {1 ,..., Kk}, as the sum of the
volumes of each interval:

k k
vol(( ]S,)=" voal(S;)
RUPAS

Since each finite multi-dimensional point set can be decomposed into digoint multi-
dimensional intervals, the volume of any finite multidimensional point-set can be calculated
by this formula.

Lemma 2-3: The volume of the difference of two point-sets Sand Q [ Sis the difference of
the volumesof Sand Q, i.e.,

vol(SQ) = vol(S) — vol(@Q).
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Pr oof:

S can be decomposed into a set of digoint multi-dimensional intervals {S;,...,.S., Qu,....Q;},
suchthat Q=Q, U ... O Q. Then, vol(S) = vol(Qy,...,Q;) + voI(S;,...,.S) = vol(Q) + vol (S\Q).

O

2.1.4 Statistical Functions

Definition 2-12 (average): For any set Sof numbers we define its average:
1
avg(S) =— a
ER2

Definition 2-13 (standard deviation): For any set of numbers S we define its standard
deviation:

sd(S) =\/avg({ (s-avg(9)) |s0S}) =\/l—;%(a—avg<8))2

2.1.5 Partitioned Relations

In the following we define the terms page and region. We use these terms to denote the
partitioning of a relation with respect to the partitioning of the corresponding base space.
Relations are physically stored on pages of the secondary storage. A page is a physical unit of
secondary storage that stores a certain capacity of tuples of arelation. A region is a subspace
of the multidimensional base space of the relation. Because of the duality of points and tuples,
a set of regions that partitions the base space Q corresponds to a partitioning of the relation R
into a set of pages.

Definition 2-14 (region):A region is a subspace of Q. Regions are neither required to be
rectangular nor connected. We write o1, 02, 0s.,... fOr regions.

Definition 2-15 (page; page capacity): A page is afixed size byte container to store tuples of
a relation. We write py, p2, ps,... for pages. The capacity of a page is the maximum
number of tuples (or bytes for variable length tuples) that a page may hold. We denote
the page capacity by C.

Definition 2-16 (correspondence between pages and regions): A page p corresponds to a
regionp (p - p), if al tuples stored on p arelocated in theregion p, i.e.,

pop=xUp=xUpnp)
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To physically store arelation RinaDBMS, Ris partitioned into Pr = {pa, ..., px}, afinite set
of digoint pages. Each pagep;,i O {1, ..., k} storesalimited number of tuples.

Definition 2-17 (region partitioning): A region partitioning of Q for a partitioned relation
Pr={pwu P2, .., P} isaset of regions® ={ o, ..., o} with

k

i=1

For B-Trees as used in standard RDBMS the region partitioning usualy takes place with
respect to one attribute or with respect to severa attributes in some lexicographic order. Our
region partitioning is more general and will be used in Chapter 3 to define a multidimensional
partitioning of arelation.

2.2 Query Types

Relational queries are expressed by operators of the relational agebra and either deal with a
single table or combine multiple tables [Cod70]. Single table queries restrict, re-arrange or
aggregate the tuples of one relation [UI188].

When asking a restriction query (denoted by the relational operator ) we are interested in a
subspace of a multidimensional universe. Depending on the shape and the volume of the
guery space we can distinguish different types of restriction queries. A large set of these
gueries can be reduced to partial range queries.

Re-arranging means

» sorting (denoted by w),

» projecting (denoted by 1) or

» grouping (denoted by y) and aggregating (denoted by an aggregation function like sum or
count)

the tuples of arelation.

The most frequent operation to combine multiple tables is the join operation (denoted by 1<),
mostly the natura join. In this thesis we will present a new processing technique for the
operations illustrated in Figure 2-1.

Definition 2-18 (query, result set): A query isapredicate ¢ (x) over the tuples x of arelation
R. The result set RS of a query is the subset of tuples stored in R satisfying the query
predicate:

RS(R.¢) = {x UR| ¢ (x)}.

Theresult set sizeisthe cardinality of the result set |RS(R,¢ ).
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queries
/ \
single table queries multiple table queries
\
restriction re-arrangement join
projection sorting natural join
grouping and aggregation

partial range queries

partial match query range query

exact match query
Figure 2-1: Query Categories

With the duality of multidimensional points and tuples, every query predicate ¢ (x) defines a
guery space ¢ (X) = Q O Q. The result set is the set of tuples of the relation that is located in
Q,i.e, RS={xOR|xOQ}. Theresult set sizeis the number of tuples of Rlocated in Q.

Definition 2-19 (selectivity): The selectivity of aquery ¢ isthe number of tuplesin the result
set of a query compared to the number of tuples stored in the relation:

RS(R.4)
R

Definition 2-20 (restriction): The query space of a query Q is defined by a restriction in
none, some or al attributes. Typical restrictions are point restrictions, interval
restrictions, restrictions depending on another attribute or restrictions depending on the
data distribution in the database.

selectivity(R, @) =

We mostly consider independent restrictions, i.e., the restriction in one attribute does not
depend on the restrictions of the other attributes or the data distribution of the relation (see
Section 3.8 for a treatment of dependent dimensions). Independent restrictions, for instance,
are point restrictions and interval restrictions, if the points or intervals for each dimension are
independent. We model queries with independent restrictions by an interval in each attribute.
If an attribute is not restricted, we use the interval [-co, o] resp. [A;, vi]. A point restriction in
an attribute is considered to be an interval with identical lower and upper bounds.
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Definition 2-21 (restriction interval, query box): A restriction interval is a one-dimensional
interval defining the restriction of one attribute in a query. A query box Q is a
multidimensional interval defined by the restriction intervals of aquery, i.e.,

Q=IIy, 4] = [y1, z] % ... x[¥j, Z] % ... X [Va, Z]

Without loss of generality we will use normalized restriction intervals for an easier
mathematical treatment, i.e., both the lower bound and the upper bound of the restriction
interval are values between 0 and 1. In the following we will often identify arestriction by the
volume of the corresponding restriction interval.

Definition 2-22 (index candidate, index attribute, result attribute): We call an attribute x;
of arelation Rto be an index candidate of aquery ¢ (X) over R, if x; is restricted and/or
ordered during the query processing of ¢. We call an index candidate index attribute,
if it is actually indexed by some index | (cf. Section 2.3) on R. We call an attribute of
Rresult attribute, if it isnot restricted or ordered when processing ¢.

In this thesis the terms index candidate and index attribute denote physical concepts of a data
model (which are used to derive secondary storage structures like indexing, partitioning,
clustering or query materialization). In contrast to that the terms candidate key and key attrib-
ute as used in relational data modeling (e.g., [Ul188]) denote logical concepts of adata model.

Although result attributes are of great practical relevance, apart from increasing the size of the
tuple they often do not influence the behavior of a multidimensional index. Typically result
attributes are projected (without duplicate elimination) or aggregated during processing a
guery. For an easier notation from now on we will omit result attributes of a tuple whenever
possible. To be more specific, we will consider d (or dr, when talking about several relations)
to be the number of the index candidates of a relation R. If a relation has additional result
attributes, we denote the arity of arelation by d’ (or d’r). The result attributes are Xg.1,...,Xq4"-

Note that the terms index candidate and result attribute are query dependent. For some query
an attribute might be an index candidate, while it is a result attribute in another query.
However, for many application scenarios like data warehousing the set of index
candidates/attributes and the set of result attributes are constant and both sets are digjoint over
aquitelarge set of typical queries.

We use the star-schema of the TPC-D benchmark [TPCD97] to illustrate different categories
of queries by examples. For the examples of this section we use the ORDER and LINEITEM
relations. Figure 2-2 shows the entire schema of the TPC-D benchmark. The value SF is the
scaling factor and determines the number of tuples of each relation. The TPC-D benchmark
was mainly developed to evaluate the capabilities of RDBMS for complex queries which are
frequently found in decision support applications. Next to the schema and data distribution
definition the specification consists of 17 pre-defined queries and two update functions,

2 Besides increasing the tuple size result attributes are decisive for the performance of non-clustering indexes,
since these attributes are not stored in the index but require one additional random access to the datafile. Thisis
analyzed in detail in Section 2.3.2.
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For illustration purposes we define some additional queries in the next sections. We assume
that O _TOTALPRICE, O _ORDERDATE, L_SHIPDATE, L_DISCOUNT and
L_QUANTITY areindex attributes which are used for the multidimensional organization of
the corresponding table. Thus dLINEITEM =3, d’LINEITEM = 16, dORDER =2and d’ORDER = 9.We
state each query both in atext version and in an SQL-version.

ORDER(O.) LINEITEM (L) PART (P.)
1500k* SF tuples 6000k* SF tuples 200k* SF tuples
ORDERKEY 44— ORDERKEY —P»| PARTKEY
CUSTKEY PARTKEY NAME
ORDERSTATUS SUPPKEY MFGR
TOTALPRICE LINENUMBER BRAND
ORDERDATE QUANTITY TYPE
ORDERPRIORITY EXTENDEDPRICE SIZE
CLERK DISCOUNT CONTAINER
SHIPPRIORITY TAX RETAILPRICE
COMMENT RETURNFLAG COMMENT
LINESTATUS
CUSTOMER (C)) SHIPDATE PARTSUPP (PS)
150k* SF tuples 800k* SF tuples
COMMITDATE
CUSTKEY | PARTKEY
RECEIPTDATE
NAME ——P SUPPKEY
SHIPINSTRUCT
ADDRESS AVAILQTY
SHIPMODE
NATIONKEY SUPPLYCOST
COMMENT
PHONE COMMENT
ACCTBAL
NATION (N_)
MKTSEGMENT 25 tuples SUPPLIER (S)
10k* SF tuples
COMMENT NATIONKEY
L— P SUPPKEY
NAME
REGIONKEY NAME
REGION (R)) A DDRESS
Stuples COMMENT
NATIONKEY
REGIONKEY
PHONE
NAME
ACCTBAL
COMMENT
COMMENT

Figure 2-2: Schema of the TPC-D Benchmark
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2.2.1 Partial Match Query

A partial match query restricts some dimensions to a point, while other dimensions are left
unspecified. Formally, for a given set of indices SO D and apoint p [ Q the result set of the
partid match query PM(p, S R) is:

PM(p,SR) ={xOR|x=piforalilS

Example 2-1a: Example 2-1b:
“list all orders of 23.12.1997” “list all parts shipped on 23.12.1997”
(Figure 2-3a) (Figure 2-3b)
SELECT O_ORDERKEY SELECT L_PARTKEY
FROM ORDER FROM LI NEI TEM
WHERE WHERE
O_ORDERDATE = "23.12.1997" L_SHI PDATE = "23.12.1997"

A special form of a partial match query is exact match query (also callecpoint query) that
restricts all dimensions to a point. The result setizR) of an exact match query defined by
a multidimensional poirp [ Q is:

EM(p, R) = {x OR|x =p; for alli O D} = PM(p, D, R)
Exact match queries are used to retrieve the result attributes of a point defined by equality

restriction in the index attributes. These queries are often used for existence checking or
referential integrity checking.

Example 2-1c: Example 2-1d:
“list all orders of 23.12.1997 with a total pricéist all parts that have been shipped on
of 10000” (Figure 2-3c) 23.12.1997 with a quantity of 500 and a
discount of 3%” (Figure 2-3d)
SELECT O_ORDERKEY SELECT L_PARTKEY
FROM ORDER FROM LI NEI TEM
VHERE W\HERE
O_ORDERDATE = "23.12.1997" AND L_SHI PDATE = "23.12.1997" AND
O_TOTALPRI CE = 10000 L_DI SCOUNT = 0.03 AND
L_QUANTI TY = 500
L L
() = O =
g 2L g 2L
< g < g
'9 o N |9 &) OO
Q Q
DRDERDATE SHIPDATE ORDERDATE SHIPDATE
€Y (b) (©) (d)

Figure 2-3: Partial Match Queries (a, b) and exact match queries (c, d)
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2.2.2 Range Queries

A range query restricts all index candidates to an interval. For a pair of tuplesy, z 0 Q we
construct the query box Q =[[y, Z]]. Theresult set RQ(Q, R) of a partial range query is:

RQ(Q, R) = {x U R (xa,....xa) 0 Q)}.

Note that query boxes are multidimensiona intervals and therefore iso-oriented. Moreover,
the restriction in one dimension is independent of the restriction in all other dimensions.

Example 2-2a: Example 2-2b:
“return the number of orders in “calculate the revenue for all shipments in 1997 with a
1997 quantity of less then 500 parts and a discount between
with a total price between 3% and 5%” (Figure 2-4b)
10000
and 20000” (Figure 2-4a)
SELECT COUNT( O ORDERKEY) SELECT SUM L_EXTENDEDPRI CE* (1- L_DI SCOUNT))
FROM ORDER AS REVENUE
WHERE FROM LI NEI TEM
O ORDERDATE >= "1.1.1997" AND WHERE
O ORDERDATE <= "31.12.1997" AND L_SHI PDATE BETWEEN "1.1.97" AND "31.12. 97"
O TOTALPRI CE >= 10000 AND AND L_DI SCOUNT BETWEEN 0. 03 AND 0. 05
O_TOTALPRI CE <= 20000 AND L_QUANTITY < 500

A range query is calledartial range query, if some attributes are not restricted, ye= -
andz = +oo for somei [0 D. Since we are dealing with finite domains, it suffices to use the
maximum boundaries instead ab-aind <o, i.e,y; = A andz = u.

Example 2-2c: Example 2-2d:
“calculate the total price of all orderslist all shipments in May 97 with a discount
of 1997” (Figure 2-4c) between 3% and 5%” (Figure 2-4d)
SELECT SUM TOTALPRI CE) SELECT L_ORDERKEY
FROM ORDER FROM LI NEI TEM
VHERE WHERE
O ORDERDATE >= "1.1.1997" AND L_SHI PDATE BETWEEN "1.5. 97" AND "31.5.97" AND
O ORDERDATE <= "31.12.1997" L_DI SCOUNT BETWEEN 0. 03 AND 0. 05
L L
@] (@]
- 7 A 4
z = z o $
o] Q) ) &
e 8! d§ = 3l
ORDERDATE SHIPDATE O ORPERDATE SHIPDATE O
(@ (b) (©) (d)

Figure 2-4: Range queries (a, b) and partial range queries (c, d)
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Partial match queries and exact match queries as described in Section 2.2.1 are specia cases
of partial range queries. For partial match queries either y; = z or both y; = -co and z = + for
al i O D. For point queries y; = z holds for al i [0 D. Thus partial range queries can be
classified depending upon whether the restriction in each dimension is a point, an interval or
whether this dimension isleft unspecified. Table 2-1 shows this classification for the different
types of partial range queries described in the previous sections, where d is the number of
dimensions and m and n are integer numbers such that m+ n < d.

point |interval |unspecified

exact match query d - -

partia match query |n - d-n
range query - d -
partial rangequery |m n d-m-n

Table 2-1: Number of dimensions restricted to points, intervals or unrestricted for several
types of partial range queries

2.2.3 Range Query Setsand Arbitrary Query Spaces

A range query set consists of aunion of query boxesS=Q; O ... O Q,. The result of the range
query set Sisthe set of tuples

RQS(S R) = {xUR| (X1,..-.Xa) 0 S}.

Range query sets can be used to model arbitrary query spaces, since every non iso-oriented
guery space can be decomposed into or approximated (covered) by a set of iso-oriented query
boxes. Figure 2-5(c and d) shows such query volumes. For certain predicates, this set might
become very large. In these cases it might be useful to construct a cover consisting of a fixed
number of query boxes that include the query space.

1

N

TALPRICE
DI S(!{T
N
=
TOTALPRICE

—
2
2
o
a
[a)

o
ORDERDATE"™ SHIPDATE ORDERDATE SHIPDATE

(€Y (b) (©) (d)

Figure 2-5: Sets of query boxes (a, b) and arbitrary query spaces (c, d)
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Example 2-3a: Example 2-3b:

“list all orders with a total price between‘list all parts that were shipped in May 1997 with
10000 and 20000 in 1997 together witha quantity between 1000 and 10000 pcs. per

all orders with a total price between | shipment and discounted with either 3% or 5%
15000 and 25000 between Oct. 97 and (Figure 2-5b)

Sept. 98 together with all orders between

Oct. 98 and Mar. 99 with a total price
between 5000 and 15000” (Figure 2-5a)
(SQL omitted due to the length of the

statement)
SELECT L_PARTKEY
FROM LI NEI TEM
WHERE
L_SHI PDATE BETWEEN "1.5.97" AND "31.5. 97"
AND L_DI SCOUNT IN (0.03, 0.05)
AND L_QUANTI TY BETWEEN 1000 AND 10000

2.2.4 Nearest Neighbor Queries

A nearest neighbor query returns the tuples in the data base that have the least distance to a
given point with respect to a specified distance functi®he distance function depends on

the application. Typical distance functions for geometric nearest neighbor queries include the
Euclidean distance function and the Manhattan chessboard distance. Another important
application of nearest neighbor queries are preference queries, where personal preferences are
specified by a point and one is interested to find the tuples in the database that best match our
preferences.

Formally, a nearest neighbor query for a certain distance function can be described by
NNQ(x, R) = {y O R | distance, y) is minimal}

Nearest neighbor queries differ from the queries in the previous sections, since instead of a
guery box only one point is specified as input parameter. The space that needs to be retrieved
from the database to answer such a query depends on the multi-dimensional distribution of the
data. The result set of a nearest neighbor query often is a single point and in general is much
smaller than that of range queries. However, in Section 4.4 we will show, that nearest
neighbor queries may also be efficiently answered using a range query algorithm.

A one dimensional nearest neighbor query to find the nearest neighbor td Vafustribute
A of relationR with the distance function < can be expressed in SQL by:

SELECT M N(A) FROM
SELECT M N(A) FROM R WHERE A >= b
UNI ON
SELECT MAX(A) FROM R WHERE A <= b

% Note that the neighbor concept used in the context of nearest neighbor queries differs from the neighbor
concept defined in Section 2.1.1: Whereas Section 2.1.1 defines a neighbor in space (space neighbor), here we
mean a neighbor that is actually stored in the relation (data neighbor). Only for dense relations, where each point
of the base space is actually stored as tuple in the relation, the space neighbor and the data neighbor of atuple are
identical.
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Example 2-4a: Example 2-4b:
“show the order that had a total price arountishow the shipment that shipped a part with a
10000 and was shipped around 31.12.1998discount around 4% and a quantity of around
(Figure 2-6a) 1000 pieces on 23.12.97.” (Figure 2-6b)
SELECT O_ORDERKEY SELECT L_ORDERKEY
FROM ORDER FROM LI NEI TEM
VWHERE WHERE
O_ORDERDATE AROUND' "31.12.1998" L_SHI PDATE = "23. 12. 97" AND
AND L_DI SCOUNT AROUND 0. 04 AND
O_TOTALPRI CE AROUND 10000 L_QUANTI TY AROUND 1000
L
O
(i E 0 =
~_ |<£ \/ (@] ,Qf
2 &5% 5
ORDERDATE SHIPDATE
(@ (b)

Figure 2-6: Nearest neighbor query

2.2.5 Further Queries

Especially in geometric applications, further queries are of interest, e.g., the intersection
between two sets of objects or the union of two sets of objects. For two sets of extended
objects, other examples are enclosure queries, containment queries and adjacency queries.
[GG97] argue, that determining the intersection between two sets of objects provides an
efficient filter step for answering any of these queries. Since the intersection between two sets
of extended objects can efficiently be answered by range queries taking the extended objects
as query volume, these problems can also be reduced to range queries.

Complex queries involve several tables, which are joined by some join condition. The most
frequent method of joining tables is the equi-join, where matching values of attributes of

several tables define the result of the join. Usually equi-joins are realized by sort-merge joins
or hash-joins. In multidimensional space we can easily describe the processing of a sort-
merge join: Each relation is processed in slices with respect to the join attribute. This allows
to process the tuples of each relation in sort order of the join attribute. For identical join

attributes in both tuples, the tuples are merged and the new tuple is added to the result set.

Processing a relation in sort order of any attribute is also necessary for further operations of
the relational algebra such as sorting, projection and grouping and aggregation. We will
discuss this processing method in more detail in Chapter 6.4.

* The keyword AROUND does not exist in SQL. We just use it here for convenience as a distance function for
an attribute.
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Example 2-5 (TPC-D Shipping Priority Query, Q3):

“This query retrieves the shipping priority and potential revenue of the orders having the
largest revenue among those that had not been shipped as of a given date” (cf. [TPC97])

SELECT L_ORDERKEY, SUM L_EXTENDEDPRI CE*(1- L_DI SCOUNT)) AS REVENUE,
O _ORDERDATE, O SHI PPRI ORI TY
FROM CUSTOVER, ORDER, LI NEI TEM
WHERE
C_MKTSEGMVENT = ' FOOD' AND
C_CUSTKEY = O _CUSTKEY AND
L_ORDERKEY = O ORDERKEY AND
O _ORDERDATE < "1.5. 98" AND
L_SH PDATE > "1. 6. 98"
GROUP BY L_ORDERKEY, O ORDERDATE, O SHI PPRI ORI TY
ORDER BY REVENUE DESC, O ORDERDATE

For Example 2-5 we use C_CUSTKEY, C_MKTSEGMENT, L_ORDERKEY,

L _SHIPDATE, O _ORDERKEY, O _ORDERDATE and O_SHIPDATE as index attributes.
On each of the three tables an interval restriction in one attribute is imposed by the query. We
first join CUSTOMER and ORDER via CUSTKEY by simultaneously processing the tuples
of each relation in slices in the order indicated by the arrows in Figure 2-7. Afterwards we
sort the intermediate result of CUSTOMER ORDER on ORDERKEY and join it with
LINEITEM. For each table we use the restriction to reduce the size of each slice.

ORDER

CUSTOMER

X
g (UST1(

>
1]
X
b
=]
OI
]
G.

C_MKTSE O ORDERKEY] /(&

sort direction

L_SHIPDATE

L_ORDERKEY
LINEITEM

Figure 2-7: Joins and range queries in multidimensional space
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2.2.6 Query Processing

An important task of query processing in RDBMS is to efficiently implement algorithms for
the basic operations of the relational algebra. Usually these algorithms apply to particular
storage structures or access methods. [ Gra93] gives a concise survey of query processing. The
selection operation is either implemented by a table scan or, if an index is available, by an
index scan. Common access methods for indexes are B-Trees [BM72] and hash indexes. For
retrieval intensive environments further indexing methods like bitmap indexes have been
proposed (e.g., [OQ97], [Inf97]). If the selection condition specifies a range in a single
attribute, a clustering index greatly speeds up query processing. Conjunctive selection con-
ditions are efficiently processed by composite indexes, intersection of record pointers or
multidimensional indexes. We will investigate processing of multi-attribute restrictions in
more detail in Section 2.4 and Chapter 6.

The join operation is usually implemented by nested loop algorithms, join indexes, sort-merge
algorithms, or hash algorithms. [ME92] surveys join processing in relational databases.
Projection, union, intersection, and set difference are efficiently implemented by processing a
relation in some sort order and then either use an index scan or merge-sort agorithm.
Efficient sort operations and the use of restrictions to limit result sets are crucia to many
query processing algorithms. Very often queries combine several operations of the relational
algebralike join and restriction.

In Chapter 8 we will see how a multidimensional organization of a table will be used to
efficiently process queries with multi-attribute restrictions and sort operations.

2.3 Access M ethods

In this section we briefly describe the main characteristics of access methods that may be used
to process the query types introduced in Section 2.2. Actual query processing strategies will
then be described in Section 2.4.

Access methods transfer data from secondary storage in order to answer a query on a
database. The most simple access method is a full table scan (FTS), which reads an entire
relation and for each tuple checks the predicate ¢ of the query in main memory. Indexes are
optional auxiliary data structures associated with a table. Given an index key value, the rows
that contain that value can be directly located through the index. Generally, indexes are used
to provide keyed access to rows within atable. The goal is to use the restrictions defined by a
guery to reduce the number of disk pages that have to be retrieved from secondary storage. A
variety of indexes for efficient access to data stored in large databases has been implemented
in commercial database systems or is being investigated by the research community. In
commerciadl DBMS heap structures [Knu68, Knu73], hashing [FNP+79] and B-Trees
([BM72], [BU77], see [Com79] for a survey) are used to store tables. The most prevalent data
structure is the B-Tree family, since it gives logarithmic performance guarantees with respect
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to the number of tuples stored in a table for the basic operations of insertion, deletion and
point queries. In addition, B-Trees efficiently process one-dimensional range queries.

2.3.1 Characteristics of Secondary Storage

Secondary storage consists of a stack of rotating disks (cf. Figure 2-8). Each disk consists of a
group of tracks, each of which consists of a number of blocks. A block is the smallest unit of
transfer of the secondary storage. Each disk has a read/write-head (R/W-head) that radially
moves over the disk. To read a page the R/W-head moves to the track containing that block.
Since the disk is spinning, a block is read when it passes the R/W-head. Typical block sizes
range from 512 Bytes to 8kB. DBMS usually define database pages each of which consists of
a constant number of consecutive disk blocks. Thus database pages can be read with a single
positioning of the R/W-head, i.e., by one random access. DBMS page sizes usually range
from 2kB to 64kB. Since tuples are often smaller than a database page, a page in genera
holds more than one tuple.

disk Read/write
stack

head

Figure 2-8: A hard disk

Each random access to a disk page takes some time t; to position the R/W-head of the disk to
the corresponding page, some time t; to transfer the page from disk to main memory and some
time t to extract the relevant tuples from the page. t;; consists of the track positioning time ty,
i.e., the time to position the R/W-head to the corresponding track, and the latency timet,, i.e.,
the time the disk needs to spin until the correct page appears under the R/W-head. t; and t; are
times spent for 1/O, while t is time spent in the CPU. To distinguish between 1/0O-time and
CPU-time we define t;o = ty + t; and tcpy = tz. All in all we get the time to retrieve a page
from secondary storage: tpace = tijo + tcpy = tr + tr + te. For current hard disks and CPUs
typical values are t; = 10 ms, t; = 0,6ms and t; = 0,4ms [IBM97]. So the positioning time of a
hard disk and therefore the number of random page accesses is the limiting factor when
retrieving atuple.
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2.3.2 Clustering

The idea of clustering is to store data that is likely to be used together, in physical proximity
to reduce the number of 1/Os necessary to retrieve the data. If the physical proximity is
restricted to the tuples on a page, we speak of tuple clustering. If physical proximity in
addition also holds between pages, we speak of page clustering.

In order to speed up joins, clustering might store the join partners of two relations physicaly
close together. For range queries in attribute A;, tuples should be stored in order of attribute A;.
Then one 1/O islikely to retrieve a disk page storing several tuples that are necessary to create
the result set of a query. Thus clustering reduces the number of random page accesses that are
necessary to answer a query.

Definition 2-23 (tuple clustering; page clustering): Tuple clustering stores tuples of one or
several relations on one disk page, if the tuples are likely to be used together to create
the result set of a query. If the tuples do not fit on one page, the tuples have to be
stored on several pages. Normally new pages are physically placed on disk in insertion
order. Page clustering in addition to tuple clustering also maintains physical clustering
between disk pages.

The left part of Figure 2-9 shows unclustered data, tuple clustered data, and page clustered
data. Page clustering is hardly feasible in OLTP environments, since each insertion or
deletion requires a reorganization of the entire file. Therefore page clustering only exists
statically, e.g. after mass loading process or after the reorganization of arelation.

Clustering needs a grouping function, i.e., an equivalence relation and possibly an ordering on
the equivalence classes, to arrange the data on disk. In the following we only consider
clustering the tuples of one relation. In this case clustering is useful for range restrictions. For
single attribute range queries the clustering order is defined by the sort order on the restricted
attribute. For multidimensional range queries there are several possibilities for orderings.
Here we just give some orders as examples. The specific characteristics of these orders will be
investigated in Chapter 3.

Example 2-6 (compound ordering, concatenated ordering):

We can create a multidimensional ordering of d attributes by concatenating the attributes in
some order and using a lexicographic ordering between the attributes, whereas the ordering <
of each attribute is used to compare values of this attribute. This ordering is asymmetrical,
since it favors the leftmost attributes of the concatenation. We call the ordering defined above
compound ordering (or concatenated ordering). For x; O {ab,c,d} and x, O {a,b,c,d} the 2-
dimensional compound ordering <a;-a2 (See Section 3.1 for a definition of compound
ordering) is:

aa <area2 @D <area2 8C <area2 @ <arep2 ba <area2 Db <a1op2 DC <area2 bd <a10a2 €A <pr0n2 CD
<<ar1ea2 CC <parep2 cd. <A1°A2 da <A1°A2 db <A1°A2 dc <A1°A2 dd.



34 CHAPTER 2: TERMINOLOGY AND BASsIC CONCEPTS

Example 2-7 (Z-ordering):

Another way to order the two-dimensional tuples is Z-ordering < (see Section 3.1 for a
definition of Z-ordering):

aa<ab<ba<bbh<ac<ad<bc<hbhd<ca<cb<da<db<cc<cd< dc< dd.

Z-ordering will be described and analyzed in more detail in Chapter 3.

tuple clustering

cb,cc,cd,ca | page | @a,ac,ad,ab
clust-

ba,bc,bd,bb | ering | ba,bc,bd,bb
>

unclustered one- db,da,dc,dd cb,cc,cd,ca %
data dlmen- 5
sional aa,ac,ad,ab db,da,dc,dd 5
ba,ab,ca,db g
bb.aa.cb.bd tuple clustering g
1 b b c)
be.ac.dd.ce ca,cb,cc,cd | page | aa,ab,ac,ad =
o clust- %)
dc,ad.da.cd zcrvg;%t;nd ba,bb,bc,bd ering> ba,bb,bc,bd §
multi- da,db,dc,dd ca,cb,cc,cd £
dimen-
sional aa,ab,ac,ad da,db,dc,dd §
tuple clustering
cc,cd,dc,dd page aa,ab,ba,bb
/ _
Z-ordering ac,ad,bc,bd Z;ﬁé ac,ad,bc,bd
capacity: 4tuples ca,cb,da,db ca,cb,da,db
page aa,ab,ba,bb cc,cd,dc,dd v

Figure 2-9: Clustering and dimensionality

Clustering and dimensionality are illustrated in Figure 2-9. Here 16 two-dimensiona tuples
{ab,c,d} x {ab,c,d} are stored on 4 disk pages. Each page is surrounded by a box in the
figure, the data on each page is stored in the order as read from left to right. While the data are
not ordered for unclustered data, they are at least ordered in the first attribute for one-
dimensional clustering. For compound ordering and Z-ordering the data are clustered linearly
with respect to these multidimensional orderings.

The importance of clustering can immediately be seen from the following retrieval cost
estimations (we just consider one-dimensional clustering now. We will deal with the multi-
dimensional casein the later chapters of this thesis). In accordance with [HR96] we use a cost
model that takes I/O-time for random page accesses and |/O-time and CPU-time for page
transfers into account. We assume that the prefetching strategy of the file system reads a
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physical cluster of L consecutive pages from disk with one random access into the read-ahead
cache. Thistakestime t, + (ts + t;)[l. Reading k pages in consecutive order therefore takes:

Cscan(K) = KL + max(k, L)t + te )

2.3.2.1 Non-clustered Access/ Random Access

Without clustering one random access to a page is necessary for each tuple. If we do not take
caching of pages in main memory into account, each tuple requires a random access to the
disk. For each random access it is necessary to position the R/W-head, to transfer the page
and to extract the tuples from the page. Thus reading k pages with random access takes:

Crandom(tm ty, & ,k): k E(tn + i+ tE)

If main memory cache is used, the performance of random accesses may be significantly
improved:

» Oneway to achieve thisisto keep the data pages in cache after their retrieval. Then a page
does not need to be fetched again from disk if a further tuple of this page also has to be
retrieved. This requires a big portion of main memory whose size in worst case is
equivalent to the number of tuples in the result set multiplied with the size of a page (if
each tuple is stored on a separate page).

* Another strategy is to identify each tuple by its row identifier, which is the physical
location of the tuple on the disk. First the row ids of all tuples in the result set are
determined by the index access. Then these row ids are sorted, and the pages are retrieved
from disk in this sorted sequence of row ids. This ensures that each page is only accessed
once. This strategy requires no main memory for disk pages, but here the locations need to
be cached and sorted.

Both strategies are only applicable if the result set of the corresponding query is small.
Otherwise not enough main memory will be available and the system will start swapping.
This will lead to a performance that is worse than the time needed for scanning the entire
relation.

2.3.2.2 TupleClustered Access

If tuples are stored in a tuple clustered way, except for the first page and the last page all
tuples of a page do contribute to aresult set specified by arangein the clustering order. If Cis
the capacity of one page in tuples, tuple clustering reduces the number of random accesses by
a factor 1/C. Thus for k tuples at most [k/C+1[]pages need to be randomly accessed and k
tuples are extracted from these pages. Therefore the theoretical retrieval time for k pages by
tuple clustered accessis:

Ctuple(C ’ t'l'[1 t‘[; tE 1k): ml n(l:k/C-'- 1|——1] k) E(trf +t£ + tT)
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Tuple clustering is used by B-Trees to speed up range queries. In this case aB-Treeis used to
physically organize a relation on secondary storage. Because of this organization such a
relation is called index organized table (I0T) in many commercial DBMS [Ora97, IBM97].
We consequently also use this term to denote a clustering B-Tree.

2.3.2.3 Page Clustered Access

If tuples are stored in a page clustered way, prefetching techniques can be used to further
reduce the number of random accesses. Each random access retrieves not only one, but L
consecutive pages and stores them in cache memory. The next L - 1 page accesses do not
require any 1/O, since the data is already available in main memory. Thus the number of
random accesses gets reduced by afactor of L:

Example 2-8:

We investigate the theoretical retrieval times for random access, tuple clustered access and
page clustered access for k = 1, 5, 10, 50, 100, 1000 and 10000 tuples. We assume a
secondary storage with an average positioning time t;=10 ms and an average data transfer
time t,=0.6 ms per page. We further assume that C = 50 tuples fit on one data page. In the
case of page-clustering we further assume that L = 16 pages are pre-fetched with one random
access. Figure 2-10 shows the tremendous advantage of both types of clustering over random
access. An interesting fact is that page clustered access gets CPU-bound very quickly. If we
assume that processing the tuples on a page (extraction of the tuples from the retrieved page
and transfer to the address space of the user process) takes t; = 0,4us, the CPU component of
the formula for page clustered access exceeds the 1/0 component when retrieving more than k
= 544 tuples. However, random access and tuple clustering are generally 1/0-bound.
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Figure 2-10: Theoretical performance of random access, tuple clustering and page
clustering
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Since a prefetching factor L basically means an increased page size, moving to larger page
sizes may significantly speed up retrieval of large result sets. Therefore some database
vendors offer database page sizes of up to 64kB. Exact match queries suffer from this
strategy, however, since in this case a large amount of unnecessary data needs to be
transferred to just retrieve asingle tuple.

Although page clustering is hardly maintainable, it is important for one special case: A full
table scan (FTS) without using any index is done in this way. Our performance measurements
indicate that with a prefetching factor of L = 16 an FTS is about 10 times faster than an index
scan of an entire relation [Pie98]. Thus, for queries with a selectivity of more than 10% an
FTSisthe best access method in asingle user environment. With multiple transactions, it may
not look so bad for indexes even in this case: An FTS puts an enormous load on the system,
both in CPU time and 1/O-time. In addition concurrent users may be prevented from updating
tuplesduring an FTS.

2.3.3 Non-Clustering Indexes

Only one physical clustering order is possible for a table on secondary storage without
introducing redundancy for storing a table several times. Secondary indexes are used for
accessing tuples, when the restricted attributes are not included in the clustering order of the
clustering primary index. Secondary indexes are a replica of a table that stores the index
attributes, i.e., a certain subset of the attributes of a table, in some clustering order together
with one additional attribute, which is a reference to the physical location of the entire tuple.
We call this reference row identifier or tuple identifier (TID). Thus, when just restricting and
retrieving index attributes, secondary indexes can also be regarded to be clustered. However,
as soon as at least one non-index attribute needs to be retrieved, a random access to a page via
the row identifier is necessary for each tuple.

Row identifiers of secondary indexes are often implemented as pointers to physical storage,
i.e., a concatenation of a page number and an offset to a tuple on that page. In most cases a
concatenation of integer numbers is sufficient to represent row ids. Oracle 8, for instance,
uses row ids of 6 Bytes, which consist of three concatenated parts: data file, page number in
file, and row number on page [Ora97].

So called “bitmap indexes” use a bitmap representation for the set of row identifiers having
the same index key value [OQ97]. Thus, one bitmap is stored together with each different
index key value and consists of as many bits as there are rows in the table. Each bit of the
bitmap corresponds to one row and is set, if the corresponding row possesses that key value.

The physical location of a tuple stored in a table organized by a clustering B-Tree (I0T) may
change because of page splits and page merges [BM72]. Therefore creating a secondary index
on an IOT prevents using physical locations for tuple identifiers. Primary keys or some
surrogate of them must be used instead. This requires one additional step of indirection (and
often one additional page access), if a secondary index on an IOT is used to retrieve a tuple.
Because of these complications some DBMS vendors do not allow to create a secondary
index on an IOT [Ora97].
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2.4 Answering Range Queriesin present RDBM S

Most commercial RDBMS [Ora97, Inf98, IBM97, TAS98] do not use multidimensional
indexes to process multi-attribute range queries. Thus we survey how traditional single-
attribute access methods can be used to answer multidimensional range queries. For ailmost all
commerciad DBMS this means using B-Trees in combination with special query processing
strategies.

2.4.1 Compound B-Trees

Many RDBMS vendors use a concatenation of multiple attributes to create an asymmetrical
multidimensional clustering index with compound ordering (see Example 2-6). This resultsin
extremely unbalanced query response times, when restricting different attributes (with
restrictions of identical selectivities). The concatenation order of the attributes is a crucial
factor for the query performance, since the first attribute in the concatenation order is
preferred as the main clustering attribute. The asymmetry could only be cured by storing and
maintaining at least d, for optimal performance factorial(d ) index replica, each of which hasa
different attribute concatenation order. Because of its storage requirements this is hardly
feasible for d > 4, since for 4 dimensions it is aready necessary to store 24 replica of the
index. So a query profile is necessary to decide which indexes to create. [GHR+97] anayzes
this very difficult index selection problem for data warehousing scenarios. In addition to the
tremendous storage requirements, it is not possible to use this approach in OLTP settings
because of the manyfold response times for tuple insertion and del etion.

This type of index is called concatenated index or compound index by Informix, Oracle, DB2,
TransBase or star index by RedBrick [Red97]. In the following we will use the term
compound B-Tree for this index type. Very often thisindex is used as a non-clustering index,
Oracle and TransBase may also use this type of index asan |OT to organize arelation.

2.4.2 Multiple Secondary B-Treesor Bitmap Indexes

Another approach is the so-called inverted file or multiple secondary indexes approach. Here a
non-clustering secondary index is placed on each attribute. For answering a multidimensional
range query [[y, Z]] , the query is divided into d one-dimensional intervals [yi1,z1], ..., [Va,Zd],
one for each attribute. Each of these intervals is then answered by the corresponding
secondary index, resulting in a set of tuple identifiers (TIDs). The intersection of these d sets
of TIDs determines the answer of the range query. For each TID in the intersection the
corresponding tuple needs to be retrieved (see also Figure 2-11).

This approach has many performance problems. For d attributes, d indexes need to be
maintained. This results in enormous storage requirements and increases OLTP response
times for tuple insertion and deletion. Thus one usually selects a subset of these indexes,
which then results in a difficult index selection problem. For OLAP databases this index
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selection problem (in combination with materialized view selection problem) is discussed in
[GHR+97].

Moreover, intersecting tuple identifiers is a very expensive operation: If an attribute is not
very selective, the set of TIDs for this attribute is very large. Each individual set must be
stored and sorted. To make the query performance even worse: Since the data is not clustered,
for small result sets an average of one random access to secondary storage is necessary to
retrieve each tuple in the result set by its TID.

To improve the performance some database system vendors use bitmap indexes, since
bitmaps provide a more compact representation of tuple identifiers for index attributes with
low selectivity. Bitmaps avoid the sorting process, since each bitmap by definition is a list of
tuple identifiers sorted in the order of the physical storage location. However, the necessity to
access d bitmap indexes and the unclustered access to the tuples still remain as major
performance bottlenecks. In addition, the index selection and maintenance problems still
exist. When inserting a tuple, the length of each bitmap needs to be updated. This expensive
insertion operation heavily limits the usability of bitmap indexes to applications with bulk
updates.

Dimension 1 Dimension 2 Dimensiond

datafile
) EREn | s | s | | [ s ||
Figure 2-11: Using multiple B-Trees for answering range queries
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2.4.3 Indexesfor Processing Range Queriesused in Present RDBM S

In this section we survey the access methods that, besides an FTS, commercial RDBMS use
to answer multidimensional range queries.

Oracle implements both 10Ts and non-clustering B*-Tree indexes and also offers a bitmap
representation of row ids for non-clustering indexes. Bitmap indexes can also be used to index
foreign columns, i.e., columns that are not part of the table, but are somehow joined to the
table. As mentioned before, Oracle 8 does not allow one to create secondary indexes on tables
organized as an I0T. TransBase offers I0Ts and non-clustering B*-Trees. All indexes can
either be used to index a single attribute or to combine severa attributes in a compound B-
Tree. DB2 only allows secondary B-Trees, which are in general not clustered. Clustering in
DB2 can only be achieved statically by a reorganization tool. Although Oracle and Informix
provide extenders for spatial data relying on kd-Trees [Ben75] or R-Trees [Gut84], these are
not applicable for general indexing. Multidimensional access methods are not integrated in
the core of any of these DBMS. Table 2-2 lists the standard index types of the DBMS Oracle,
TransBase and DB2.

DBMS Oracle8 TransBase 4.3 DB2 UDB

index type |secondary |index bitmap primary secondary | secondary
index organized |index index index index

table

ordering |single, single, single single, single, single,
compound | compound compound | compound | compound

clustering |no’ yes no yes no’ no°

row id 6 Bytes - bitmap - primary key |4 Bytes
concatenated or integer concatenated
integer number integer
number number

index B*-Tree B*-Tree B*-Tree B*-Tree B*-Tree B*-Tree

concept

Table 2-2: Indexes in present RDBMS

® Clustering of the entire data tuple is only achieved by mass loading. This page clustering is destroyed when
inserting tuples. For an optimal performance raw devices should be used, since the clustering of the DBMS
might otherwise be destroyed by the file system. However, the index parts of the tuples are clustered in the index
nodes of the B-Tree.
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There is no excellent beauty that
hath not some strangeness in the
proportion.

(Francis Bacon)

Chapter 3

Multidimensional Space Partitioning

S

pace filling curves create a linearization of a multidimensional space and
thus can be used for multidimensional space partitioning. Each point is
indexed by its ordinal number on a space filling curve. Therefore we use
space filling curves to address each point in multidimensiona space. A
specia subspace (region) is constructed by intervals of these addresses. The
region concept defines atotally ordered digunctive partitioning of Q, which

may be used to define a clustering index for multidimensional data. In order to get a
symmetrical multidimensional index, the multidimensional clustering of spatial neighbors
should be preserved by the space filling curve. To preserve spatial proximity a space filling
curve must be self similar, i.e., a fractal curve should be used. [Jag90] investigates several
gpace filling curves for indexing. [Sag94] gives a concise mathematical treatment of space
filling curves. In this chapter we investigate severa space filling curves and some of their
characteristics which are relevant to data processing. Since we rely on the Z-curve for our
approach of multidimensional clustering and indexing, we investigate the Z-curve and its
propertiesin more detail.
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3.1 Space Filling Curves and Total Multidimensional

Orderings

In the following we define two space filling curves, the compound curve (C-curve) and the
Lebesgue curve (Z-curve). Without detailed analysis we also state some facts about the
Hilbert curve (H-curve). We then investigate the characteristics continuity and monotonicity
for one-dimensional orderings of a multidimensional space, as these properties are most
relevant to data processing.

Definition 3-1 (space filling function): We call a function f : SO No—Q a space filling
function, if f(S) = Q isabijective function.®

Lemma 3-1: A gspace filling function defines a one-dimensional ordering for a
multidimensional space.

Proof:
The multidimensional space is ordered by f(0), f(1), f(2), ... m

Space filling curves are usually created by iterating some leitmotif to infinity [Sag90]. For
practical applications in computer science it suffices to consider finite iterations. We define
two curves for Q with dimensions of identical cardinalitiesr =r; = ... = rq and s=logyr by the
following formulas:

Definition 3-2 (C-value, C-address): For x [0 Q and the binary representation of each
atribute X, = X s1% s2...% 0 We define the compound lexicographic value (C-value or
C-address) C(x):

d s-1

C(x) = Z in’j [p(i-DB+ ]
=1 1=

Definition 3-3 (Z-value, Z-address): For x O Q and the binary representation of each
attribute X = X 1% s-2...X 0 we define the Z-value (or Z-address) Z(x):

s-1 d

Z(x) = Z Z X | [pia+-t
S &

Without formal definition we call the values of the Hilbert-curve H-values or H-addresses.

® In mathematical treatments a space filling curve is the image of a continuous space filling function. We drop
this requirement for our treatment of finite iterations of space filling functions for discrete finite spaces Q.
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Lemma 3-2: For a I {0, ..., 255-1} with the binary representation a = agg.1...ap the inverse
function x = C*(a) is calculated as:

s-1

X = (X Xy ) With X = Zaimd_l)ﬂ [P

]=

Pr oof:
d s-1

According to Definition 3-2: a = agg.1...a0 = C(X) = Z qu [pU-Ds*]
=1 =

Thus the dual numbers at the positions ajyg-1) ... 8id-1)+s1 IN that order form the dual numbers
(i.e., binary string) representation of attribute x;.

s-1 A
Therefore x; = Z)amd_lm 2
]:

Applying the above formula for attributes x4, ..., X4 builds the inverse (x, ..., Xg) = C(a)

Lemma 3-3: For a [J {0, ..., 2°%-1} with the binary representation a = asg.1...a0 the inverse
function x = Z™(a) is calculated as:

s-1 .
X = (Xyyeery Xg ) With X, = Zajmﬂ_l 2’
J:
Proof:
s-1 d

According to Definition 3-3 a = agg.1...a0 = Z(x) = Z Z X, @9
170 1=

Thus the dual numbers at the positions &;.1 ag+i-1 82@+i-1 - &s-1)a@+i-1 iN that order form the dual
numbers (i.e., binary string) representation of attribute x;.

s-1

Therefore x, = Zaj+i_1 2’
J:

Applying the above formulafor attributes xy, ..., Xg builds theinverse (x, ..., X3) = Z°(a)
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Lemma 3-4: C(Q) = Z(Q) ={0, ..., 2°%-1} O N,

Proof:
(1) C(Q) ={0, ..., 2201}

From Definition 3-2 we derive that C(0,...,0) = 0. For x 1 Q\ (0,...,0) the C-vaue C(x) is
larger than zero, since there is at least one attribute x; whose binary representation has at
least one bit set. Thus C(0,...,0) is the minimum of C(x).

With the same argument, the maximum value of C(x) is obtained for x = (r-1, ..., r-1) and
C(r-1, ..., r-1) = 20™er =248,

As a consequence of Lemma 3-2, C(X) is a bijective function.
Since Q0= r? = 290%" = 295 the co-domain of C(x) consists of 2% different values.
With the minimum and maximum values for C(x) we get: C(Q) = {0, ..., 2%9-1}

(2 2(Q) ={0, ..., 25%-1

In analogy to (1) we derive Z(0,...,0) = 0 and Z(r-1, ..., r-1) = 2% from Definition 3-3.
Z(X) isaso bijective.

Thuswe get Z(Q) = {0, ..., 25%-1}
O

Definition 3-4( compound curve and Z-curve): We call the image of C* compound curve
(C-curve) and the image of Z™* Lebesgue curve (Z-curve).

Universes with different cardinalities for each dimension result in a more complex formula
for C-values and Z-values. However, the basic properties of compound curves and Z-curves
remain valid in this case as well. Without loss of generality we use a universe with identical
cardinaities for all dimensions, because it is easier to understand the basic ideas and the
formulas get |ess complex.

Figure 3-1 shows the ordering defined by three different space filling functions, the C-curve
(@), the Z-curve (b), and the Hilbert curve (c).

(@ (b) (©)

Figure 3-1: Space filling curves
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Lemma 3-5: The C-curve creates the ordering <aqe...a2ea1 ON the multidimensional space Q.

Pr oof:

According to Definition 3-2 C-values result in a binary representation of each attribute in the
form

C(X) = Xd,s-1Xdss-2-+-Xd,0Xd-1,5-1+--Xd-1,0-+-X1,5-1--X1,0

For xOO Q this is identical to the binary concatenation of the attributes in the order
Xgo...0Xz20Xy. Thus, for x, y [0 Q

C(X) < C(y) < Xdo...0%20X1 < Ygo...0y20Y1 <> X <y oxoox1 Y

Definition 3-5 (Z-ordering, <): We call the ordering of the multidimensional space defined
by Z-values Z-ordering and use < to denote Z-ordering.

We call the lexicographic ordering < on the steps of Z-addresses Z-ordering [OM84], since a
path through ordinal numbers in each step reflects the letter “Z” in the two-dimensional case
(see Figure 3-1b).

Lemma 3-6 (C-distance of two points): For two pointsx, y [0 Q with X <aiea2... °aq Y their
distance on the C-curve is:
C-distance ,y) = distance, y, <aia2..., °ad) = |C) — CK)|
Proof:
The proof is a direct consequence of Definition 2-4 and Lemma 3-5.
O

Lemma 3-7 (Z-distance of two points): For two points, y 0 Q with x < y their distance on
the Z-curve is:

Z-distanceX ,y) = distanceX ,y ,<) = |Z{y) — ZK)|
Proof:

The proof is a direct consequence of Definition 2-4 and Definition 3-5.
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3.2 Properties of Space Filling Curves

After defining the terms continuity and monotonicity for space filling curves, we present
proof that the compound curve and the Z-curve are not continuous but monotonous.

Definition 3-6 (continuity): A linear ordering < of a multidimensional space (Q,<) is
continuous, if, and only if:

for every x, y 0 Q:
address(x) and address(y) are <-neighbors = x and y are <-neighbors

Lemma 3-8: The compound curve and the Z-curve are not continuous.
Pr oof:

(1) C-Curve

For Q = {0,..., r-1} x ... x {0,..., r-1} the C-values r-1 and r are neighboring compound
addresses. However, C(r-1) = (r-1, 0, ..., 0) and C*(r) = (0, 1, O, ..., 0) are not neighbored
inQ.

(2) Z-Curve

The Z-addresses 1 and 2 are neighboring Z-addresses. However, Z*(1) = (1, 0, 0, ..., 0) and
Z%2)=(0, 1,0, ..., 0) are not neighbored in Q.
O

Definition 3-7 (monotonicity): A one-dimensiona < ordering of a multidimensional space
(Q,<1) ismonotonic, if and only if:

forevery x, y 0 Q: X < y = address(x) < address(y)
Lemma 3-9: The compound curve and the Z-curve are monotonic.
Proof:
If x <y, then for al dimensionsj O D either x; =y; or X <Y;. If X, <y; for dimension i, then
there exists a bit position k, so that for k < a and X x < Yikx and X 4 = Yi a. With Definition 3-2

thisimmediately yields C(x) < C(y), with Definition 3-3 we obtain Z(x) < Z(y).
O
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3.3 Symmetry of Space Filling Curves

The Z-curve has the important property that in many cases the spatial proximity of points is
preserved. However, sometimes the distance of two points in Z-values is shorter than the
actual spatial distance (distance shrinking).” In other cases the Z-distance may be larger than
the spatial distance (distance enlargement).

./I

(@ (b)

Figure 3-2: Distance shrinking and distance enlargement

Note that for the domains Q;, i [ D, the distance between two neighboring valuesis 1.

Definition 3-8 (successor and predecessor of a value): For Q;, i [ D, and a [0 Q; we define
the functions

succ(a) =a+ 1, if a< max(D)

pred(a) =a- 1, if a> min(ID)

Definition 3-9 (successor and predecessor of a tuple in one dimension): Since the domain
of each attribute of a tuple is totally ordered, for i [0 D we can extend the definition of
successors and predecessors to multidimensional tuplesx [J Q:

SUCCi (X)=(X1, .., Xi-1, SUCC(X;), Xis1,.; Xd)

predi(X)=(Xy,..., Xi-1, pred(X;), Xi+1,..., Xd)

Definition 3-10 (neighborsin one dimension of Q): For attribute A;, i O D, of atuplex 0 Q
we define;
Hpred; ()} X =6 -1
neighbors; (x) = Hsucci (x)} , % =0
Bpredi (¥} O{succ; (x)} ,otherwise

d
Note that <~ neighbors(x) =(_Jneighbors; (x) .

i=1

" Note that distance shrinking does not occur for the Hilbert curve, since a neighbor on the Hilbert curve is
always a neighbor in multidimensional space.
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Definition 3-11 (average neighbor distance for a point in one dimension): For a point X
we define average neighbor distance of a neighbor with respect to dimension i for the
compound curve resp. Z-curve:®

C-ndi(x) = avg({ C-distance(x, y) | y U neighborsi(x)} )
resp.
Z-ndi(X)= avg({ Z-distance(x, y) | y O neighborsi(x)} )
Lemma 3-10: For a point x the average distance of a neighbor on the C-curve with respect to
dimensioni is:
C-ndi(x) =r*
Proof:

The proof is adirect consequence of Definition 3-2. m

For the following proofs we define a notion how to extract a bit from a value or an
expression:

Definition 3-12 (bit of an expression): For any expression (€) yielding a scalar attribute we
denote the j" rightmost bit of the result of (€) by (e);. For any expression (e) yielding a
tuple we use (e);j to denote the j™ rightmost bit of A of the result of (€) for any i O D
andj O{0O, ..., s1}.

Example 3-1:

(2+3)2 = (1012)2 =1

(1+1)0 = (102)0 =0

Definition 3-13 (4;): For multidimensional domains we define A = (x4, ..., Xq) with x; = 0 for
aljODYi} and x = 1.

Lemma 3-11: For a point x the average distance of a neighbor on the Z-curve with respect to
dimensioni is

(] 271 , =0
29 = 2 Di((xi +1), - (% -0, )2, X O{L...r-3

0 1= _

B 2 : X =r-1

8 Note that according to Definition 3-10 each point has one or two neighbors per dimension, depending on
whether it meets the border with respect to that dimension or not.
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Pr oof:

A point X = (X1, ..., X4q) has a most two neighbors in dimension i, namely the two points
X- AI = (X].)"')Xi-l)Xi-laXi"'l)'"1Xd) and X+ AI = (Xla"'!Xi-laxi+1axi+l!"'axd)

If x, =0 or x; =r-1thereisonly one neighbor, otherwise two neighbors exist.
For x; = 0 only one neighbor exists. Thus we get:
Z-ndi(x) =

=Z(x+4,) - Z(x) =

s-1 d s-1 d

Z (X+A )| J II]EHI—:L ZZX Q]mﬂ—l

s-1

Z(x +1), @4 Z’x [pia+t =
i-1 j@a < ]E][
=2 (x +1), 2 —Z 2
= L

=1 for'x; =0

= o1

Analogoudly, for x; = r - 1 only one neighbor with respect to dimension i exists. Thus:

Z-ndi(x) =

=Z(X)—Z(X - L) =

= Z(X1y ey Xie1y F-1, Xiwdyeees Xd) — Z0K1y oy Xic1y F-2, Xiv1y0000 Xd) =
= 2i'1

Forx O {1, ...,r-2} two neighbors with respect to dimensioexist. We therefore get:

Z-nd(x) =

_Z() - Z(X-A) +Z(X+4) ~Z(X) _
2

_Z(x+4) - Z(x-4) _

2
1 -1 d _— s-1 d —_ H:
=5 (X"'Ai)i,":zjmll_ (X_Ai)i,'DZ]mll
ST ST CTE
——[&(X +1) Dzjmﬂ—l i(xi _1)]' Dzjmﬂ—lE:

=2 X +1); —(x - o
E%z(( 1), ~( 1))[12H
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Example 3-2:

Figure 3-3 (a and b) shows the C-values and Z-values of the space filling curves for the
[0, 7]1X[0, 7] universe of Figure 3-1. Although we have not derived a closed formula for the
calculation of the values of the Hilbert curve, we call these values H-values and also include
them in Figure 3-3c. Next to the right border and below the lower border of Figure 3-3 (aand
b) we list the values of C-ndi(X) and Z-ndi(X). As the formulas suggest, Z-nd;(X1,X2) is
constant, when varying x; for afixed x;, Z-ndx(x1,X2) is constant when varying x; for afixed x;
and Z-ndy(X) = 2[Z-ndy(X). C-ndy(x) and C-nd,(x) are constant over the entire universe. If one
defined H-nd;(x) in the same way as C-nd;(x) and Z-nd;(x), H-ndi(x) is neither constant in the
sense of Z-nd;(x) nor C-nd;(X).

C-curve Z-curve Hilbert curve

01234567 1234567 01234567

0
0

0| 0| 8/16/24 32404856 " 0 14516172021 2 0(0/ 1141516192021
111 9172533414957 ;1 1(2|3 6 718192223 :6 1(3] 2131217182322
ordina 21210182634 425058 ;1 2 (8 9/121324252829 ;2 2| 4|7 81130292425
numbers 3| 3/111927 35435159 :1 3110111314 26273031 :22 3 (5 6/ 91031282726
4 | 41122028 36 4452 60 :1 4 3233363748495253:2 4 (585754 53323536 37
55/1321/29 37455361 :1 5 3435383950515455:6 5 (59565552 33343938
6 | 6/1422/30 384654 62 ;1 6 (404144 4556576061 ;2 6 160615051 46454041
7|7/15233139475563( - 7 |424346/47 /585962 63| 7 163624948 47 4443 42
+8 +8+8 +8 +8 +8 +8 13 +1+11+1 +3 21

€Y (b) (©)
01234567 01234567 01234567
oj1/1/1/1/1 111 011/ 2/26/6 2 2|1 o177 12211
1(1/11/1/1 111 1({1/2 2 6/6 2 2|1 1{166/3/3 331
2{11/1/11/111 21/ 2/2/66/221 213/2 211103 31
nd(x) 311/1/1/1/1 1 1|1 311 2/26/62 2|1 3(12 211122 11
1 411/1/11/111/1 411/2/26/6 2 2|1 4(12 21112211
5({1/1/1/1/1/1/1/1 511 2/26/6 2 2|1 5(3/2 211103 31
6(11/1/11/1 11 6122 6/6 221 6|/166 33331
7{11/1/11/111 71112/ 2/6/6 2 2|1 7117/ 7/12 211

(d) (e) ()
01234567 01234567 01234567
0(88/888/88 8 01222222 2|2 0f3/1/1/31/13/1
1/8/88/8 8 8/88 1(4|4 4 4/4 4 4|4 112/3/3/2/7 6/2|2
2(188/8/8/8/8 8|8 24 4|4/ 4 4|4 4 4 2113317622
ndz(x) 3(88/888/88 8 3112121212121212/12 3(27262322 1|4 66
41888 8/88 8|8 4112121212121212/12 4 (27262322 1|4/ 66
5(88/8/88/88 8 514 4|4 4/4 4 4|4 5(1/3/ 317|622
6(8 8/888/88 8 6|44 4 4|4 4 4|4 6(2/33/276/22
718 8/8/88/88 8 7122222 2 2|2 713/1/1/3/11/3'1

9 (h) (i)

Figure 3-3: C-values, Z-values and H-values
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Definition 3-14 (cumulated neighbor distance for one dimension): The cumulated
neighbor distance for dimensioni is

Z-nd(i) = ;z-ndi(x)

resp.

C-nd(i) = ;C- nd. (X)

d —_—
Lemma 312 Z-d() = 1 27 e 150

Pr oof:
s-1

For the proof we define Z,(a)= Zaj 2% foradNo
J:

Then the average neighbor distance for the Z-curveis:

Z-nd() = 3 21, (9 :Z:Zl) Zoz-ndi(xl,---xd) _

=rotR [§{+ ZZ% DZ((Xi +1), - (x -1, )2'® %%:

:rd‘lmz“l[% Y Z(x +1) - Z,(x 1))+1E

= peippit [E“E Mz, - +2,(r -2) - Z,(1) - Zl(O))+1§=

gz(r -1), @2 +§(r -2), 2" —1—0%«1%

< oin 4 S it g g E

5,27+ 32" -t

%DZZ"— E»lﬁ—

< jd M, d-1 Fpi-1 2% -1 _ . d-1 il r{-1
"2 E_r . %+2d_1ﬁ—r . %U“—lé

- I,d—l Qi—l [

(CED O
+

N | =
1

- I,d—l Qi—l [

(LR
+
N | =
1

- r.d—l mi—l [

- rd—l mi—l [

[(CED I_I_;IEI_I
N | =
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Lemma 3-13: C-nd(i) = r¢ '™

Pr oof:

C—nd(i)=;C—ndi(x)zér"l=|Q|m"1=rdDr"l O

Definition 3-15 (degree of symmetry of a space filling curve): The degree of symmetry of a
space filling curve is the negative standard deviation of the neighbor distances for each
dimension, i.e.,

C-symmetry(Q) = -std({ C-nd(i) | i 0 D})

resp.

Z-symmetry(Q) = -std({ Z-nd(i) | i O D})

Example 3-3:

The compound curve for the universe of Figure 3-1 has a cumulated neighbor distance of C-
nd(l) = 64 and C-nd(2) = 512. The Z-curve of Figure 3-1 has the following cumulated
neighbor distances: Z-nd(1) = 176 and Z-nd(2) = 352. This results in a C-symmetry of —-316,8
and a Z-symmetry of —124,5. Without further analysis we list the corresponding numbers for
the Hilbert Curve: H-nd(1) = 230, H-nd(2) = 362, resulting in an H-symmetry of —93,3.
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Theorem 3-1 (symmetry theorem): For practical valuesfor d 0 {2, ..., 10} and r O {2, ...,
10% the Z-curve has a higher degree of symmetry than the compound curve.

Pr oof:

With

d
W(d, r)=rét g+l ﬂé
@n=r E@zd_l

the cumulated neighbor distance for dimension i of the Z-curveis:
Z-nd(i) = 2" @(d, r)

We calculate the average |1z and the standard deviation oz of the cumulated neighbor distance
over al dimensions:

4, = avgf{z-nd() || DDY)=w(d,) Dzdd—‘l

o,% =std{z- nd(i) |i OD})? =

d i-1 B‘p(d r) _ l'IJ(d!r) |]2d _1) —
2 ’ d
2 d d_q d d rpd _ H_
_w (ol,.r)[@zll,_l_2 2' -1 & i, 1 H
d 0= d 1= Z d E
_wrd,r) -1 2% -1 g i 10H
S [Eds 22y )mg%g%_
_wdn [Eo -1 -1fff

d 3 d H

o, =¥(d,r) D\/% [E“dg‘l_ 2’ ;1)2 Ezrd—l +;:_:1Ej\/% [Eadg—l_ 2 c;1)2 E

o |
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The cumulated neighbor distance for dimension i of the compound curveis:
C-nd(j) = r* [¥¢

We calculate the average pic and the standard deviation oc of the cumulated neighbor distance
over all dimensions:

pe =avgl{c - nd(i) i ODY)= [(r 1))

.2 =stdffc - nd(i)|i O D})
:1 dE'dI]i_l—rd rd_lg:
d £ dr -1
=
d

d /o ) pd—q H_
PR T D Z%mr—ngg

T i Th s At TSt
d r-1 Hr+1 dOr-J)

e O i Te = At O
¢ d r-1 Hr+1 dOr-1

For all practical values of d 0 {2, ..., 10} andr O {2, ..., 10%} the ratio o7/ c% is less than 1.
Due to its length, we omit the formal proof. The basic idea of the proof is, that g7/ oc shrinks
monotonously, which is proven by building the derivations. We just show the graph of gz/oc
in Figure 3-4. The graph even suggests, that for r — o g7/ oc converges to a fixed value for
each dimensionality d.

Overall, for d O {2, ..., 10} and r O {2, ..., 10°} the degree of symmetry of the Z-curve is
higher than the degree of symmetry of the compound curve. O
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0,8

—— 10 dimensions —— 9 dimensions —— 8 dimensions
7 dimensions —%— 6 dimensions 5 dimensions

—— 4 dimensions —8— 3 dimensions —o— 2 dimensions

0,6

S

S

0,4

0,2 T T T T T T

10 10> 10° 10* 10° 10° 10’ 108 10°
r (cardinality of each domain)

Figure 3-4: Relative degree of the symmetry g,/ g,

Hilbert curves are out of the scope of this thesis. Without proof we just state the following
facts: The Hilbert curve is monotonous, continuous and has a higher degree of symmetry than
the Z-curve. For our pilot implementation of the UB-Tree, we use the Z-curve, because of its
easy implementation (see Section 5.3.1). Since the Hilbert curve exhibits better properties
than the Z-curve, implementing the UB-Tree using a Hilbert curve would result in a better
space partitioning and therefore in a better performance of the multidimensional index. This
might be future work in this field. However, compared to compound clustering both the
Hilbert curve and the Z-curve are far superior because of their higher degree of symmetry.

3.4 Regions covered by Space Filling Curves

In the following we define the region concept, a concept which defines a subspace of a
multidimensional space which is covered by some part of a space filling curve.

Definition 3-16 (C-Region): A C-region [a :c [] is the space covered by an interval of the
C-curve and is defined by two C-addresses a and .

Definition 3-17 (Z-Region): A Z-region [a :z 3] isthe space covered by an interval of the Z-
curve and is defined by two Z-addresses a and . We often write [a : ] instead of [a
:z B], if itisclear from the context that we denote a Z-region.

For an 8x8 universe, i.e., s= 3 and d = 2, Figure 3-5a shows the C-region [7 :¢c 11] and Figure
3-5b shows the Z-region [4 :z 20]. Figure 3-5¢ shows a C-region partitioning with 5 C-regions
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[0:c 6], [7:c11],[12:c 31], [32:c 51] and [52 :c 53]. Figure 3-5d shows a partitioning with
five Z-regions [0 :z 3], [4 :z 20], [21 :z 35], [36 :z 47] and [48 :z 63]. Figure 3-5e shows ten
points which for page capacity of two points per page might be stored in a partitioned relation
with the C-region partitioning of Figure 3-5c¢ or the Z-region partitioning of Figure 3-5d.

(d)

@ (b)

Figure 3-5: C-regions and Z-regions

Lemma 3-14: A Z-region [a : [] covers the multidimensional interval defined by the
boundaries Z*(a) and Z*(B) with Z™Y(a) < ZY(B), i.e,

{Z() IxOMZXa), ZBN} #1a: B]

but

{Z(X) IxO[[Za), ZB11} Ola:B]
and thus

[x, Y1 O{ZXa) [aOZ (x): Z W)}
Proof:

(1) {Z() Ix D [[ZXa), ZX AN} #[a: A

The Z-region [Z(y) : Z(2)] = [4 : 20] (Figure 3-6¢) defined by y = (2,0) and z = (6,0) is a
superset of the space [[y, Z]] =[2,6] % [0,0] (Figure 3-6d).

01234567

o [0[174]5]161720721 HEEEE | || NN |
11236 718192223 [ T [ [ ]
> |819/121324252829 NN
3 |1011141526273031 T[]
4 |323336 3748495253
5 |3435383950515455
6 |404144 4556576061,
7 |424346 4758596263
@ (b) (©) (d)

Figure 3-6: Z-regions and query spaces
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(2{Z() IO [[ZX(a), ZX AN} Ola:A and [[x, Y]] D{ZX(a) | a0 [Z (x):Z )]

This is a direct consequence of the monotonicity of the Z-curve in multidimensional space
(Lemma 3-9). O

The above Lemma aso holds for C-regions:

Lemma 3-15: A C-region [a :c [] covers the multidimensional interval defined by the
boundaries
CHa)andCYp),i.e,

{CH) IxO[[CHa), CH BN} #[a :cB]

but
{CK) xO[[CHa), CHAM O[a:chl
and thus
[x, Y]] D{CH(a) |aD[C () :cCHI}
Proof:
In analogy to the proof of Lemma 3-14. D

3.5 Disconnected Z-Regions

Since the Z-curve is not continuous, two neighboring points on the Z-curve may not be
neighboring points in the multidimensional space. This means that a Z-region can consist of
gpatially disconnected subsets of points.

Definition 3-18 (connection in space): We cal two sets of points Q and P spatially
connected, if there exists a pair of points x [0 Q and y O P that only differs in one
atribute i and the distance between X and y; is the limit of resolution, i.e.,

distance(x;, yi) = 1.

(@ (b)

Figure 3-7: Connected and disconnected Z-regions
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Theorem 3-2 (connection theorem): Any Z-region consists of at most two spatially
disconnected sets of points and such Z-regions exist.

Pr oof:

For this proof we use the term point and address interchangeably. Thisisvalid since thereis a
one-to-one mapping between addresses and points. We consider a Z-address to be a series of
bits, whereby a; denotes the i bit of address a read from left to right.

If aZ-region consists of disconnected sets of points, we can group the Z-addresses belonging
to that Z-region into intervals each of which only contains a connected set of points. For i
connected sets we consequently obtain i of these intervals.

We assume that a Z-region [a: )] consists of three not connected sets of points. By
introducing the addresses 8 and ), we obtain three spatially disconnected intervals [a : a”],
[B: 871, [y: v ]withB=a +1and y=  + 1. For Zs-addresses with length k the interval
bounds are uniquely represented by a = £ ... GOL..1, 606 ..6410..0and y= y ... k.

Now we distinguish two cases:

1. Bi..B=W..H  Since y> B, there existsapositiona>j + 1, so that ), =1 and 5, = 0.
By subtracting A from the attribute belonging to bit position a of the tuple cartesian(})), we
obtain a Z-address smaller than y. However, by the subtraction we never reset a bit in a
position greater than a. Since a > |, the resulting Z-address is always less then y; but larger
than 8. Thus we always obtain Z-addresses in the interval [B, 8 ]. Thisin contradiction to
the assumption meansthat [3: £ ] and [y : y ] are spatially connected.

2. Bo..B# V.. Thismeansthat § > B ... B1... 1. So every Z-address with the prefix
Bi ... G1liscontained in[S : [ 1. Adding A to the attribute belonging to bit position j+1
of the tuple cartesian(a’) sets bit j+1 of the Z-address of that tuple (and possibly resets
some of the bits with a position greater than j + 1). This resultsin a Z-address greater than
or equal to B, which has the prefix S, ... 4 1. This Z-address is contained in the interval
[B, B 1. This in contradiction to the assumption meansthat [a : @ ] and [B: B ] are
spatially connected.

Summing up, the assumption of three disconnected sets of points in a Z-region is false for
both cases. Combining this with Figure 3-7 proves the lemma. O

Spatial connection is an important property of Z-regions, since it guarantees spatial proximity
independently of the dimensionality. This allows a Z-region partitioning to organize the
multi-dimensional space while preserving multidimensional neighborship of data even for
skewed data distributions. It enables to construct efficient agorithms for range queries and
sorted reading.
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3.6 Geometric View of Z-Region Partitioning

In Section 3.1 we algorithmically defined Z-region partitioning. Z-region partitioning can also
be defined geometrically by the concepts of Z-areas and Z-regions [Bay96]. In this section we
present this different view on Z-regions and prove the equivalence to the Z-region partitioning
defined in Section 3.1. We therefore introduce a second notation of Z-addresses
complementing the standard notation (Zs-address, Z-address) as defined in Section 3.1. For
the geometric view we define the concept of increment Z-addresses (Z;-address). In addition
we introduce the notion of step and length of a Z-address as well as the terms volume of Z-
areas and Z-regions.

Definition 3-19 (Z-area; increment Z-address (Z;-address)): We iteratively define a Z-area
N\ as a specia subspace of ad-dimensional cube as follows: Split the cube with respect
to every dimension in the middle, resulting in 29 subcubes numbered from 1 to 2°. A
Z-area /\; of level 1 is the union of the first a1 closed subcubes. a; determines A;
uniquely. We call a; the Z-address of A1 and write Ay = area(as). The empty Z-area
has the address ;. area(€;) = . To enlarge a Z-area, we iteratively add a Z-area with
Z-address a; [{0,1,...,2°1} of the next subcube with number o;+1. The Z-address of
this enlarged Z-area /\, is 01.02, which is lexicographically larger then the address a3
of area /\;. Next we may enlarge /\, by adding an Z-area of the next subcube a,+1 of
>, EtC.

We call the Z-address representation defined by this schema increment representation and

append a subscripted “i” to address literals to denote that the literals are in increment
representation. We write;-Address to denote a Z-address in increment representation.
Section 3.6.1 we will define a standard representation for Z-addresses. If a distinction of
standard representation and increment representation is not necessary in our explanations, we
will use the term Z-address. Otherwise we will us@dtiress or Zaddress to denote a Z-
address in increment representation respectively standard representation.

Example 3-4:

The left part of Figure 3-8 shows four Z-areas area(,@kra(1.3.2, area(2.d, and area(}

of a two-dimensional universe. The shaded subcubes of the two-dimensional universe belong
to the corresponding Z-area. area(Q)Ccbnsists of 0 subcubes of the first level, 0 subcubes

of the second level and 1 subcube of the third level. aregjic8risists of 1 subcube of the

first subdivision level, 3 subcubes of the second subdivision level and 2 subcubes of the third
subdivision level. In the same way areaf2cbnsists of 2 subcubes of the first subdivision
level and 1 subcube of the second subdivision level. gyeaé€3ely consists of 3 subcubes of

the first subdivision level.

® Actually the Z-addresses must be constructed depending on the multidimensional domain. That is, the Z-
address representation depends on the data type (rational, irrational, complex, etc.). However, in practica
computer systems irrational domains do not exist, but any data type can be mapped to a finite set of natura
numbers. Thusit suffices to consider Z-addresses with integer numbers for each level.
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area(0.0.1) area(1.3.2)

Point Data

Figure 3-8: Z-areas and Z-regions

In the following we suppress trailing zeros of Zj-addresses and denote Z-addresses by a,8,y

Definition 3-20 (step and length of a Z;-address): We cal a; the | step of the Z;-address
a= a.0,. ... ax. We cdl k the length of Z;-address a. By a;; we mean the i™ bit of
the j" step of a in binary representation.

Note that the volume of a subcube decreases exponentialy with its step number. We therefore
obtain afine partitioning of the multidimensional space with relatively short Z;-addresses.

For the following Lemma we loosen the definition of Z;-addresses and allow the value of 2° to
occur in the last step of an Zj-address. In this case some Z-areas have two Z;j-addresses.

Lemma 3-16: If for any i > 0 a; # 2% the Zi-addresses a = 1. ... o+l and o* = an. ... .0.2°
define the same area.

Pr oof:

The union of the 2% subcubes at subdivision level i+1 equals the a;+1" subcube at level i.
Since the previous steps of a and a* are identical and thus describe the same area, the overall
areaisidentical. m

Lemma 3-16 means that we can add steps to each Z;-address until we reach the limit of
resolution without changing the Z-area defined by this Z;-address. The Z;-addresses 2.1; and 3;
in Figure 3-8 are merely a short form of the addresses 2.0.4;. and 2.3.4; respectively.
Removing trailing 2° subcube numbers can be thought of like an overflow arithmetic in
addresses taking place upon the completion of an entire subcube of the previous subdivision
level when enlarging an area. Note that it is not possible to add steps to €. We will use this
relaxed Z;-address definition as an auxiliary construct in some proofs of this chapter.
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Lemma 3-17: The lexicographic ordering of Z-addresses (denoted by <*) and set
containment of areas in space (denoted by [J) are isomorphic:

area(a) Darea(f) = a<"
Proof:

If and only if a = S, then the same subcubes are added to area(a) and area(f) at each step.
Thisresultsin area(a) = area(f).

() area(a)Uarea(p) 0 a <™

If a <* B, then there exists an index i so that a; = 3 for all j <i and a; < 3. At subdivision
point i we therefore add more subcubes to area(f;. ... . 3-1) than to area(a;. ... . @i.1). All
subcubes that are added to a at later subdivision points are a subset of the subcube defined by
3. Overal we get area(a) [ area([).

(2 area(a)0 area(B) 0 a<* B

If area(a) [ area(B) thereisasubdivision level j such that area(a;. ... .a;-1) = area(i. ... . B-1)
and area(a. ... .a;) O area(B. ... . 3). Thus asubdivision level j area(S.. ... . ) must consist
of more subcubes than area(a:. ... .a;). Because of the subcube numbering 4 then must be
larger than a;. Overall we get a <" S. m

Definition 3-21 (tuple, Z-address of a tuple): A tuple (or pixel) is a smallest possible
subcube at the limit of the resolution, but the resolution may be chosen as fine as
desired. The Z-address of a tuple is identical to the Z-address of the area defined by
including the tuple as the last and smallest subcube contained in this area.

Theorem 3-3 (mapping between tuples and addresses): There exists a one-to-one map
between Cartesian coordinates of atuple and Z-addresses.

Pr oof:

The one-to-one mapping between Cartesian coordinates (X1,Xy, ..., Xq) of ad-dimensional tuple
and its Z-address a is defined by the addressing scheme of Definition 3-19. As stated in
Definition 3-21, a tuple is identified by the area containing the tuple as the last point. The
mapping from tuples to Z-addresses can directly be derived from Definition 3-19.

Similarly, the area corresponding to a and itslast point x are calculated by building the union
of subcubes for Z-address a according to Definition 3-19. These two algorithms define the
functions of the one-to-one map between Z-addresses and tuples. O
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Definition 3-22 (mapping between tuples and addresses): We use the following notations
for the mapping between ad-dimensional tuple x = (g, ... ,Xg) and its Z-address a:

Z-address(x) = a and cartesian(a) = x

Lemma 3-18: Since the two maps are inverses of each other we get:
cartesian(Z-address(x)) = x and Z-address(cartesian(a)) = a

Definition 3-23 (Z-region): A Z-region is the difference between two Z-areas. If a <™ Sthen
we define the Z-region between aand Sas. |a: B] = area(p) \ area(a), where "\"
means "set difference”.

Note that Z-regions as defined by Definition 3-23 are open below and closed above. Thus a
set of ordered Zj-addresses { ay, ..., an} builds a set of Z-regions {]a; : a2, ..., ] anh1: an)}.
These Z-regions are disjoint and therefore partition — or tile — the universe.

Example 3-5:

The areas in Figure 3-8 are used to create five Z-regiens: 0.0.1], ]0.0.3 : 1.3.2],
11.3.2:2.3], 12.% : 3], ]3i : 4]. Each Z-region is shaded with a different gray.

Note that the lower bound addres®f a Z-region § : 5] represents a point cagi) that does
not belongtod: B, i.e.,al]a: flandB0]a: B]. Thus a Z-region can be regarded to be
a one-dimensional interval of Z-addresses with respect to the Z-ord€ring

la:pl=la, B]

Thus a Z-region represents the space corresponding to all points located in the Z-interval

la, B].

3.6.1 Address Representation

The subcube enumeration defined in the previous section creates variable jeadythregses,

where the length of the address denotes the number of subdivisions. This address
representation is useful when storing Z-addresses, since fewer subdivisions result in shorter
addresses and thus in a better memory utilization. For address calculation and theoretical
considerations, however, a different Z-address representation, the so-called standard
representation of Z-addresses, is desirable:

To calculate the £address for a tupbethe address calculation has to proceed as follows: For
each dimension 00 D and each subdivision stefl {1, ..., logr;} the current splitpoint;/2°
must be compared witk. The comparison is a binary decision betwges r/2° andx; >
ri/2°. It is sufficient to use one bit to store each of these decisions in the addresst;l2®,
ri/2°> must be subtracted from to correctly process the next step of the subdivision. The
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subdivision process continues up to the limit of resolution in each attribute. A Zs-address then
consists of a sequence of subdivision steps, each of which consists of one bit for each
dimension.

It is easy to incorporate varying attribute lengths, i.e., attributes with different resolutions, into
this algorithm: When the limit of the resolution in one attribute is reached at a certain
subdivision step, this attribute is not used for the subdivision any further. The number of bits
in each further step is reduced in this case.

Definition 3-24 (number of stepsfor an attribute): The number of steps for attribute A; of a
domain with cardinality™ r; is determined by its resolution:

steps(i) = logar;

Definition 3-25 (Ilength of a step): The number of dimensions in step k (i.e., the length of
step kin bits) is:

steplength(k) = [{ steps(i) | steps(i) = k and i T D} |

Definition 3-26 (standard representation of a Z-address (Zsaddress)): We cal the
representation of Z-addresses obtained by Algorithm 3-1 standard representation and

append a subscripted “s” to address literals to denote that the standard representation is
used. We write £addresss to denote addresses in standard representation. Each pass

through the outer loop of the algorithm defines a step qfaldress.

I nput: Xx
r

s ---, X): d-dinensional tuple

(r,, ..., rp): cardinality vector for the
domain of the tuple

Qutput: a: Z-address(x) in standard representation

/! the algorithmrequires the dinensions to be
/1 sorted according to their resolution
/1 in descendi ng order
for s =1 to steps(1)

for steplength(s) to 1
< r,/2° then

=0

i
i f

d-i
i 1
- r,2:

Xi
as,
el se
as,
X

1
X

end if f
end for
end for

Algorithm 3-1: Zs-address calculation by subdivision

10 Note that we defined r; to be 2" for some v O N,
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Note that steps of a Z-address are numbered beginning with 1 from left to right in this thesis,
whereas the bits of a step are numbered beginning with O from right to left. So the leftmost bit
of astep correspondsto the rightmost dimension in the order of dimensions.

Zs-addresses always describe an area with positive volume, i.e., at least the point at the limit
of the resolution must be included in the Z-area. Thus the empty Z-area [ does not have a Zs
address, i.e., there is no counterpart to ;.

Example 3-6:

For a 3d-universe withr; =4, r, = 4, r3 = 8 we obtain steps(1) = 2, steps(2) = 2 and steps(3) =
3. The length of the steps are: steplength(1) = 3, steplength(2) = 3 and steplength(3) = 1.
Calculating the address for the tuple (X1, X2, X3) = (3, 1, 7) yields the split-point (2, 2, 4) for
step 1. Thus the first step of the Zs-address consists of the three bits 101,. The next split-point
(1, 1, 2) compared to the modified p’ = (1, 1, 3) yields 111,. At this step the resolution of
dimension 2 and 3 is exhausted. Thus the third step just consists of one dimension (i.e., one
bit). The split-point (1) compared to the modified and now one-dimensional tuple p” = (1)
resultsin 1, for step 3. The entire Zs-address is Z-address(p) = 101,.111,.15s = 5.7. 1.

Definition 3-27 (contribution of a dimension to a Zs-address): The contribution contrib;(a)
of dimensioni to aZs-address ais:

steps(i) -
contrib, (a) = Za” [psters(i)-|

IE

Example 3-7:

The contributions for a = Z-address(p) of Example 3-6 are contribsy(a) = 11, = 3, contriby(a)
=01, =1 and contribs(a) = 111, =7.

Lemma 3-19: For Zs-addresses the contribution of an attribute is just the attribute itself.

Pr oof:

According to Algorithm 3-1 bit ¢; of the contribution ¢ = contribi(a) = Cseps(i)-1..-Co represents a
binary decision between less than or equal or greater than with respect to the split-point
2501 summing up &l bits of the contribution from right to |eft and weighting each bit |
with the value of its position 2 then resultsin attribute A; with x; = cartesian(a);. O

However, in Section 5.3.5 we will describe a variant of the address calculation, where
contribj(Q) # X;.

Lemma 3-20 (domain of a step of a standard address): Zs-addresses result in a subcube
numbering between 0 and 2°-1.
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Pr oof:

Each subdivision step of the Zs-address calculation consists of d binary decisions, one for
each dimension. Since each decision divides the space in the middle, after d decisions the
gpace got divided in every dimension. We thus have obtained a subcube of the
multidimensional space. By storing the binary decision of each dimension in a bit, we obtain a
bit string with d bits. Each combination of bits denotes a different subcube. With d bits 2¢
subcubes numbered from 0 to 2%-1 exist. O

Lemma 3-21 (length of a Zs-address): The length in bits of Zs-addressesisidentical for each
tuple of a given universe. If the domain of dimension i consists of r; distinct values,
this length is calcul ated as:™*

steps(1)

addresslength(Q) = i steps(i) = Z steplength(j)
1= |=

Pr oof:

For each dimension Algorithm 3-1 divides the domain in the middle until the limit of
resolution is reached. Each of these subdivisions is represented by one bit. To reach the limit
of resolution for a domain consisting of r; distinct values, steps(i) = logyr; subdivisions are

necessary. Doing this for all dimensions results in zid:lSteps(i) subdivisions, each of which is

reflected by one bit of the address. This proves the first part of the equation. According to the
definition of Zgsaddresses the second part of the formula describes the length in bits as the
sum of the length of the steps of the addressin bits. m

Example 3-8:

The 3d-universe of Example 3-6 with ry = 4, r, = 4, r3 = 8 yields the number of bits for each
dimension: logor; = 2, loger, = 2 and logors = 3. Thus Zge-addresses for this universe have a
length of 7 bits.

Definition 3-28 (address incrementation and decrementation): For a Z-address a we
define the Z-addresses a @ 1 (and a © 1) as follows: Consider a as a bit string and
add to a (or subtract from a) the binary number 1. The resulting bit string is then split
into steps again and thereby defines the incremented Z-address a @ 1 (or decremented
Z-address a © 1).

Example 3-9:

Incrementing and decrementing a = Z-address(p) = 5.7.1s of Example 3-6 yields:

e a®1=571o1=1011111, + 1 = 1100000, = 6.0.0s
* 001=571©1=1011111,-1=1011119=5.7.Q

" Since Z-addresses are calculated with dimensions sorted in descending order of their resolution, steps(1)
denotes the number of steps of a Z-address.



66 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

Theorem 3-4 (isomor phism between Zs-addresses and Z;-addresses): For Z-addresses # €;
the standard representation and the increment representation of Z-addresses are
isomorphic.

Pr oof:

For this proof it is important to remember that Z;-addresses can be enlarged to the length of
Zs-addresses (Lemma 3-16). Since there exists no counterpart to €; in Zs-addresses, we must
exclude g from the proof. The subcubes of a Z-area defined by a Zj-address are then
numbered from 1 to 2°, whereas the subcubes of Zs-addresses are numbered from 0 to 2°-1.
The fundamental difference between standard representation and increment representation is
that, with respect to further subdivision steps, in standard representation a subcube number
denotes the upper left corner of a subcube, whereas the lower right corner of the subcube is
denoted in increment representation. In order to address points which are (in Z-ordering) less
than the lower right corner, the subcube number has to be decremented by 1 in increment
representation. Therefore the domain of the subcube numbers of Zj-addresses must be
enhanced by an additional subcube number zero for each but the last subdivision step (at the
limit of resolution no further subdivisions take place, thus a step number of zero is not
possible for the last step of a Zj-address).Thisisillustrated in Figure 3-9.

Considering the area containment up to the last subdivision step there is no difference
between standard representation and increment representation, since by adding the additional
subcube number zero both representations denote the same subcube by the same number.
Because of the different subcube numberings at the limit of resolution (i.e., for the last step)
the subcube number in increment representation is by one larger than the subcube number in
standard representation. O

1
2 "3

(a) standard representation (b) increment representation

Figure 3-9: Address representation

The proof of Theorem 3-4 immediately yields a bijective function to switch between Z;-
addresses and Zs-addresses. If we enlarge the Z;-address to the length of the Zs-address and
writeit as abinary string:

Qincrement = O'standard © 1.

In the same way, we calculate:

Osandard = Qincrement © 1.
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Note that in increment representation the very first step consists of d+1 bits, since it must be
possible to represent the number 29 in this step.

Example 3-10:

The point p = (3,1,7) of Example 3-6 has the Zs-address 5.7.1s, which yields the binary string
(0)1011111,. Binary incrementing this Zsaddress by 1, yields the string (0)1100000,.
Splitting this binary string in steps yields (0)110,.000,.0,. Removing trailing zeroes yields the
Zi-address 6.

Example 3-11.

In the same way we calculate the Zs-addresses for the Z-areas area(0.0.1;), area(1.3.2),
area(2.1) , area(3;) and area(4;) of the two-dimensional universe with resolution 8 of Figure
3-8

Zi-address bitstring decremented bits | splitting in steps | Zs-address
0.0.5 (0)000001, | (0)000000, (0)00,.00,.00, 0.0.0s
1.3.2 (0)011110, |(0)011101, (0)01,.11,.01, 1.3.1
2.1.0 (0)100100, |(0)100011, (0)10,.00,.11, 2.0.3¢
3.0.0 (0)110000, |(0)101111, (0)10,.11,.11, 2.3.3;
4.0.0 (1)000000, |(0)111111, (0)11,.11,.11, 3.3.3

Table 3-1: Transformation from Z;-addresses to Zs-addresses

Lemma 3-22 (open regionsand closed regions): | a: Bl =[a & 1: B]

Pr oof:

] a: B] denotes the space area(3) \ area(a ). This is the subspace of multidimensional space
covered by the Z-address interval | a, #]. The point corresponding to the Z-address a @ 1 is
includedin] a: Bl,ie,]a,f =[a @ 1, B]. Thus the Z-region [a & 1: (] as defined in
Section 3.4 isidentical to the Z-region] a: B] asdefined in this section. O

Lemma 3-23. The ordering < of Z-values of Section 3.1 is identical to the ordering <*
defined by Algorithm 3-1.

Pr oof:

Algorithm 3-1 calculates the ordinal numbers for < by storing the result of a binary decision
between x' < 24 andx’ = 241 for each dimensiom O D in bit &g.i1 of the binary
representation of the addre8s= dqg.1...a0. According to Definition 3-3 4 is calculated
exactly in the same way. Therefore Z-values are merely another interpretation of the
addresses calculated by Algorithm 3-1. m
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3.6.2 Volumesof Z-Areasand Z-Regions

The volume of a Z-area A is the percentage of the entire space that is covered by A. Since
area(s))= [, vol(area(s;)) = 0. If a Z-area has a positive volume, this volume can easily be
calculated from the Zs-address of the Z-area:

Lemma 3-24: If f...L4 is the bit-sequence of a Zs-address numbered from left to right, the
volume of the corresponding areais calculated as

vol(area(B,..5,)) = 2™ + iﬁi e

Pr oof:

According to the definition of Zs-addresses, each bit £ of a standard address represents a
decision between two parts of space with equal volume. If 3 is set, the first half of the space
is completely contained in the area. Otherwise, only a part of the first half of the space is
contained in the area. This part is described by the following bits of the address. Since each
subdivision step divides the previous subspace into two spaces of equal volume, 4 describes a
binary decision in a subspace with a volume of 2": If 3 is set, a subspace with volume 2 is
included in the area. Thus 32" describes the contribution of the subspace of the volume 2" to
the overall volume of area(f). At the limit of resolution either one or two subcubes with
volume 2% are included. If f is zero, only the first subcube is included, otherwise both
subcubes are included. We immediately get the above formula by weighting each set bit by
the volume of the corresponding subspace and adding up these volumes and correctively
adding 2% for the |ast step. O

Example 3-12:

The volumes of the Z-areasin Figure 3-8 are:

» vol(area(s)) =0

» vol(area(0.0.1))) = vol(area(00,.00,.00,5)) = 1/64

» vol(area(1.3.2)) = vol(area(01,.11,.01,¢)) = ¥+ 1/8 + 1/16 + 1/64 + 1/64 = 30/64
+ vol(area(2.)) = vol(area(1000;.11x)) = ¥2 + 1/32 + 1/64 + 1/64 = 36/64

* vol(area(d) = vol(area(1011,.115)) = ¥>+1/8+1/16+1/32+1/64+1/64= 48/64

» vol(area(4) = vol(area(1111,.11y)) = ¥2+1/4+1/8+1/16+1/32+1/64+1/64 = 1
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Lemma 3-25: If ;1...ax and ... 5 are the bit sequences of the addresses a and S, the volume
of the Z-region]a : f is caculated as

vol(la : B]) = vol(area(3)) - vol(area(@)) = Z (8 -a)5

Pr oof:

la: B] =aea(f) \ area(a ). Applying Lemma 2-3 and Lemma 3-24 immediately yields the
proof. O

Example 3-13:

The volumes of the Z-regionsin Figure 3-8 are:

* vol(]g : 0.0.1]) = vol(area(0.0.1;)) — vol(area;)) = 1/64 — 0 = 1/64

e vo0I(]0.0.3: 1.3.2)) = vol(area(1.3.3) — vol area(0.0;1= 30/64 — 1/64 = 29/64
« vol(]1.3.2: 2.1]) = 6/64

« vol(]2.1 : 3]) = 12/64

* vol(]3i: 4] = 16/64

3.7 Independent Dimensions

In the following we consider multidimensional universes which are partitioned into Z-regions
by point data which is distributed independently in each dimension.

Definition 3-29 (dependence and independence of dimensions): We call two dimensions,
andx of a multidimensional data distributiatependent, if there exists a mapping
such thaf(x) = x. Otherwise we call; andx; independent.

In the following PX) is the probability of the occurrence of a tuple Q in the relatiorR. By
Pi(x), i O D, we denote the probability of the occurrence of the attribute walud1,...ri}.
By F(x) we denote the cumulated distribution for the attribute vajuél {1,...r} of
dimension, i.e.,

Fi(xi)=XZPi(c)

For independent data distributions of each attribute the probabikty.P¢)) is the product
of the probabilities ©x), i.e.,
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In the following we consider several cases of independent data distributions for each
dimension, namely uniformly distributed data, Gaussian distributed data and combinations of
both.

3.7.1 Uniformly Distributed Data

The most simple data distribution for a domain is uniformly distributed data. For uniformly
distributed data the probability of the occurence of a specific value is constant and identical
for each value, i.e.,

Pi(x;) = L/[Di]

Uniform distribution is in general only an approximation for computer generated data. Real-
world applications seldom create uniformly distributed data. Nevertheless, this type of
distribution is interesting from a theoretical point of view: If the data distribution of an
attribute is unknown, it is often useful to assume uniform distribution in order to not disfavor
acertain value. In addition the theoretical analysis is greatly ssmplified by the assumption of
uniformly distributed data.

(b) (c)

Figure 3-10: Uniformly and Gaussian distributed data

Figure 3-10a shows the point and Z-region distribution for a partitioned relation with 5000
points stored on about 200 disk pages (i.e., about 200 Z-regions), where the values of both
dimensions are distributed uniformly in the corresponding domain.
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3.7.2 Gaussian Distributed Data

A very frequent data distribution for practical applications is the Gaussian distribution (or
normal distribution). The distribution function of the Gaussian distribution is:

1 _(4=m)?
P.(x)= e 20°
Y onlen
X _(u-p)’
F(x)=®, ()= 1 DJ’e 20° du
1 1 H,0 1 O’m J

Gaussian distributed datais located around the average value 1 with a standard deviation of .
Therefore the data is clustered around the center p. Figure 3-10b shows a multidimensional
data distribution, where both dimensions are independently Gaussian distributed, and the
corresponding region partitioning of the multidimensional space. Figure 3-10c shows a
multidimensional data distribution, where the horizontal dimension is Gaussian distributed
and the vertical dimension is uniformly distributed.

These pictures show an underlying principle of Z-region partitioning: Z-region partitioning
adapts to the density of the data, while trying to preserve locality in the partitions (=regions).

3.7.3 Idealized Uniform Partitioning

In this section we investigate a special case of uniformly distributed data, namely an idealized
uniformly partitioned universe.

Definition 3-30 (idealized uniform partitioning): A set of P addressesis idealized uniformly
distributed, if all of these addresses only differ in the log,PUleftmost bits, whereby al
possible combinations of the og,PClleftmost bits exist and all bits with a position
greater than og,Pare set. We call the partitioning of the multidimensional space
introduced by the sequence of these Z-addresses idealized uniform partitioning.

An idealized uniform partitioning produces rectangular regions, where each region has either
the shape of a subspace with volume 2 ™9%P0 or consists of two of these subspaces. An
idealized uniform partitioning for the data of Figure 3-11ais illustrated in Figure 3-11b. If
further data is inserted, the idealized uniform partitioning consists of even more quadratic Z-
regions (Figure 3-11c). This continues, until 1og,P = [log,PL] Then the partitioning consists of
a complete “chessboard”; further insertion then halves the quadratic regions.
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(@

Figure 3-11: Idealized uniform partitioning

Independent and uniformly distributed key attributes are not very common in practice.
However, the concept of Variable UB-Trees as described in Section 5.3.5 allows to create a
uniform partitioning of independently distributed dimensions regardless of their data
distribution. Many of the observations derived for uniformly partitioned data also hold for
Variable UB-Trees.

3.8 Dependent Dimensions

Dependencies or correlations between attributes often occur in practical applications. The

salary, for instance, is very often related to the age of a person, the horse powers of a car’s
engine are normally related to the price of the car. In the following sections we investigate
several types of dependent data distributions.

3.8.1 Linear Dependency

Definition 3-31 (linear dependency): Two dimensions andj arelinearly dependent, if the
value ofx is a linear function of the value ®f i.e., form# 0 and an arbitrary value
cUNg:

X =m +c
Linearly dependent dimensions can cause a dependence of particular bits of thb; wdlges

andb; of x. This restricts the number of bit combinations possible for addresses and therefore
reduces the number of splits that are necessary to entirely subdivide the universe.

Figure 3-12a and Figure 3-12b show two special cases of linear dependency, namely the
identity (m= 1,c = 0) and the inverse identityn(= -1,c = 0).
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Figure 3-12: Dependent dimensions

(b)

3.8.2 Further Dependencies

We use sine dependency to illustrate the behavior of Z-region splits for non-linear
dependencies. Sine dependencies occur, if one dimension is periodically growing and
shrinking. This is true for construction workers during summer and winter, for stocks rates,
etc.

Definition 3-32 (sine dependency): Two dimensionsi and j are sine dependent, if the value
of x; can be calculated by a sine function of the value of x;, i.e., for f 0, a # O:

X = aldin fl¥

As with linear dependencies sine dependency causes correlations between some bits of the
attributes. This again means that one split of a Z-region partitions the universe with respect to
several attributes. For more complicated dependencies this effect may not be as powerful as
for the simple cases of sine dependency and linear dependency, since it might not occur
globally in the entire universe, but locally constrained to some part of the universe.

Figure 3-12c shows sine dependency and the corresponding Z-region partitioning for a = 1
andf=1.



74 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

3.9 High Dimensionalities

Preserving spatia proximity becomes increasingly difficult with increasing dimensionality. In
d-dimensional space each point that is not situated on some border of the universe has 2[d
neighbors. When recursively partitioning a d-dimensiona space s times in each dimension,
2°9 partitions are created. Since the Z-regions of a Z-region partitioning correspond to
database pages, each additional partitioning level requires an exponential increase in the
database size.

Definition 3-33 (total split depth; ideal split depth per dimension): We call the number of
completed recursive splits of a Z-region partitioning its total split depth I,. For a Z-
region partitioning consisting of P idealized uniformly distributed Z-regions, the total
split depth is calculated as:

I, (P) = Oog,P]

[0, (P)/dCthen is the lower bound for the ideal split depth per dimension. The rightmost™? |, (P)
mod d dimensions have one additional completed split level. Thus the upper bound of the
ideal split depth per dimension is [, (P)/d+ 1. Therefore we can calculate the ideal split depth
for dimensioni as:

(=g L%+ 1 (Pymodd >d =i
| o [0%0 ,otherwise

Figure 3-13 displays the ideal split depth per dimension for Z-region partitionings with 1 up
to 20 dimensions. The figure shows that dimensionalities larger than 6 result in an ideal split
depth of at most 5 for tables of 80 GB. However, an ideal split depth of 5 means 2° = 32
subdivisions in each dimension. Dimensionalities larger than 12 never exceed an ideal split
depth of 3 for even huge databases. According to the Figure dimensionalities larger than 20
almost forever consist of only one split level for each dimension and for dimensionalities
larger than 32 one can expect that many of these dimensions will not be split at al and thus do
not contribute to the space partitioning.

This means that for average to large sized tables the Z-region partitioning yields a suitable
space partitioning for dimensionalities less than or equal to 6. The multidimensional space
partitioning deteriorates exponentialy with increasing dimensionality, since the table size
needs to grow exponentially to compensate an increase in dimensionality.

12 \We have defined the address calculation to use the order d, d-1, d-2, ..., 2, 1 of dimensions to calculate
addresses. Therefore the rightmost dimensions are subdivided first.
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Figure 3-13: Split depth per dimension for idealized uniformly distributed regions

3.10 Utilization of the multidimensional Space

Definition 3-34 (actual domain of a dimension): For arelation R(xy,...,Xq), X [ I for al i [
D, the actual domain V; of dimensioni is:

Vi={x ODj| (X1, oesXi-1y Xiy Xit1, - Xa) O R}

In most cases, the actual domain of an attribute and the data distribution in that domain are
not known in advance. In real world applications, usualy V; < I, since not all anticipated
values exist in the database. On the other hand one easily runs into problems when the
specified domain is too small, e.g., the currently very much discussed year-2000-problem,
where V; = [0, 99] and soon V; [J 1.

Definition 3-35 (partition of an actual domain): For i [0 D, s 0 {0, 1, ..., logzri} and k [
{1,..,2°% we define the k,i,s-partition of the actual domain V; as the values of the
actua V; which are located between (k-1)[2°% and k2° % of the domain ID;.

partition;,s(k) = {x O V; | % O](k-1)2°, k2¥] for x, 0 ID;}

Definition 3-36 (prefix length of a partition): The prefix length of a partition of an actual
domain is the length of the common prefix of the partition in binary representation,
i.e., the number of common bits of all valuesin the partition:

prefix-length; (k) = Jcommon-prefix(partition;,s(K))|, if partition;,s(k) # O
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Example 3-14:

For the domains1D; = 1D, =13 = [0, 7] we assume the actual domains of the relation R to be

e V,;={000,,001,,010,,011,,100,,101,,110,,111,},
® Vz = {0002,0012,0102,0112},
« V3 ={000,,001}

Thisyields the following partitions:

+ partition;o(1) =V

. partiti onl,l(l) = {0002,0012,0102,0112} , partiti 0n1,1(2) = { 1002,1012,1102,1112}

. partitionl,z(l) = {0002,0012} , partiti0n1,2(2) = {0102,0112} , partiti0n1,2(3) = { 1002,1012} ,
partiti 0n1,2(4) = { 1102,1112}

o partitionye(1) = V>

* partitiony1(1) = {000,,0012,010,,0115} = V5, partitiony1(2) = O

o partitiony»(1) = {000,,001,}, partition, »(2) = {010,,011,}, partition, »(3) = [,
partition, »(4) = O

* partitiongo(1) = V3

» partitions1(1) = {000,,001,} = V3, partitiong1(2) = U

* partitions (1) = {000,,001,} = V3, partitionz(2) = O, partitionz »(3) = 01,
partiti 0n3,2(4) =0

Thus while the space partitioning of the domain yields a full partitioning of the actual domain
for dimension 1, the actual domain of dimension 2 is unevenly partitioned. The actual domain
of dimension 3 is not partitioned at al. In this case we get the following binary prefix lengths:

» prefix-lengthy o(1) = O, prefix-lengthy 1(k) = 1 for k O {1,2} and prefix-length; »(k) = 2 for
k{1,2,3,4}

o prefix-lengthyo(1) = 1, prefix-length, 1(1) = 1 and prefix-length, »(k)= 2 for k [0 {1,2}

o prefix-lengthso(1) = 2, prefix-lengths 1(1) = 2 and prefix-lengths »(1) = 2

» All other prefix lengths are undefined ( = [)

Definition 3-37 (actual split depth): The actual split depth I’; for a dimension is the number
of bits of A; which are used for the space partitioning of the UB-Tree.

If for any fixed i 0 D and s < logyr; prefix-length; «(K) is either constant or undefined for every
kO{1,...,2%, the actual split depth for each dimension can be calculated by Algorithm 3-2.
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| nput: p : nunber of pages
d : nunber of dinensions
prefix_length,  : length of the common prefix of the first
' j bits of the actual domain of attribute i/
r . cardinality of the donmain of each attribute
Qutput: | ,...,1, . actual split depths
I =...=1,=0
s =1.(p
i =1
j =0
r epeat
if prefix_length , <=j then
I, =1, +1
s:=s-1
end if
if i < dthen
= 0 +1
el se
i =1
j= j+1
end if

until s=0or j >log ,r

2

Algorithm 3-2: Calculation of the actual split depth

Providing unused extra values at some border of the domain or not using al intermediate
values causes an imperfect domain exhaustion for an attribute. Since the Z-region partitioning
performs a recursive subdivision in the middle for each step, this may result in alower actua
split depth for some dimensions.

Example 3-15:

For P = 32 the actual split depths of Example 3-14 for P=32 arel; =3,1, =2andl3 = 1.
This means that the first partitioning in dimension 3 takes place after three subdivision steps
in dimension 1 and two subdivision steps in dimension 2. This yields exactly the same
multidimensional ordering as the compound ordering <yiex2ex3. Moreover, if the table size is
not large enough to split 6 times, i.e., P < 32, the partitioning in dimension 3 is not reflected
by the Z-region partitioning at all.

Definition 3-38 (normalized actual split depth per dimension and normalized actual split
depth): We define the normalized actual split depth for dimensionii as:

B TR
H ,otherwise

The normalized actual split depth is defined as:



78 CHAPTER 3: MULTIDIMENSIONAL SPACE PARTITIONING

The normalized actual split depth normalizes the actual split depth for universes of different
resolutions per dimension. If one attribute is partitioned entirely, its split depth is increased to
the maximum actual split depth over all dimensions. This yields identical normalized split
depth, if all dimensions are partitioned completely.

Different actual split depths mean that the actual domains do not partition the universe evenly.
This causes a layered multidimensional partitioning that reminds us of a puff pastry. We
therefore call this effect of the incomplete domain utilization puff pastry effect.

Definition 3-39 (puff pastry, puff pastry degree): If for a Z-region partitioning of arelation
R the normalized actual split depths are not identical for all dimensionsi [ D, we call
the partitioning to be a puff pastry. The degree of the puff pastry is measured as the
normalized standard deviation of the normalized actual split depths:

puff-pastry-degree(R) = std({Ii/I", |i O D})d

The puff pastry degree is a measure for the asymmetry of a Z-region partitioning. The
normalized actual split depth I;" is used to take dimensions with variable cardinality into
account. The value of the puff pastry degree is a number between 0 and 1, whereby 0 means a
perfect Z-region partitioning without any puff pastry. If splits only take place with respect to
one dimension, the most extreme puff pastry degree of 1 is achieved.

Example 3-16:

For P = 2* = 16 the relation R of Example 3-14 has a puff pastry degree of 0,75, for P = 2° =
32 the puff pastry degree is 0.00. The data of Figure 3-10a and Figure 3-10b as well as the
data of Figure 3-12a and Figure 3-12b also have a puff pastry degree of 0,00. Figure 3-10c
has actual split depth of I, = 2 and ;" = 6, resulting in a puff pastry degree of 0.5.

Figure 3-14 shows three examples of multidimensional space utilization. Figure 3-14a and
Figure 3-14b show data, which is distributed uniformly in the vertica dimension and
Gaussian with a very small standard deviation in the horizontal dimension. In Figure 3-14a
the average is exactly the center of the universe. Thus, for 50% of the values in the horizontal
dimension the leftmost bit is set and for 50% of the value the leftmost bit is cleared. This
results in an actual split depth of 1 in the first dimension versus an actua split depth of 4 for
the second dimension, yielding a puff pastry degree of 0.6. In Figure 3-14b the average is
slightly shifted to the left. Now all values of the horizontal dimension have the same prefix.
Therefore the split depth in the horizontal dimension is reduced to zero, i.e., no subdivision
with respect to this dimension has taken place. Figure 3-14b therefore shows areal puff pastry
with a puff pastry degree of 1.00. The Z-region partitioning of Figure 3-14c is filled with data
of 5 two-dimensional Gaussian distributions with different average values. Here five puff
pastries for five data clusters superimpose each other. Since four of these clusters are in
different parts of the universe, which result in different prefixes for the first two bits of the Z-
region addresses, the overall puff pastry degreeis not as strong as in Figure 3-14b.
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@ (b)

Figure 3-14: Utilization of the multidimensional space

In extreme cases as in Figure 3-14b the puff pastry effect results in a splitting similar to
compound ordering. Thus the puff pastry effect seriously influences the multidimensional
behavior of a Z-region partitioning and may in worst case totaly destroy the
multidimensional ordering. Therefore it is important to restrict domains as far as possible.
Together with reorganization algorithms this strategy can avoid the puff pastry effect. If the
data distribution of all dimensions is known in advance, the Z-region partitioning can take
these data distributions into account and thereby avoid the puff pastry effect. Thisis achieved
by the so-called Variable UB-Tree, which is described in more detail in Chapter 6.4.






Part ||

Our Approach To Query Processing with
Multidimensional | ndexes






CHAPTER 4: THE UB-TREE 83

With information we can go
anywhere in the world, we are like
turtles, our houses always on our
backs.

(John Le Carré)

Chapter 4

The UB-Tree

he totally ordered addresses of a region partitioning created by a space fill-
ing curve can be stored in any variant of a B-Tree. This allows to create a

multidimensional index for a universe partitioned into regions. For our pro-

totype implementation we use Z-region partitioning, which is implemented
easily while showing beneficial properties for multidimensional clustering
of tuples (see Chapter 3). First we introduce the basic concepts of the uni-
versal B-Tree (UB-Tree). Then we describe algorithms for insertion and deletion. The algo-
rithm for exact match queries is derived from the corresponding agorithm for exact match
gueriesin B-Trees. Range queries are performed by determining the smallest set of Z-regions
of the multidimensional partitioned relation that builds a cover for the query box. The inser-
tion, deletion, point-query, and range query algorithms were first described in [Bay96]. In ad-
dition to these algorithm we introduce two further algorithms in this thesis. Nearest neighbor
queries are efficiently handled by the Spiral algorithm, a refinement of the range query ago-
rithm which just retrieves Z-regions that store a nearest neighbor candidate. Our second
algorithm is the Tetris algorithm, a technique to process a multidimensionally partitioned re-
lation in the sort order of any attribute.
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4.1 Concept of the UB-Tree

The UB-Tree [Bay96] uses a space filling curve to create a partitioning of a multidimensional
universe while preserving multidimensional clustering. Using the Lebesgue-curve (Z-curve) it
is a variant of the zkd-B-Tree [OM84]. The UB-Tree utilizes a B'-Tree to store the Z-
addresses of a Z-region partitioning of the multidimensional space. Each Z-region is mapped
onto one disk page. At insertion time a full Z-region [a : ] is split into two Z-regions by
introducing a new Z-address y with a < y< . y ischosen so that the first half (in Z-order)
of the tuples stored on Z-region [a : ] isdistributed to [« : y] and the second half is stored
on [y® 1. B]. Thus a worst case storage utilization of 50% is guaranteed. There is some
freedom of choice for the Z-region split. For optimal query performance the split algorithm
for UB-Trees tries to maintain rectangular regions and minimize fringes whenever possible.
The UB-Tree requires logarithmic time (in the cardinality of the partitioned relation) for the
basic operations of insertion, point retrieval, and deletion.

We write page(a : ) for the page corresponding to the Z-region [a : £]. Depending on the
context we also use the notion page and notation page(a.(3) for the set of tuples stored in Z-
region[a: B]. By count(a : ) we denote the number of objects located on page(a : 3).

Definition 4-1 (UB-Tree): A UB-Tree is any variant of a B-Tree in which the keys are Z-
addresses of Z-regions ordered by <. Since we get y= @ 1 for two neighboring Z-
regions[a: B] and [y: J], it suffices to store the upper address of each Z-region in
the B-Tree. Each leaf page holds the tuples belonging to the corresponding Z-region.
For secondary UB-Trees only tuple identifiers are stored on the corresponding |leaf

page (see Figure 4-1).
} UB-index

[ ] L ] [ ] ] L ] [ ] [ ] ] L ] [ ] [ }UB_f”e

B-Tree node storing region
addresses of Z-regions

[ ]
B-Treeleaf storing tuples belonging to one Z-region
Figure 4-1: The UB-Tree

Example 4-1.

The five Z-regions in Figure 3-8 build a UB-Tree for the point data displayed in the lower
right corner of Figure 3-8. Although Z-regions differ in volume, each Z-region stores about
the same number of tuples because of the storage utilization guarantees of UB-Trees. Both the
upper left corner and the lower right quarter of the universe contain five points, although the
size (volume) of the region covering the lower right quarter of the universe is 16 times larger.
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4.2 Insertion into UB-Trees

A tuple x to be inserted into the relation R is specified by its coordinates (X1 ,X, ..., Xg) With Z-
address & = Z(xq, X2, .., X4). X belongs to the unique Z-region [a.y] satisfying a < < ¥
Note that £ must be computed only to a precision which is sufficient to determine the proper
Z-region. x is inserted into the leaf-page corresponding to that Z-region, which is found by a
point query. Since pages can store only a maximum number C of points, pages may overflow
and be split likein B-trees. [a : y] is split by introducing a new Z-areawith Z-address S such
that a < B < y. The Z-region [a: y ] is partitioned by Sinto [a: Sl and [ 1: y]. The
objects on page(a : y) are distributed onto page(a : 8) and page(B @ 1: y) accordingly. S is
constructed by increasing area(a) as follows: Add to area a subcubes from [a: y] in
increasing order until the number of the objectsin[a: ] isbetween’2 C -¢ and %2 C +¢.
If the next subcube in this process contains too many objects, it is recursively subdivided until
the condition can be met. The parameter ¢ is used to get shorter split addresses, i.e., a better
gpace partitioning. Section 5.4 shows how the parameter ¢ is used to reduce the number of Z-
regions that overlap a query box and thus improves the performance of range queries in UB-
Trees.

Input: x : tuple to store in the UB-Tree
Qut put: none

¢ = Z(x)
find [a:y] inthe UB-Tree, such that a x { < y
retrieve page(a:y)
insert x into page(a.))
if count(a:y) > C
choose B a:y], so that %LC-g< count(a:f) <% C+e¢
split page(a:y) into page(a:fB) and page(S8®1 : y)
end if

Algorithm 4-1: Insertion algorithm for tuple x

The algorithm relies on the B-Tree operations to find the correct region. For n tuples stored in
the database it inherits the 1/0-complexity of O(logc n). The CPU-complexity is also similar
to that of B-Trees. The only difference is the address transformation, which is a very small
amount of CPU time. We give performance figures for Z-address calculation in Section 5.3.1.

Figure 4-2 shows the insertion process into a UB-Tree. First the entire universe is stored on
one disk page, the corresponding multidimensional space is represented by one Z-region
(Figure 4-2a). After repeated insertion of tuples that page will overflow and is split. The
multidimensional space is split into two Z-regions (Figure 4-2b). After further insertions the
upper Z-region of Figure 4-2b indicated by the black arrow is split (Figure 4-2c). After further
insertions an additional split takes place (Figure 4-2d). Figure 4-2e shows the universe after
severa further splits. The Z-region split in Figure 4-2f illustrates that splits in UB-Trees are
local operations. Other regions are not affected by a split.
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(@ (b) (©)

(d) (e

Figure 4-2: Insertion into UB-Trees

4.3 The Point Query Algorithm

To find atuple X = (X1 , X, ..., Xg) We compute its address & = Z(X1,Xp, ..., Xg) With sufficient
precision to find the unique region [a : 8] with the property a < & < fand fetch page(a : B)
from the UB-file. Thisis achieved by searching the UB-index, using address ¢ as the search
key. page(a : ) must contain x with the additional information or the row id of x.

Input: Xx : tuple, only index attributes are specified
Qutput: x : tuple, all attributes are specified

¢=Z (x)

find [af8 in the UB-Tree, such that a < £ < 8
retrieve page(a:. ) into main nenory

search content of page(a:p) to find x

Algorithm 4-2: Point query algorithm to find tuple x

This algorithm inherits the complexity of the underlying access structure for storing the
addresses. The only additional overhead is the address calculation algorithm. An efficient
implementation with a CPU-complexity linear in the tuple sizeis described in Section 5.3.
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4.4 Deletion from UB-Trees

When tuples are deleted from [a : ], they are removed from page(a : ). If after this deletion
page(a :B) contains less than %2 C - £ elements, then page(a:f3) is merged with the
following page(8® 1: y) and the Z-region [f® 1: y] disappears. If the resulting
page(a: y) overflows, it is split again "in the middle" by introducing a new Z-area with
address d and the regions [a :d] and [0 @ 1: y] with the corresponding pages page(a: 0)
and page(d @ 1: y). This final split of regions and pages is analogous to the underflow
technique between pages of B-trees[BM72].

Input: x : tuple to delete fromthe UB-Tree
Qut put: none

/1 for easy illustration the al gorithm does not handl e the special
/'l case of the tuple being stored on the root page or |ast |eaf
¢ = Z(x)

search [a:fin the UB-Tree, such that a x ¢ < S
retrieve page(a: B)
delete x frompage( a: B
if count(a : B < %C-¢
nmerge page(a : B with the neighboring page(B8® 1 : y)
into page(a: y)
if count(a: y) > C
choose 6/ a: ) with count( a: 9 < »%C-¢
and count(d® 1:) < %C-¢
split page(a : )) into page(a : 9 and page(d® 1. )
end if
end if

Algorithm 4-3: Deletion algorithm for a tuple x

The complexity considerations of insertion also apply to the deletion algorithm. For T tuples
stored in the database the 1/0-complexity is O(logc T ). The CPU-complexity isaso similar to
that of B-Trees.

4.5 The Range Query Algorithm

To answer arange query, only those Z-regions, which properly intersect the query box, must
be fetched from the database and thus from the disk [Bay96]. Initially the range query
algorithm calculates and retrieves the first Z-region that is overlapped by the query-box. Then
the next intersecting Z-region is calculated and retrieved. This is repeated until a minimal
cover for the query box has been constructed, i.e., the region that contains the ending point of
the query box has been retrieved.

Definition 4-2 (subcube of an address): For any Zi-address a = a;. ... .ax we define
subcube(a), the hypercube-shaped multidimensional interval, which has Z}(a) asits
end point and a normalized length of 2 in each dimension:

subcube(a) ={x0Q|Z(a,.....(a, -1)0. ...0.)ax<Z*(a,....a, }

r-k
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Input: y,z : tuples that define a query box with Z(y) < Z(2)

Qutput: X : result set of the range query

E=2(y); w=2(2),;, X=10

repeat
find [a- ] in the UB-Tree, such that a < £ < f
X=X0O{(x,...,x,) D_[cr.ﬂ _| (x_l, xd_) Oy, 211}
& = Z-address of the first point intersecting the query box
with & > B

until & > w
Algorithm 4-4: Range query algorithm for a query box [[y, Z]

It is important to note that for any Z-region the calculation of the next point intersecting the
guery box is performed solely in main memory. [Bay96] describes an algorithm that for a Z-
region [a : B] and a query box Q calculates the largest Z-address y' [0 [a : ] so that sub-

cube(y) n Q # U. The agorithm then traverses all subcubes with greater Z-addresses, until
one of these subcubes intersects Q. The smallest intersecting point p in Z-order then defines
the next relevant Z-region, which is retrieved by a point query. Note that because of Lemma
3-16 the next subcube to subcube(é;. ... .5,-.2"') is subcube (&;. ... .&+1), which alows a more
efficient traversal through the multidimensional space. However, the algorithm still has a
CPU complexity which is exponentia in the number of dimensions of the UB-Tree, which
limits this agorithm to dimensionalities below 4. In Section 5.7.1 we sketch the implementa-
tion idea of alinear algorithm that solely operates on a binary representation of Z-addresses.

pcael S, sl

(b)

o . . R . | S

Figure 4-3: Processing a range query
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Figure 4-3 illustrates the order in which the range query algorithm calculates and retrieves Z-
regions for the range query illustrated by the black-bordered query box. For this example we
use the notation Ja : ] for [a @ 1 : B]. The Z-regions overlapping the query box are
shaded. Initially the agorithm uses the coordinate y of the query box Q = [[y, Z]] for a point
query and thereby retrieves the Z-region 10.0.0.1.3.2; : 0.0.3.3.1.0.2]] from the UB-index.
Then the next Z-region that overlaps the query box must be determined (see also Figure 4-44):
The last subcube of ]0.0.0.1.3.2, : 0.0.3.3.1.0.2] overlapping the query box is
subcube(0.0.3.3.1;), which contains the point x; as the last intersecting point with respect to Z-
ordering. The next subcube, subcube(0.0.3.3.2), has an intersection with Q. The first
intersecting point is p;. A point query with p; yields the Z-region 10.0.3.3.1.0.2; : 0.1.1.1.0.2]].
Thus this Z-region may contain tuples, which are part of the result set of the range query.
Finding the next Z-region works in the same way: The last intersecting subcube of
]0.0.3.3.1.0.2; : 0.1.1.1.0.2] is subcube(0.1;). The next intersecting subcube is subcube(0.2).
The corresponding point query retrieves the Z-region ]10.1.1.1.0.2; : 0.1.3.0.1], which again
may contain tuples of the result set. For determining the next Z-region (see also Figure 4-4b)
the algorithm starts with subcube(0.1.3;). subcube(0.1.4;) has no intersection with the query
box. The next subcube with alarger Z-address is subcube(0.3;), which has an intersection with
the query box in p,. The point query then retrieves the Z-region ]0.2.0.2.3.2; : 0.2.2.1.1.2].
Here we already see that the algorithm skipped Z-region ]0.1.3.0.1; : 0.2.0.2.3.2], since this
Z-region does not overlap the query box. In the same way the agorithm calculates and
retrieves the Z-regions]0.2.2.1.1.2; : 0.3.0.0.2.3] and ]0.3.0.0.2.3; : 0.3.2.1;].

X1 Py

SToeblos (0N subcube(0.1.4)

subcube(0.3)

|
| / \ |
i subcube(0.0.3.3.1,) subcube(0.0.3.3.2) !

(€Y (b)
Figure 4-4: Zoom into Figure 4-3
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The visualization aready shows the principle benefit of the UB-Tree for multidimensional
range queries:. Only Z-regions that may contribute to the result set of arange query need to be
retrieved from disk in order to answer the query. Thus in contrast to one-dimensional access
methods as described in Section 2.4 the number of disk accesses of the UB-Tree range query
algorithm is correlated to restrictions defined by all dimensions, not just to restriction in one
dimension. We will analyze the theoretical and practical behavior of the range query
algorithm in Chapters 6 and 7 and compare it to one-dimensional access methods.

Two strategies for returning the tuples of a query box are possible:

* immediate tuple delivery: As soon as a Z-region p is retrieved from the UB-index, the
corresponding page(p) is retrieved from the UB-file. The tuples on page(p) are then
extracted immediately and the tuples in the query box are returned. This strategy allows
shorter response times and does not require any caching.

» deferred tuple delivery: After the upper Z-address of Z-region p has been retrieved from
the UB-index, it is stored in a region result set. After all Z-addresses have been retrieved,
the tuples of the entire region result set are materialized. This separation of UB-index ac-
cess and UB-file access allows one to predict the tuple retrieval time before actually doing
the retrieval. This may especially be useful for large result sets, where after retrieving the
regions the user might be asked whether he really wants to materialize the result set.

Theorem 4-1 (range query theorem): The range query agorithm transforms the
multidimensiona interval [[y, Z]] into a set of one-dimensional address intervals
{1a, B1,15, v1. ...}, which with respect to the given region partitioning is the smallest
cover for [[y, 7].

Proof: The proof is a direct consequence of Algorithm 4-4 and the fact that Z-regions are
one-dimensiona intervals. m

multidimensional space

Z-address space

#—*—»

0.0.1.3.2 0.1.3.0.1, 0.2.0.232 0.3.2.1
Figure 4-5: Transforming a query box into a set of Z-intervals
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Very often some of these one-dimensional intervals are connected and therefore might be
merged to larger one-dimensional intervals consisting of several regions. For instance, the six
Z-regions overlapped by the query box of Figure 4-3 are six one-dimensional intervals, which
could be merged into the two intervals ]0.0.1.3.2;, 0.1.3.0.1;] and ]0.2.0.2.3.2;, 0.3.2.1]], each
of which consists of three Z-regions (see Figure 4-5). This merging could reduce the number
of 1/0s necessary to retrieve the pages of a query box, since for page clustered data only two
random accesses are necessary versus six random accesses for tuple clustered data.

4.6 The Spiral Algorithm for Nearest-Neighbor Queries

For UB-Trees nearest neighbor queries can efficiently be processed in the following way: To

find the nearest neighbor of point x we first retrieve the Z-region p where x would be located.

Then we investigate all nearest neighbors to x that are stored on p. We have found a nearest
neighbor, if the nearest neighbor z on pis closer to x than any point on the Z-region border of

p. Otherwise we call zto be a nearest neighbor candidate. We now have to retrieve the closest

not retrieved Z-region, since this Z-region might contain a point Z with a lower distance ta

thanz. This process must be iterated until no point on a border of the retrieved Z-regions has a
distance to less then the distance of the current nearest neighbor candidate.

We call this algorithnspiral algorithm because of the order that is used to retrieve the Z-
regions in order to find the nearest neighbor.

Input: x : tuple, for which the nearest neighbor is wanted
Qutput: N: set of tuples containing the nearest neighbors to x

§ = Z(x)

find [aB] in the UB-Tree, such that a < é <

N = nearest neighbors of [a:B]to x

R = [a B]

while there is a point y beyond the border of R such that
for some z O N distance(x, z) > distance(x,y)
retrieve the Z-region [y 0] bordering R

which has a point on its border
that has the | east distance to x

N = nearest neighbors of ([yo] ON to x
R= RO [y d]

end while

return the nearest neighbors of Nto x

Algorithm 4-5: Spiral algorithm to find the nearest neighbor to a point x

Example 4-2:

Two nearest neighbor queries are illustrated in Figure 4-6a. To find the nearest neighbor to
pointx; Z-regionp; is retrieved. The two pointg andz; are the nearest neighborsdan p;.
Since no point on the border of has a distance less than the distanog of z;, we already
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have found the nearest neighbors. To find the nearest neighbor to point x, we first retrieve Z-
region ps. On p; we find the nearest neighbor y,. Since a point of the border of o, has a closer
distance to x, than y,, we have to retrieve p,. Since no point of p, has a closer distance than y,
and no further border of aregion has a closer distance to x, than y,, we have found the nearest
neighbor.

A

Ps P
(€Y (b)

Figure 4-6: Three nearest neighbor queries

To find the nearest neighbor to point x in the UB-Tree of Figure 4-6b, initially the Z-region p
is retrieved, yielding the nearest neighbor y. Since points on the border of p, have a distance
to x that is less than the distance of y, next the region p» is retrieved. p, contains the point z,
which has the distance a, to x, which is less than the distance a; of y. Therefore the nearest
neighbor candidate now is z. Since no points on the border of not retrieved Z-regions have a
lower distance to x than z, the algorithm terminates with z as the nearest neighbor.

Implementation and further analysis of the spiral algorithm is performed by a master student
supervised by the author [Str99]. Detailed analysis of the algorithm can be found there. We
just stress that the algorithm in worst case results in a range query. The query box of that
range query is determined by the covering square to a circle around x. The radius of the circle
is defined by the distance of the nearest neighbor to x.

4.7 The TetrisAlgorithm for Sorted Processing of Query

Boxes

Tables organized by a UB-Tree can be read in any sort order in O(n) disk accesses wheren is
the number of pages of the table or the minimal number of regions covering a query box.
[Bay97] proposes to partition the universe in a number of equally sized dlices. Algorithm 4-4
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is used to retrieve each dice. After retrieval a dice is sorted and returned to the caller of the
sort operation.

For non-uniformly distributed universes we propose a modification of the range query
algorithm and a caching technique, the so called "Tetris-Algorithm”. The Tetris algorithm is a
generalization of the multidimensional range query algorithm (cf. Section 4.4) that efficiently
combines sort operations with the evaluation of multi-attribute restrictions. The basic idea is
to use the partial sort order imposed by a multidimensional partitioning in order to process a
table in some total sort order. Essentially a plane sweep [PS85] over a query space defined by
restrictions on a multidimensionally partitioned table is performed. The direction of the sweep

is determined by the sort attribute. Initially the algorithm calculates the first Z-region that is
overlapped by the query box, retrieves it and caches it in main memory. Then it continues to
read and cache the next Z-regions with respect to the requested sort order, until a complete
thinnest possible slice of the query box (in the sorting dimension) has been read. Then the
cached tuples of this slice are sorted in main memory, returned in sort order to the caller and
removed from cache. The algorithm proceeds reading the next slicealirdifregions
intersecting the query box have been processed. Only disk pages overlapping the query space
are accessed. With sufficient, but modest, cache memory each disk page is accessed only
once: To sort 50% of a 1.3 GB relation, the Tetris algorithm just requires a cache of 2.6 MB,
whereas a standard merge-sort algorithm needs a cache of 750 MB (see sections 6.4.1 and
8.2.1).

Input: y,z : tuples defining a query box with Z(y) < Z(z)

i . sorting dinmension
Qutput: streamof tuples in [[y, z]] sorted according to dinension
i

€= 2y); w=2z)

r epeat
search [a:f in the UB-Tree, such that a x¢& <
store all tuples frompage(a: ) in the cache

if anewslice in dinmension j is conpleted
s = endpoint of the slice dinmension i
sort all cached tuples

output all cached tuples x where x, < s
renove all cached tuples x where x, < s from cache
end if
& = Z-address of the next point intersecting the querybox
with respect to dinmension i

until € > w

Algorithm 4-6: Tetris algorithm for a query box [[y, Z]]
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Thus the Tetris-Algorithm works similar to the range-query algorithm. The only difference is
that the calculation of the next intersecting Z-region does not return a Z-region according to
Z-ordering, but according to the specified sort order (Tetris order): Initialy the algorithm
calculates the first Z-region that is overlapped by the query-box, retrieves it and caches it in
main memory. Then it continues to read and cache the next Z-regions with respect to the sort
order, until a complete thinnest possible dlice of the query box has been read. Then the cached
tuples of this slice are sorted in main memory, returned in sort order to the caller and removed
from cache. The algorithm proceeds reading the next dlice, until all Z-regions which intersect
the query box have been retrieved and output.

An example of sorted reading with the Tetris-Algorithm isillustrated in Figure 4-7, where the
entire universe is sorted according to the vertical dimension, i.e., from bottom to top. The part
of each region from which tuples are cached is shaded in this Figure. Note that a large volume
of a cached region does not mean that a lot of cache memory is needed: The maximum
number of tuples in each region and thus maximum cache size for each cached region is C
tuples. The current sweep line is denoted by a thin white line. Thus the current dlice processed
by the Tetris agorithm is the shaded area up to the white line. The algorithm starts by
retrieving the Z-region in the very left corner (Figure 4-7a). Successive Z-regions are
retrieved and cached (Figure 4-7b) until the first vertical sliceis completed (Figure 4-7c). The
tuples of this dlice are then sorted in main memory. All tuples up to the end coordinate of the
slice in the sorting dimension are output in sort order and removed from cache. The Z-regions
of this dlice can not be removed from cache completely at this point since each Z-region still
might have some tuples that have not been output yet. However, not the entire Z-regions are
cached. Caching is only necessary for those tuples that have not been output yet. In Figure
4-7d one additional Z-region has been read to complete the second slice. Then eight more Z-
regions are read and cached until the third slice is completed (Figure 4-7€). The Tetris-
Algorithm continues processing in this way until the last slice of the query box has been read
(Figure 4-7f), i.e., the complete universe has been read in the desired sort order.

The visualization aso gives a hint why we named this algorithm Tetris algorithm: The
caching order of the regions reminds us of the Tetris computer game. Regions are cached,
until adlicein the sorting direction has been completed. Upon completion the slice is removed
from cache.
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@ ( (M)
Figure 4-7: Sorted reading with the Tetris algorithm

Figure 4-8 shows the first three vertical dlices that occur while the Tetris a gorithm reads the
thick bordered query box in sort order according to the vertical dimension. The cached Z-re-
gionsfor each dice are shaded, the slices are emphasized by white borders.

b e

@ (b) ©)

Figure 4-8: Reading a query box in sort order

The caching strategy of this algorithm can be improved even further. Figure 4-8 shows some
Z-regions that might cache data outside the query box. Of course it is not necessary to cache
this data allowing for an even smaller cache size.
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Both the Tetris algorithm and the range query agorithm determine the set of Z-regions
overlapping a query box. The only difference is the order in which the Z-regions are
produced. While the range query agorithm delivers the Z-regions in Z-order, the Tetris
algorithm uses an order which depends on the sort attribute A;. We call this order Tetris order
T; [MZB99]. Formally, Tetris ordering produces a compound ordering from a Z-ordering by
extracting the bits of the sort attribute from the Z-address and concatenating them to the
remaining Z-address, i.e., for sorting with respect to attribute A; the ordinal number T;(a) for a
Z-address a is computed as:

Ti@ = (ZH @) o Z(ZH@ N1, - ZH@ e, ZH@ it o Z7H@))a)

The ordinal number T;(x) for Cartesian tuple x is computed respectively:

Ti(X) =X © Z(X1, «ey X-1,Xj41,2-+,Xd)

OZL234567/’-\2

/ T~

01234567A 01234567A
2 Al 2

6!
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Figure 4-9: Z-Ordering / Tetris Ordering

Figure 4-9 shows the Tetris orderings T1 and T, created from a Z-ordered 8x8 universe.
Although Tetris ordering looks like a compound ordering in the Figure, this is only true for
the two-dimensional case. In general, Tetris ordering is a concatenation of one attribute with
the Z-address of atuple reduced by one attribute.

Although the idea of the Tetris agorithm has been developed by the author, implementation
and a detailed analysis are beyond the scope of this thesis. Some very basic performance
considerations are given in Chapters 5 and 7. We give a more detailed description of the
Tetrisalgorithm in [MZB99].
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Errors, like straws, upon the
surface flow; he who would search
for pearls must dive below.

(John Dryden)

Chapter 5

Prototype | mplementation

elying on the built-in B-Tree of a DBMS, the UB-Tree is easily
implemented on top of that DBMS. In this chapter we give an overview of

the prototype implementation of UB-Trees. We describe basic

implementation concepts and specifically illustrate the calculation of Z-
addresses, since this calculation is crucia to both flexibility and
performance of our algorithms. Next to the basic bit-interleaving algorithm,
we illustrate how Z-addresses for arbitrary data types are calculated by the concept of
transformation functions. Then we give examples for three transformation functions. For
signed integer numbers it suffices to invert the sign bit to use bit-interleaving. To deal with
independently distributed dimensions the concept of Variable UB-Trees (VUB-Trees) is
introduced. Multidimensional hierarchical clustering (MHC) is useful for clustering a
universe where hierarchies are built over the domain of each dimension. After the concept of
transformation functions we address specific algorithmic problems that we had to solve when
implementing the insertion, deletion, point- and range query algorithms. Finally we describe
the functionality that is provided by the UB-Tree library, a C-library offering UB-Tree
functionality.
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5.1 Overview of the Prototype

To practically evaluate the performance of the UB-Tree, a basic C-library providing the
algorithms described in this thesis was implemented by the author. Several master students
and interns supervised by the author implemented applications on top of the C-library:

» create — a program to fill a database with generated test data of various data distributions,
dimensionality, and size [Fri97]

* rtest — a benchmark program to measure the query performance of UB-Trees and various
other indexes [Fri97]

e regvis— a program to visualize the region partitioning of UB-Trees [Fri97]

* |load — a mass loading tool to build large databases quickly [Bau97]

Several master students and interns enhanced the C-library [Sch98, Bau98, Fen98] and helped
to port the original TransBase/Solaris code to further RDBMS and operating systems [Pie97,
Ova99, Pfa99].

The prototype implementation of the UB-Tree was performed on top of the RDBMS
TransBase on Solaris. The current version of the UB-Tree library supports the RDBMSs
TransBase, Oracle 8 [Pie97] and DB2 [Ova99], and the operating systems Solaris 2.6,
Windows NT [Pie97], and Linux [Bau98]. In addition the library was ported to Informix
Universal Server [Pfa99]. The complexity of the library can be seen from the module
hierarchy of Figure 5-1.

The entire system is implemented in ANSI C and ESQL and relies on the GNU tools gcc and
gmake for code generation. The Oracle version relies on the Oracle Call Interface (OCI, see
[Ora97]) and the DB2 version uses CLI [IBM97] to communicate with the DBMS server.
Automated documentation generation is enabled by using doc++ [WZ98]. cvs [CVS98] is
used for version management.
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Figure 5-1: Architecture of the pilot implementation




100 CHAPTER 5: PROTOTYPE IMPLEMENTATION

5.2 Basic Implementation Concepts

The UB-Tree is redlized on top of a relational DBMS by utilizing the B*-Tree of that
RDBMS. To show the easy portability of the UB-Tree library, we ported the initial TransBase
5.4 implementation to Oracle 8, DB2 UDB V5, and Informix Universal Server.

Each UB-Treeisalogical construct, which is physicaly realized by arelational table. We call
that relational table from now on UB-Tree index table. A UB-Tree index table contains one
tuple for each page of the UB-Tree. As listed in Table 5-1, each tuple of the UB-Tree index
table stores the Z-address of the corresponding Z-region, the number of tuples stored on the
data page corresponding to that Z-region, and the content of the page corresponding to that Z-
region. The primary key of thistableisthe Z-address.

Note that the tuples stored in a UB-Tree do not correspond to the tuples stored in a UB-Tree
index table: the number of tuples in the UB-Tree index table rather is the number of data
pages of the UB-Tree. In the remainder of this chapter a tuple of the UB-Tree index table is
called UB-page, whereas UB-tuple denotes a tuple that is stored in the UB-Tree, i.e, atuple
that is stored on a UB-page.™

attribute datatype |description
Z-address bit data |upper Z-address of the Z-region corresponding to that UB-
page

number of tuples |number | number of tuples stored on that UB-page

data page content |bit data | content of the UB-page

Table 5-1: Schema of a UB-Tree index table

The DBA has to ensure that each UB-page (i.e., each tuple of the UB-Tree index table) is
stored on a separate physical disk page. This is achieved by choosing the size of each UB-
page (size of the attributes Z-address, number of tuples, data page content plus some DBMS
storage overhead) to be exactly the size of a physica database page. For some DBMS
additional settings have to be done to ensure the physical correspondence of DBMS pages and
UB-pages [Pie97, Ovad8]. The physical correspondence allows one to implement the UB-
Tree on top of a RDBMS while obtaining the 1/O-behavior identical to a kernel
implementation of UB-Trees. However, significantly higher CPU- and inter-process
communication cost and an impedance mismatch are the price that must be paid for this
simple implementation approach:

3 A straightforward idea for an implementation of the UB-Tree index table is to enhance each tuple of arelation
with one additional column, namely its Z-address. The Z-address as primary key then leads to a
multidimensional clustering [OM84]. However, this approach does not offer control over region boundaries
during a page split; the region boundaries are defined by the tuples in this case. Our approach offers complete
control over the choice of the region boundary during a Z-region split. We also preferred this approach since the
UB-Treeiseasier to integrate into a RDBM S kernel with this implementation.
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» The UB-tuples on each UB-page must be extracted and set by special functions provided
by the API of the UB-Tree library (UBAPI). The standard SQL functionality of the
DBMS cannot be used to achieve that.

* [Each query or update operation requires two interprocess communications and ESQL
parsing operations for each UB-page that needs to be accessed by the operation.

* The performance of the prototype implementation heavily relies on the optimizer of the
underlying DBMS, since SQL statements are used to access UB-pages.

The UB-Tree agorithms require an efficient access to the Z-addresses stored in the UB-Tree.
Therefore, a secondary B-Tree on Z-address is created and builds the UB-index part of Figure
4-1. The UB-Tree index table builds the UB-fileillustrated in that figure.

Table 5-2 lists the prototype implementation concepts and compares their implementation in
TransBase 4.3, Oracle 8, and a DBM S kernel implementation.

UB-Tree TransBase 4.3 implementation | Oracle 8 implementation DBMS Kernel
concept Implementation
UB-Treeindex | relation relation clustering primary
table index
UB-page tuple with the size of aphysical |tuple with the size of aphysical | physical DBMS
page page page
UB-tuple substring of the data page substring of the data page DBMStuple
content attribute of the UB-Tree | content attribute of the UB-Tree
index table index table
Z-region defined by the Z-address defined by the Z-address binary string
attribute of the UB-Treeindex | attribute of the UB-Tree index
table table
UB-index additional table storing the Z- | secondary index on the Z- B-Tree node
address attribute of the UB- address attribute of the UB- pages
Treeindex table Treeindex table
UB-file relation storing the UB-Tree relation storing the UB-Tree B-Tree leaf pages

index table

index table

Table 5-2: Prototype implementation concepts
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In TransBase it is necessary to use an 10T on the Z-address to implement the UB-Tree index
table, since TransBase always clusters the data according to the primary key. Since UB-pages
are physical DBMS pages, TransBase needs to perform a random leaf page access on the IOT
to retrieve a Z-address. An efficient retrieval of a range of Z-addresses is not possible via the
UB-Tree index table, since it is not possible to create a secondary index on a primary key
attribute. Therefore the TransBase implementation introduces a new concept, a UB-Tree
secondary index table, which stores only the Z-addresses of the UB-Tree index table. This
allows an efficient access to a range of Z-addresses. While only one Z-address is stored on a
leaf page of the UB-Tree index table, a set of Z-addresses in consecutive order is stored on a
leaf page of a UB-Tree secondary index table. This greatly reduces the number of random
page accesses and significantly improves the range query and Tetris performance of the
prototype implementation on TransBase. However, alarger cache requirement is the price for
this implementation. The upper nodes of both the UB-Tree index table and the UB-Tree
secondary index table need to be cached in main memory (see Figure 5-24). In contrast to that
the Oracle implementation just caches the UB-Tree index table (see Figure 5-2b). Thisis the
reason for performance gain of 12% of our prototype implementation on Oracle for tables
larger than one 1GB [Pie98].

UB-Tree secondary index table UB-Tree index table UB-Treeindex table
cache cache cache
X/ X
AL N A LN
A I/ ]
(a) with UB-Tree secondary index table (b) without secondary index table

Figure 5-2: Cache requirements and UB-Tree secondary index table

In the remainder of this chapter we illustrate selected algorithmic problems and performance
problems which we had to solve in order to realize our prototype.

5.3 Implementing the Address Calculation

The address calculation agorithm first relied solely on bit-interleaving and supported only
positive integer numbers. Later the architecture was enhanced to allow plug-in functions for
any arbitrary data type. Since certain data distributions cause a multidimensional partitioning
with a high puff pastry degree and thus a bad performance of the UB-Tree algorithms, the
address calculation was enhanced to take any data distribution into account. Another
enhancement envisioned by the author is to modify bit interleaving to weigh attributes for the
interleaving process.
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5.3.1 Bit-Interleaving

The performance of the UB-Tree crucidly relies on an efficient implementation of the Z-
address calculation. For tuples of positive integer numbers Definition 3-3 immediately yields
an agorithm to calculate the standard address from the binary representation of a tuple: Z-
values can be calculated by interleaving the bits of the attributesin a certain order.

In practical applications one often wants to index a multidimensional domain, where the
cardinality is not identical for al one-dimensional domains. Only a slight modification of the
interleave operation is necessary to support a universe where the domain of each dimension
does not consist of the same number of bits steps(r), i.e., thereis somei, j O D so that r; # r;.
In this case the number of bitsis not identical for each step of an address, but step k consists
of steplength(k) bits. Algorithm 5-1 shows this generalized algorithm for bit-interleaving.

Input: x : tuple
Qut put: Z-address a

/1 the algorithmrequires the dinensions to be
/'l sorted according to their resolution
/'l in descendi ng order

for step = 1 to max({steps(r,) | j O D})
for i =1 to stepl ength(step)
copy bit step of x, to bit i of a,,
end for
end for

Algorithm 5-1: Bit-interleaving to calculate a = Z(x)

With r = max({steps(r;) | j U D}) Algorithm 5-1 has a CPU-complexity of O(df) bit
operations (resp. O(s2,r, ) for attributes of different length). The same holds for Algorithm 5-2
to calculate the Cartesian coordinates of atuple from its address.

Input: a : Z-address
Qutput: x : tuple

/! the algorithmrequires the dinensions to be
/1 sorted according to their resolution
/1 in descendi ng order

for step = 1 to max({steps(r;) | j O D)

for i = 1 to stepl ength(step)
copy bit i of a,, to bit step of x,
end for
end for

Algorithm 5-2: Bit extraction to calculate x = Z*(a)




104 CHAPTER 5: PROTOTYPE IMPLEMENTATION

Algorithm 5-3 to extract one specific Cartesian co-ordinate from a Z-address has the CPU-
complexity O(r;).

Input: a : Z-address
i nunber of attribute to extract
Qutput: x,: attribute /i of tuple x

/1 the algorithmrequires the dinensions to be
/1 sorted according to their resolution
/1 in descendi ng order

for step = 1tor,
copy bit i of a,, to bit step of x,
end for

Algorithm 5-3: Bit-extraction to calculate x; = (Z*(a));

As one can see from the above algorithms, the calculation of Z(x) and Z*(X) can be
implemented efficiently by simple bit operations. The linear behavior of the bit interleaving
performance for tuples consisting of 32 bit integers for 2 up to 10 dimensions on a SUN
ULTRA SPARC 143 MHz is displayed in Figure 5-3. The Figure shows that Z-address
caculation takes less than 1ms even for 10-dimennsional Z-addresses. Thus Z-address
calculation is more than one order of magnitude faster than a random disk access, which
usually takes 10ms. Using state-of-the-art CPUs with 300 MHz and more, the Z-address
calculation is more than 100 times faster than a random disk access and thusis negligible.

1000
900 2

800 //
700
600 /
500 //
400
Vs
300
200 (/

100

time in us

—— Z(x) Z Ya)

O T T T T T 1
0 2 4 6 8 10 12

number of dimensions

Figure 5-3: CPU time to calculate Z(x) and Z™(a)
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5.3.2 Address Calculation for Arbitrary Data Types

We described bit-interleaving for address calculation just for positive integer numbers.
Algorithm 5-1 can be used to calculate the Z-address for any data type, when the bit-
lexicographic order on the binary representation of tuples matches the “natural” ordering on
this type.

Definition 5-1 (Iexicographic character order <ci.cn, lexicographic byte order <gjogn,
lexicographic bit order <pi. .. opn): FOr the following examples we wrik&i.c, for
the lexicographic order on the character concatenatign..€C,, <gi.sn for the
lexicographic order on the byte concatenatiop.BB, and <p;. .. -pn for the
lexicographic order on the bit concatenatign. boby,.

Lemma 5-1: For positive integer numbers with a fixed length binary representation the bit
lexicographic order on the binary representation is identical to the <-order on integer

numbers.
Proof:
The proof is a direct consequence of the definition of binary numbers and of the definition of
lexicographic order. O
Example 5-1:

6510 < 66,0 Maps to the binary representation
01000001, <pso ... opg 01000010,

Lemma 5-2: For character strings the bit lexicographic order on the binary representation is
identical to the <-order on integer numbers.

Proof:
The proof is a direct consequence of Lemma 5-1, the definition of ASCII codes and the fact,
that character strings are a concatenation of characters, which are ordered lexicographically.

Example 5-2:

“AB” <cioch “BB”

maps to the ASCII-Codes

6510 © 6610 <1082 6610 © 6610

maps to the binary representation

010000021 o 01000019 <p1. .. ob1s 01000019 o 01000019

Because of Lemma 5-1 and Lemma 5-2 bit interleaving can be used to calculate the addresses
for character strings and positive integer numbers.

If for a data type the bit-lexicographic order on the binary representation of tuples does not
match the “natural” ordering on this data type, a transformation function with that desired
property must be defined. For address calculation this transformation function is applied on
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the attribute prior to bit interleaving. Transformation is bijective. For Cartesian co-ordinates
the inverse function to the transformation function is applied after bit extraction. Figure 5-4
shows the architecture for the address calculation for arbitrary data types.

tuple (X Xy) (X5 X3)
data type i i data type i data type T T data type T
transformation | ... [ transformation re-transformation re-transformation
bit string ixf i i Xy T T T
bit interleaving bit extraction
address t 2
() address calculation (b) Cartesian calculation

Figure 5-4: Dealing with arbitrary data types

It is out of the scope of this thesis to analyze transformation functions for further data types.
We just give adefinition of transformation functions here:

Definition 5-2 (transformation function): We call afunction f from any ordered domain (I,
<) to abinary string a transformation function , if and only if, for a, b 0 [D:

a<b = f(a) <pto.. bn f(b)

For positive integers and character strings the transformation function is the identity function.
For integer numbers in complement representation the simplest transformation function is to
invert the sign bit. Transformation functions for real numbers and date/time data types were
implemented under the supervision of the author and are described in the MISTRAL
documentation [MOD99]. Note that in order to do any algorithm from the previous chapter
like the Tetris algorithm, the spira algorithm, or the range query algorithm we do neither
require a transformation function to be bijective nor injective. However, if a transformation
function is bijective, re-transformation to derive Cartesian tuples from an address is
possible.*

5.3.3 Dealingwith low Cardinality Domains. Enumeration Types

Character strings very often have a similar prefix in the first bits. All capital letters of the
roman aphabet in ASCII have an identical binary prefix 010,, all numbers have a constant

4 Note that because of their binary nature, transformation functions are hardware dependent. One specific
problem of our implementation was to deal with little/big endian representation [PH90] of machine words and
binary stringsin various microprocessors.



SECTION 5.3: IMPLEMENTING THE ADDRESS CALCULATION 107

binary prefix of 0011,. Thus combining character strings and integer numbers easily resultsin
a strong puff-pastry of the UB-Tree.

Many applications use the domain of character strings merely to represent an enumeration
type, i.e,, a domain consisting of a small set of distinct values. A typica example is the
SHIPMODE attribute of the LINEITEM table of the TPC-D benchmark. SHIPMODE has the
domain of character strings, although the set { REG AIR, AIR, RAIL, SHIP, TRUCK, MAIL,
FOB} represents all permissible values for SHIPMODE. There is no order on the values of
SHIPDMODE. For instance, it makes no sense to ask for all tuples satisfying the textual
comparison SHIPMODE < “AlIR”".

Definition 5-3 (enumeration type): We call the data type of an attribute to be an
enumeration type, if its actual domairi/ [J [ consists of a relatively small finite set of
values, usually listed explicitly.

In order to maximize the entropy of an enumeration type of a damawe define an order
preserving one-to-one mé&@and its inverse functiofi*:

f:D-{0,1,..,D|-1}, suchthatfoa, bOD: f(a) <v f(b) ® a<p b

If there is no reasonable ordering on an enumeration type, we drop the requirefenben
order preserving and merely require:

f:D - {0, 1,..,P|- 1}, finjective

We callf asurrogate function for an enumeration type. For each vadue ID we callf(a) the
surrogate of a. For a very compact representation we number surrogates in sequential order.

0= 000, = f(REG AIR)
1=001, = f(AIR)

2= 010, = f(RAIL)

3= 011, = f(SHIP)

4 = 100, = f(TRUCK)
5= 101, = f(MAIL)

6 = 110, = f(FOB)

0= 000, = g(REG AIR)
4 =100, = g(AIR)

2= 010, = g(RAIL)

6 =110, = g(SHIP)

3= 011, = g(TRUCK)
7=111, = g(MAIL)
5= 101, = g(FOB)

Table 5-3: Two surrogate mappings for an enumeration type

The surrogate mappingof Table 5-3 for the enumeration type SHIPMODE uses running
numbers from O to 6. The functian defines a mapping which is more suitable than the
mappingf with respect to the space partitioning of UB-Trees: If the order of values from top
to bottom in Table 5-3 represents the insertion order of SHIPMODE values, even for an actual
domain consisting only of the first four values a puff pastry as discussed in Section 3.10 is
avoided. This is not true for the mappihgince the first four values have the leading bit as



108 CHAPTER 5: PROTOTYPE IMPLEMENTATION

common prefix. Thus if an enumeration type is built on the fly (i.e., its actual domain may
grow during the course of time), a surrogate function should vary the leading bits first, since
these bits will be used for space partitioning. Using running numbers for the surrogate of an
enumeration type may result in a sub-optimal space partitioning, since the leading bit might
not be used (see Section 3.10). If running numbers are used and the binary representation of
each surrogate is reverted with the function mirror(b;...b,) = b,...bs, the leading bit of the
surrogate will already partition the domain. However, since the natural order on integers is
lost by mirroring, this mapping should not be used, if an enumeration type is not only
restricted to points, but also to ranges.

To store an enumeration type in a UB-Tree, we map the enumerated set bijectively onto a set
of surrogates. For v distinct values in the enumeration, only og,vllbits are used to represent
the enumerated set. Since all of these bits are used, a puff pastry is avoided to a large extent.
Thus the number of Z-regions overlapping the query box but not contributing to the result set
is minimized by that mapping.

Note that if the values are not uniformly distributed, a puff pastry effect will still exist.
However, the degree of the puff pastry will be much lower than for the character string
representation. If an enumeration is not required to be order preserving, mirroring the bits of a
surrogate may help to further reduce probability of a puff pastry.

5.3.4 Multidimensional Hierarchical Clustering

Often, especially in data warehousing applications, hierarchies are built on enumeration types
to provide structure to otherwise flat dimensions. Hierarchies then are used to provide an
appropriate method of describing the levels of semantically meaningful aggregations for a
dimension. With a relational modeling this means that some attributes of a table are
functionally dependent. We call this special kind of functional dependence hierarchical
dependence.

Definition 5-4 (hierarchical dependence): We cal an ordered sequence of n attributes
Ap o Ay o Azo ..o Apg o A, to be hierarchically dependent, if and only if for any i [
{1, ..., n} the domain of attribute A; functionally depends on the values of attributes
Ag,... A

Definition 5-5 (hierarchical independence): We call a sequence of attributes Ay | Az | Az | ... |
An1 | An to be hierarchically independent, if they are not hierarchically dependent.

OLAP queries often impose restrictions with respect to hierarchies over multiple dimensions.
These restrictions usually are point restrictions or interval restrictions on some hierarchy level
[Sar97]. The result set satisfying these restrictions is usually quite large; for presentation it is
grouped and aggregated or ranked. Clustering data with respect to multiple hierarchies can
substantially speed up these operations.
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5.3.4.1 Hierarchieson Dimensions

For our definition of multidimensional hierarchical clustering we use a set concept to formally
define hierarchies. A dimension A consists of a base type having a set of values1D ={vs,...,vi}.
A hierarchy of depth h over Aisan ordered set of levels, i.e., H={ILo ,..., i} (see Figure 5-5).
Each hierarchy level i of H over Aisaset of setslLi={m,, ..., m‘j} with mi, O D for k=1,..,j.

Each m 0 IL; is amember set (or member) of the hierarchy of level i containing al members

of acategory. Usually a member mis assigned a name label(m) (e.g., ‘Orange Juice’ fom})
instead of enumerating all valuasC] m. The subset relationship between the members of

two neighboring levelsl; and ILi,; defines a hierarchical relation (i.e., partial ordering)
between the levels (e.g., the product ‘OJO,7L’ is in the product category ‘Orange Juice’).
Increasing the level of a hierarchy increasegtlaaularity of the categorization, i.e., the data

is classified according to finer categories.

All
[P ={030,33L;030,7L;001L ; Appleice0,5L ;AppleduicelL } All Products Lo
*Oranqe;luice ¢ Apple Juice
o|m ={030,33L:000,7 0011} 1 |k ={ Appleduice0 5L;Appleduicell }| Product Category ][4
v 033 v O07L v L v 05 v o

o [m={osoza}| 1 [mg={os07) 2[mE={onr) o [ng={Appleicesi)] 1 [mE={Appleniceity] ContainerSize L2

Legend: | evel Label Member Ordinate.g., 1) Member Label (eg. 0,7L)

Figure 5-5: Example hierarchy in member set representation

The nodes oH are the hierarchy members (or member labels) connected by edges which are
defined by the subset relationship between members of neighboring levethilthen of a
memberm of leveli are all membersn/*of the lower levei+1 that are subsets of,, i.e.,
children(m})={ m** O Li+1 | m"0O m,} (e.g., the set {{'Apple Juice 0,5L'},{ ‘Apple Juice

1L}} is the children set of ‘Apple Juice’).

With

(1) the base séb as the only member of leviep (i.e.,lLo= {ID})
(2) m, n m =0 for alli, k, | andk # 1

(3) |Jchildren(m},) = m, for alli, k

a hierarchyH builds a hierarchy tré2with the root level.o. Theparent of a membem of
level i then is the membem *of the upper leveli-1 that is a superset ofn, i.e.,
parent(mi)={ m™* OLi1 | m™0 m} (e.g. ‘Orange Juice’ is the parent of ‘OJ 0,7L").

> We will explain how to deal with complex hierarchies (i.e., directed acyclic graphs) in Section 5.3.4.4.
Formally these hierarchies are modeled by dropping the requirement on H to be an ordered set of levels.
Neighboring levels are then defined by coarsest refinement.
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The bijective function ordy, defines a numbering scheme for the children of a member m of H.
Ordn, assigns each subset (child) of m anumber between 0 and the total number of children of
mi.e.,

ord,, : children(m) - {O,...,| children(m) | -1

(see Figure 5-5 for an example).

Hierarchies should never relate members of different dimensions, since dimensions are
independent and thus such a hierarchy could be split up in two separate hierarchies (see
Section 5.3.4.4).

5.3.4.2 Clustering Hierarchies

For each dimension hierarchy OLAP queries usually restrict some hierarchy level to a point.
Sometimes an ordering on the levels of a hierarchy exists (e.g., atime hierarchy has an order
on the days, months and years). Then interval restrictions on a hierarchy level may also occur.
Our goal isto cluster data with respect to that partial order defined by the hierarchy levels.

For queries with large result sets one-dimensional clustering reduces disk accesses by a factor
of P. Clustering of one-dimensional objects and single object hierarchies has been discussed
to alarge extent (e.g., [ZSL98], [BK89], [Sal88]).

If the order of dimensions during drill down is known in advance, clustering the data in this
order will result in a good query performance. In principle, a concatenated clustering index
(i.e., B'-Tree) on the hierarchy levels of all dimensions in one lexicographic order is main-
tained. However, with d dimensions with h; hierarchy levels over dimension i, there are
(=4,h)/na, (h!) possible lexicographic orderings. For a 4-dimensional data cube (with 4
hierarchy levels for dimension 1, 4 for dimension 2, 2 for dimension 3 and 2 for dimension 4)
there are 207900 possible orderings. Thus there is a high probability that the pre-defined
clustering order will not be very useful for a particular query.

5.3.4.3 Encoding Hierarchies by Surrogates

To efficiently encode hierarchies, we introduce the concept of compound surrogates for
hierarchies. Since we require hierarchies to form a digoint partitioning, a uniquely identifying
compound surrogate for each child node of a hierarchy member exists and can be recursively
calculated by concatenating (¢) the compound surrogate of the member with the running
number of the child node as cal culated by the surrogate function ord from Section 5.3.4.1.

Definition 5-6 (compound surrogate): For a member m' of hierarchy level i of hierarchy H
we define its compound surrogate:

L ord father (m') (mi )

0
oS M) =B father(m)) - ord

Jfi=l

i .
father (m') (m ) y 0therW|Se
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Definition 5-7 (path through a hierarchy): A path ® through a hierarchy of depth h is
specified by alist of membersm', ..., m", where m' is amember of hierarchy level i.

The compound surrogate for a hierarchy path ® then is calculated as:

cs(H, ) = cs(H, m") =ord e () (m")oord e (o) (m?)o...oord e () (m")

CUSTOMER

o|canada] 1 1[Reail]
\
o[ wholesse | s[Retai]

Figure 5-6: Part of a hierarchy

The hierarchy path North America > USA > Retail > Bar (Figure 5-6) has the compound
surrogate:

ordcugomer (NOrth America) o ordyorth America (USA) o ordysa(Retail) o ordgegi(Bar) =
4o0l0102

The upper limit of the domain for surrogates of level i is calculated as the maximum fan-out
(number of children) minus one of all members of level i—1 of a hierarch, i.e.,

surrogatedd, i) = max {cardinality(childrer{l, m)) wherem [ levelH, i - 1)} - 1

With |; = [og, surrogatedd, i){a fixed length compound surrogate can be stored in a very
compact way by binary encoding.
cs(H, ) = cs(H,m") =ord

(m'") +ord fther () (m?)[2" +...+ord (m") 2" H2 "

father (m*) father (m")

Withn=4and |, = 3,1, = 1,13 = 3 andl; = 3 the above formula leads to the compound
surrogatecs(H, Bar) = 1000011010= 538.

Usually growth expectations for a hierarchy are known well in advance. Often hierarchy trees
are even static. Therefore it is possible to determine a reasonable number of bits for storing
each surrogate of the compound surrogate of a hierarchy. Since hierarchy trees grow
exponentially, the overall number of bits necessary to store a compound surrogate is relatively
small. For instance, a hierarchy tree with four branches on 8 levels already représents 4
65536 partitions and is stored by 16 bits.

18 |n general we use variable length compound surrogates that need I;(m) = [og, |children(m)|Cbits to store the
surrogate for any child of m.
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The lexicographic order on the hierarchy levelsis preserved by this very compact fixed length
encoding. Point restrictions on upper hierarchy levels result in range restrictions on the finest
granularity of a hierarchy. For instance, the point restriction NATION = “USA” on the second

level of the CUSTOMER hierarchy wifif‘North America”) = 4 = 10@ andf("USA”) = 1 =

00 maps to the range restrictiotsysomer bDetween 528 = 100001000@nd 543 =
10000111141 Thus, a star join with this surrogate encoding for the foreign keys of a fact table
results in a range restriction on each compound surrogate, if some hierarchy level of each
dimension is restricted to a point (e.g., customer region = “USA”). In the same way intervals
on the children of one hierarchy level result in a range of the corresponding compound
surrogates (e.g., year = 1998 and month between April and June). A star join on a schema
with d dimensions createstadimensional interval restriction on the fact table.

5.3.4.4 Dealingwith Complex Hierarchy Graphs

If two levels of a hierarchy graph are linked by several paths, there are several possibilities to
define a hierarchy tree and therefore several ways to calculate the compound surrogates for
physical clustering:

» If the order on the lowest level of granularity is identical for two hierarchy paths, then one
path can be derived from the other path by an order preserving function on the lowest
level of granularity. Then the clustering order for both hierarchy paths is identical. Thus,
the clustering order for WEEK and MONTH in Figure 5-7a is identical. Both can be
computed by an order preserving function from DAY, the lowest granularity level of the
TIME hierarchy.

» If the query profile is known, the most useful path of the hierarchy graph used for
restrictions, sort operations, or grouping should be chosen. Thus, if in Figure 5-7b queries
on CUSTOMER usually restrict REGION and NATION, this path should be chosen for
clustering.

» If the query profile is not known, all paths of a hierarchy graph may be used for clus-
tering, since hierarchies may be used for restrictions independently during drill-down. For
clustering, the different paths then can be considered to be independent dimensions. In the
hierarchy graph of Figure 5-7b both the REGION hierarchy and the CUSTOMER
hierarchy might be used for clustering. However, this approach increases the clustering
dimensionality and thus should be used with care.

| CUSTOMER TYPE|
MONTH || WEEK || TRADE TYPE| |CUSTOMER SIZE|

(@ (b)
Figure 5-7: Complex hierarchy graphs
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Other issues in the context of complex hierarchies are unbalanced hierarchies, slowly
changing dimensions and multiple inheritance. Unbalanced hierarchies occur, if some
hierarchy members have more child levels than others. This means, that the compound
surrogates of Joe’s Sports Bar and Kana’s Sushi Bar in Figure 5-6 have different lengths.
Using variable length compound surrogates or padding the shorter compound surrogate with
zero bits solves this problem without any impact on clustering.

‘ South Europe‘ ‘ North America‘ Asia

Year <= 1997 Year > 1997

Joe's Sports Bar

Figure 5-8: Slowly changing dimensions

Slowly changing dimensions can be addressed by marking each node of a hierarchy tree with

a validity time interval. An object is physically clustered and retrieved with respect to its
validity time. Re-organization of the physical clustering is not necessary: Even with a new
classification upon a certain point of time the existing clustering should be correct from a
historic perspective. If the business type of Joe’s Sports Bar changes from bar to restaurant in
1998 (cf. Figure 5-8), all previously clustered data still is correct. The total sales over all bars
in 1997 must include Joe’s Sports Bar, whereas it is included in restaurants for 1998.
However, each object of a hierarchy needs information about re-classification in order to
correctly calculate the total sales to Joe’s Sports Bar over the last years.

Multiple inheritance (e.g., Joe’s Sports Bar is considered to be both a bar and a restaurant at
the same time) is solved similarly to slowly changing dimensions: One of the several possible
paths to a hierarchy node is chosen for clustering. The other paths of a hierarchy graph to that
object then merely store a pointer to the sub-tree that actually stores the object. If multiple
aggregation paths are possible, precautions must be taken that only one of these paths is used
for aggregation.

5.3.4.5 Addressing Sparsity

Soarsity is defined as the percentage of a domain that is not existent in the actual domain. In
data warehousing applications the multidimensional universe is often daféedube. For a

multidimensional universe, i.e., data cube, sparsity is the ratio between the number of cells
not containing any data and the overall number of cells of a data cube. Some OLAP tools
allows one to mark dimensions to be sparsely populated and then specially handle them.
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However, a multidimensional cube is formed as the cross product over the domains of all
dimensions. Therefore, even for non-sparse dimensions the sparsity of the entire cube
becomes extremely high soon. The ‘Juice & More’ schema of Section 8.3, for instance, is a
star schema with four independent dimensions with a sparsity of 99,8%:

o 26 Mio , : |Fact Table]
sparsity(Juice& More) =1- = 0,9984 with sparsity(star schema) =1-
703056003612 |—|d |DimTabIei|

i=1

To our knowledge sparsities of more than 99% are typical for data warehousing applications.
The TPC-D schema (see Figure 2-2), for instance, can be regarded to be a snowflake schema
with shared hierarchies consisting of three independent dimensions:

e part + supplier (combined dimension with 0.8 million records coming from 0.2 million
parts from 10 thousand suppliers)

e customer + order (combined dimension with 1.5 million orders from 150 thousand
customers)

» time (2557 records for seven years on the aggregation level of a single day)

For a fact table of 6 million records (a TPC-D scaling factor of 1) the resulting data cube has a
sparsity of more than 99,99999%.

Thus, in practice sparsity forbids to materialize an entire data cube of raw data. Physical data
organization in a multidimensional array is only feasible for highly aggregated data. However,
serious decision support applications require a deep drill down into interesting areas of a data
cube. Therefore it is necessary to have a physical representation of a sparsely populated data
cube that allows efficient access to some part of that cube. With multidimensional hierarchical
clustering, drill down defines a subspace of a data cube by range restrictions in several
dimensions. Therefore a method to cluster sparse data with respect to several dimensions in
combination with an efficient range query and sort algorithm are necessary for efficient
handling of drill down queries.

The surrogate calculating function of Section 5.3.4.3 can use any multidimensional access
method to implement multidimensional hierarchical clustering. However, using any variant of

R-Trees [Gut84, BKS+90, BKK96] may result in a sub-optimal performance, since R-Trees

may subdivide the universe into overlapping tiles, which may result in multiple accesses to
one disk page. Therefore the most interesting candidates are Grid-Files [NHS84], hB-Trees
[LS90], or space filling curves in combination with one-dimensional access methods [OM84,

Jag90]. It is very well suitable for the UB-Tree, since the UB-Tree hierarchically organizes

the data space. The hierarchy is directly reflected by the binary representation of the
compound surrogates. Thus bit-interleaving as used by the UB-Tree causes a
multidimensional partitioning whose boundaries directly reflect the hierarchy levels. Partial

match queries with point restrictions on upper hierarchy levels then result in multidimensional

range queries.
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5.3.4.6 Processing OLAP Querieson Multidimensionally Clustered Data with the
Tetris-Algorithm

Figure 5-9 illustrates how the Tetris algorithm is used to calculate the total sales for each

different fruit juice for all customersin Asiaon relation partitioned by a two-dimensional UB-

Tree and hierarchies on the CUSTOMER and PRODUCT dimensions. The restriction of the
REGION to ‘Asia’ results in an interval in the CUSTOMER dimension. The same holds for
the restriction to ‘Juice’ for PRODUCT. The boundaries of each query interval correspond to
Z-region boundaries and thus minimize the number of Z-regions only partly contained in the
guery box. The query box is read in sort order from bottom to top; the aggregates for each
juice type are calculated on the fly. The part of each Z-region from which tuples are cached is
shaded. When all Z-regions intersecting the ‘Orange Juice’ slice have been read, this slice is
sorted and aggregated. In the same way the next slices (‘Apple Juice’, ‘Cherry Juice’, etc.) are
processed. This continues until the entire product interval defined by the restriction to ‘Juice’
has been handled.

m Asia m Asa

Figure 5-9: Processing a query box in sort order with the Tetris algorithm

5.3.4.7 Materializing Aggr egates

Multidimensional hierarchical clustering is not only applicable to the raw data itself, but can
also be used to organize views with materialized aggregates. Higher aggregation levels result
in a UB-Tree with shorter compound surrogates or reduced dimensionality. It makes sense to
store pre-computed aggregates for the highest aggregation levels with restrictions in only one
dimension, e.g., the total sales on a yearly basis. However, multidimensional hierarchical
clustering allows one to derive many aggregates efficiently from the raw data. This avoids
materialization of many aggregation levels and thereby reduces the view maintenance
problem for summary tables to a large extent.
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5.3.5 Dealing with non-uniformly distributed Data with Quantiles

In Section 3.10 we identified the puff pastry effect as a severe problem of UB-Trees for
certain data distributions. The problem is due to the fact that UB-addresses are aways
calculated by splitting an attribute in the center of a subcube. The space partitioning can be
improved considerably by taking the actual domain of each attribute into account. More
precisely, if the attribute is not split in the middle of the domain, but in the middle of the data
distribution, the space partitioning is greatly improved with respect to spatial proximity. This
basically means that a-quantiles (i.e., the value of a domain where the cumulated data
distribution exceeds a, see e.g., [Zwi96]) are used to identify the Cartesian coordinate of each
subdivision point a. Quantiles were previously used in combination with hashing techniques
[KS87]. The variable UB-Treeis an approach which combines quantiles with UB-Trees.

5.35.1 TheVariable UB-Tree

Definition 5-8 (variable UB-Tree, VUB-Tree): A variable UB-Tree (VUB-Tree) is a UB-
Tree, whose addresses are calculated by subdividing each dimension with respect to
the quantiles according to the data distribution of this dimension.

VUB-Trees recursively subdivide the embedding space with respect to the data distribution.
Thus for each dimension the first subdivision step compares each attribute value to the value
for which the cumulated data distribution of this dimension exceeds 50% (50%-quantile).
Accordingly, the two values for the second subdivision step are the values, where the
cumulated distribution exceeds 25% and 75% respectively (25%-quantile, 75%-quantile).
Consequently, we will call these subdivision points split points. Note that for uniformly
distributed data the split points of aVUB-Tree areidentical to those of aUB-Tree.

VUB-Trees therefore use a transformation function to re-distribute the values of a domain.
The resulting bit strings are equally distributed. This means, that with variable UB-Trees the
behavior of UB-Trees for uniformly distributed data is achieved for any data set which is
distributed independently in the dimensions.

Figure 5-10 illustrates how the split points for various data distributions are derived. The thick
line at 50% of the cumulated distribution calculates the split point for step 1, the two thinner
lines at 25% and 75% cal cul ate the split points for step 2, and the even thinner lines at 12.5%,
37.5%, 62.5% and 87.5% calculate the split points for step 3. Figure 5-10a displays
polynomially distributed data. Some skewed data distribution is shown in Figure 5-10b.
Figure 5-10c shows uniformly distributed data, which results in recursively halving the
domain and thus yields the split points of non-variable UB-Trees.

The address calculation algorithm of VUB-Trees is just a dight modification of the UB-Tree
address calculation. Vaues are now compared to split points instead of fixed subdivision
points. Thus VUB-Trees use a special transformation function that calculates the bit string of
an attribute with respect to the data distribution. The conventional bit interleaving algorithm is
then used to calcul ate the addresses of the VUB-Tree.
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Figure 5-10: Calculation of split points for various data distributions
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VUB-Trees yield a better space partitioning for non-uniformly distributed data. The
transformation function performs a re-distribution of data. Uniformly distributed attribute bit
strings are created from the data of any data distribution. Thus common prefixes do not exist
for any attribute bit string. This avoids the puff pastry effect described in Section 3.10.

@
Figure 5-11: UB-Tree and VUB-Tree for Gaussian/uniform data distribution

Figure 5-11a shows data which is distributed uniformly in the vertical dimension and
Gaussian in the horizontal dimension. The corresponding UB-Tree in Figure 5-11b shows a
strong puff pastry, since the split points in the center of the space are not useful for the
horizontal dimension. In contrast to that the VUB-Tree in Figure 5-11c shows an equal
number of splitsin both dimensions.

@ (b) (©
Figure 5-12: UB-Tree and VUB-Tree for Gaussian data distribution

Figure 5-12a shows data which is Gaussian distributed in both dimensions. Again the
corresponding UB-Tree (Figure 5-12b) yields a puff pastry, which in this case is not so strong
as in Figure 5-11b, since both dimensions have common prefixes. Since these prefixes do not
have identical length, the VUB-Tree (Figure 5-12c) again yields a better partitioning than the
UB-Tree.
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@ ' (b) ©

Figure 5-13: UB-Tree and VUB-Tree for centered Gaussian data distribution

Figure 5-13a shows data with Gaussian distribution in both dimensions. Here the average and
the standard deviation are identical for both dimensions. Therefore the partitioning does not
yield a puff pastry (Figure 5-13b). However, variable UB-Trees produce a different space
partitioning (Figure 5-13c). Figure 5-12 and Figure 5-13 show that for both UB-Trees and
VUB-Trees the location of the data distribution does not matter, if the prefixes in al
dimensions are identical (see also Section 3.10).

5.3.5.2 Split Point Trees

Definition 5-9 (split point tree): A split point tree is a binary tree that stores the split point
hierarchy. The root of the tree consists of the values where the cumulated distribution
of each dimension exceeds Y. The left and right son store the values where the
cumulated distributions exceed Y4 respectively % (25%-quantile, 75%-quantile). In
general a split point tree of height stores 2 split points corresponding to the
cumulated distribution in discrete stepska®" fork O {1, ..., 2-1}.

A split point tree is an efficient way of storing the split points for each independent dimension
of a variable UB-Tree. Assuming a split point tree of heighta dimension then can
contributeh bits to the VUB-address. The total length of each address tlo&h.iDatabases
consisting ofp = 2" pages can be managed with a split point tree of héigfithus, the

height of the split point tree for each dimensionhis DogdzPE’ which is quite small
compared to the size of the database. For instance, a split point tree of height 4 for a 6-
dimensional database is sufficient for a database size of Uf} pa@es. Table 5-4 lists the
height of a split point tree for databases with 1 million, 10 million and 100 million data pages
for 2 to 10 dimensions.
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2d |3d |4d |5d |6d |7d |8d |9d |10d

1mio.=200MB |10 |7 |5 |4 |3 |3 (2 |2 |2

10 mio.=2GB 12 (8 |6 |5 (4 |3 |3 (3 |2

100 mio.=20GB |13 |9 |7 |5 |4 |4 |3 |3 |3

Table 5-4: Heights of a Split Point Tree for various Database Sizes and Dimensions

5.3.5.3 Implementation of Variable UB-Trees

To implement variable UB-Trees, only the transformation function of the address calculation
algorithm needs to be modified. A split point tree is used to determine the bit string of an
attribute. Each decision in the split point tree decides to which part of the data distribution a
point belongs.

VUB-Trees were implemented by Michael Bauer in a master thesis [Bau98] supervised by the
author. A more detailed description of split point trees and the algorithms involved can be
found there.

Since VUB-Trees just change the attribute transformation, no modifications of other
algorithms like range query, point query, or Tetris, are necessary.

However, VUB-Trees have two major drawbacks:

+ Thedatadistribution for each attribute must be known in advance.
* Dimensions must be independent.

Split point trees require the data distribution to be known in advance. This is possible, if
statistics on the data are available or expectations on the data exist. For OLAP data another
efficient method is to use a bulk loading tool. A VUB-Tree can be built by two passes over
the data. The first pass gathers the statistics and the second pass calcul ates the addresses for
each tuple. If the data distribution changes, the entire VUB-Tree needs to be re-organized.
Otherwise the VUB-address space might be exhausted, which causes the multidimensional
clustering to be no longer useful, since many tuples will be addressed by the same address.

The dimensions of a VUB-Tree must be independent. For certain dependencies like the sine
dependency the VUB-Tree cannot avoid the puff-pastry effect or run into problems with the
height of the split point tree (see [Bau98]).



SECTION 5.4: IMPLEMENTING THE INSERTION ALGORITHM 121

5.4 Implementing the Insertion Algorithm

The complexity of the insertion algorithm is logarithmic in the table size and relies essentially
on the implementation of the point query algorithm. Since the implementation of the point
guery algorithm is discussed in Section 4.3, we focus on the Z-region split algorithm here.

Figure 5-14a shows that a Z-region partitioning usualy does not subdivide a
multidimensional space into rectangular Z-regions, but usualy consists of Z-regions which
are a union of several rectangular subcubes. We say that such a region has fringes. Thus
fringes are a union of small subcubes which in addition to the largest subcube belong to one
region.

Fringes cannot be avoided in general, since the Z-region partitioning adapts to the data
distribution as shown in sections 3.7 and 3.8. However, it is desirable to minimize fringes,
since a small fringe might cause a Z-region to overlap a query box. This Z-region then must
be retrieved by the range query algorithm, although probably no points or only very few
points on the Z-region are located in the query box.

A Z-region is split due to an overflow of the corresponding page. The Z-region split then
creates two Z-regions from the Z-region being split. Minimizing fringes thus can be achieved
by trying to create rectangular regions during the split. This may be achieved by giving this
algorithm some more flexibility. The split algorithm consists of two parts:

» choose two points on the page not exactly in the middle, but close around the middle (-
split)

» find the split address between two points that yields the “best” rectangular partitioning

The “best” rectangular partitioning of a Z-regiom { 8] is calculated by choosing a split
addressf where as many trailing bits as possible are set to 1. In the following we assume that
a page is an ordered set of tuples.{.xc}. The split algorithm determines the Z-addrdss
with the most trailing bits between the Z-addresses of the tuplesc and Xyuc+sc.
Depending on ¢, fringes are avoided to a large extent. A worst case storage utilization of
50%- ¢ is guaranteed for each page. For our tests with uniformly distributed data fringes get
reduced to alarge extent. With an £ of 5% the partitioning of uniformly distributed data gets
very close to a uniformly idealized partitioning. Identical uniformly distributed data was
spooled into the UB-Trees of Figure 5-14a, b and c. While the UB-Tree of Figure 5-14a only
takes the tuple in the middle of the page into account for a region split, Figure 5-14(b and c)
use an ¢ of 1% respectively 40%. The picture clearly shows that fringes are minimized with
growing & at the expense of a reduced storage utilization. As we will seein Section 6.1.5, the
range query performance is also improved by using an £ > 0. Our measurements showed that

an € of afew percent aready has a substantia effect on the range query performance. For a
detailed investigation of the effects of the &-split please refer to [Sch98].
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@ (b) (©
Figure 5-14: Splitting Z-regions with £ = 0%, £ = 1% and ¢ = 40%

5.5 Implementing the Deletion Algorithm

The deletion algorithm works analogously to the deletion algorithm for B-Trees [BM72].
However, when a deletion causes a page underflow and the corresponding page merge causes
an overflow, the subsequent page split utilizes the splitting algorithm of Section 5.4 to create
a “good” space patrtitioning. See [Sch98] for details.

5.6 Implementing the Point-Query Algorithm

The point query algorithm for a tupkereads a single Z-regiom[: 8] and the corresponding

page from a UB-Tree. The region addrgsss defined as the nearest upper neighbor in the
UB-Tree index table to the Z-addreSof tuplex. As already mentioned in Section 2.2.4, this
nearest neighbor is found by a single ESQL query. This region address then is used by a
second ESQL query to retrieve the entire data page.

ESQL SELECT M N(z-address) |NTO regi on_address
FROM UB- Tree_i ndex_tabl e

VWHERE z-address = ¢
ESQL SELECT nunber _of _tupl es, data_page_content |NTO tuples, page

FROM UB- Tr ee_i ndex_t abl e

WHERE z- address = regi on_address
The performance of the first ESQL query heavily relies on the DBMS optimizer. In general
gueries with an aggregation function and a restriction are evaluated by first retrieving all
tuples satisfying the restriction and then applying the aggregation function on the retrieved
tuple set. However, if a Blree index ore-address exists, the optimal execution plan for this
statement is different: The combination of the aggregation function MIN() wvetheatriction
in the WHERE-clause allows one to determine the result by traversing just one pathin the B
Tree: A point query with¢ yields the page that stores the region address as the first value
exceedingf. However, only the TransBase optimizer created this optimal execution plan.
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Figure 5-15 shows the access plans of Oracle (a) and TransBase (b) for the SELECT-MIN-
guery. Figure 5-15c shows the actual operation that TransBase performs on the UB-Tree
secondary index table in order to find the region address.

MIN(z address)
/ O address \ / MlN(Oz addr&ss) \
|—| o —
- T
UB-Tree index table UB-Treeindex table

@ (b) (©)

Figure 5-15: Implementation of the point query algorithm

4

For DB2 and Oracle it was necessary to rewrite the query in the following way:

ESQL DECLARE CURSOR mi nquery FOR
SELECT z-address from UB-Tree_index_table
VWHERE z-address = ¢
ORDER BY z-address
ESQ. OPEN CURSCR ni nquery
ESQ. FETCH ni nquery | NTO regi on_addr ess
ESQ. CLOSE CURSOR mi nquery
ESQL SELECT nunber of tuples, data _page _content |NTO tuples, page
FROM UB- Tree_i ndex_tabl e
WHERE z- address = regi on_address

The ORDER BY clause of the rewritten query forces the optimizer to favor a secondary index
on Z-address over afull table scan. Since Z-addresses are delivered in ascending order by the
guery, the first FETCH returns the minimum Z-address. Therefore the rewrite is equivalent to
the original query.

5.7 Implementation of the Range Query Algorithm

The range query algorithm as described in Section 4.5 is exponential in the number of
dimensions. A linear version of this agorithm was developed by the author. In addition the
algorithm was optimized to operate solely on Z-addresses, which saves CPU time for
transformations between Z-addresses and Cartesian tuples. The main function of the range
guery algorithm is the function which, for a given Z-region, determines the next Z-region
intersecting the query box. Next to the Z-addresses of start point y and end point z of a query
box Q =[[y, 7] the region address 3 of aZ-region [a : ] sufficesto perform the calculation.



124 CHAPTER 5: PROTOTYPE IMPLEMENTATION

5.7.1 Determining the next Intersection

The crucial task of the range query algorithm is to calculate the next region in Z-order which
intersects the query box Q after a Z-region [a : £] (which intersects the query box) has been
retrieved. This algorithm has been steadily refined in the MISTRAL project during the
evolution of thisthesis. While the first version of the algorithm was exponential in the number
of dimensions and required a transformation of Z-addresses into Cartesian co-ordinates for
each iteration, the final version merely requires O(a) bit operations (set bit and clear bit) for
standard Z-addresses consisting of a bits.

The exponential version of the algorithm has been described in Section 4.4. In principle, this
algorithm is divided into two steps:

» determination of the Z-address A of the last point of the Z-region [a : (] intersecting the
query box
» determination of the Z-address gof the next Z-region intersecting the query box

Since each subdivision step divides the multidimensional space into 2° subcubes, this
algorithm is exponential in the number of dimensions. In addition, it requires a transformation
of Z-addresses into Cartesian co-ordinates in order to test the intersection of the query box
with the subcube. The overal CPU-complexity (in address transformations, integer
comparisons and bit-operations) of this algorithm is O(a?/d29).

A linear version of this algorithm can be developed, observing that dimensions are
independent and query boxes are iso-oriented. Thus the intersection can be tested for each
dimension independently. Then, to construct the Z-address @ it is not necessary to traverse 2°
subcubes for each step of gand to check if that subcube intersects the query box. Instead, it
suffices to test if dimension j intersects the interval [y;, z]. Thus only d tests are necessary.
However, still necessary is a transformation of the address to Cartesian coordinates for each
test, thus the overall complexity is O(a/dd@/d) = O(a?/d).

The linear algorithm can be further improved into a bit-oriented algorithm by transforming
the co-ordinates y and z into addresses ¢ and {. Then a transformation of the current Z-
addresses to Cartesian coordinates is not necessary to perform the intersection calculation; the
intersection calculation is solely done on the Z-address representation. (It is possible to
implement an intersection test on Z-addresses, which determines by simple bit operations if a
Z-address is located in a query box defined by two Z-addresses [MOD99]). Each bit of a Z-
address is inspected at most twice by the bit-oriented algorithm in order to determine the first
Z-address of the next Z-region intersecting the query box. Thus the overall complexity of the
algorithm is O(a).



SECTION 5.7: IMPLEMENTATION OF THE RANGE QUERY ALGORITHM 125

Additional details about the implementation of the range query algorithm can be found in the
MISTRAL Source Code Documentation [MOD99]. Several experiments were performed to
evauate the practicability of the algorithm [Fri97]. The maor results of these experiments
were:

» The exponentia algorithm is easy to implement; however, it is useful only for up to three
dimensions.

» Thelinear algorithm is useful for up to 6-dimensional Z-addresses, if the result set size is
sufficiently small. Otherwise the overhead for the Z-address/Cartesian transformation
plays asignificant role.

* The bit oriented agorithm is insensitive to the complexity of the tuple transformation.
Therefore UB-Trees using complex tuple transformations in order to create a good space
partitioning (like the surrogate calculation (Section 5.3.3 and 5.3.4) or variable UB-Trees
(Section 5.3.5)) can be built without additional cost on the range query algorithm.

5.7.2 Dealingwith Sets of Query Boxes

Retrieving a result set defined by a set of query boxes @ = {Q, ..., Qn} is possible by only
accessing each page of the result set once. Thisis achieved by calculating the first intersection
@ for each Q; as mentioned in Section 5.7.1. These intersections { @, ..., @} are stored in a
heap Il sorted in Z-order. MIN(IH]) then determines the next Z-region [a: ] to be retrieved
by the range-query-set algorithm. Then all ¢ with ¢ < £ can be updated in IH by removing
these ¢ and storing anew ¢’ calculated by the algorithm of Section 5.7.1.

This algorithm requires space rp(for n query boxes and has a CPU-time complexity of
O(aln) for Z-addresses consistingabits. The 1/0-complexity of the algorithm is 1@ (plus

the overhead for the B-Tree access to each pageyegions overlag). Further details on

the implementation of the algorithm as well as performance measurements are described in
[Fen98]. In addition, investigations about the approximation of arbitrary query volumes can
be found there. Here we just sketch the main results:

» Dealing with sets of query boxes induces no additional CPU- and I/O-overhead to the
range query algorithm. Additional main memory imji§ required to process a setrof
query boxes.

* In the case of one query box the algorithm degenerates to the standard range query
algorithm.

» Disk accesses are performed in Z-order, so if the relation is page clustered, this page
clustering will be exploited by the algorithm.

* When sets of query boxes are used to approximate arbitrary query volumes, for uniformly
distributed data the best performance is achieved when the volume of each query box gets
close to the average volume of each Z-region.
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5.8 TheUB-TreelLibrary

The UB-Tree library consists of an APl and an operator interface. The UB-API provides a C-
interface for data manipulation and data definition functions. The functionality of the UB-API
includes C-functions for

» UB_create, UB_drop, UB_rename
» UB_open, UB_close
 UB_insert, UB_delete

» UB_pointquery, UB_rangequery

While UB-API functions deal with result sets of tuples which are materiaized in one
processing step, the operator interface deals with streams of tuples. The operator interface
essentialy provides the same functionality as the UB-API. However, since the operator
interface works with tuple streams and allows pipelined processing, it is better suited for
using the UB-Tree functionality in an operator tree of an RDBMS. Next to the functions listed
above a preliminary version of the Tetris algorithm for uniformly distributed data is
implemented with the operator interface.

The UB-API has a tuple handling which allows one to use signed integer, unsigned integer
and character strings for the calculation of Z-addresses. The concept of transformation
functions has been implemented to easily plug in support for further data types. The current
implementation alows one to calculate Z-addresses for UB-Trees with up to 31 index
dimensions.

A detailed description of the UB-Tree library is found on the MISTRAL web server
[MOD99].
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Ideals are like the stars, we never
reach them, but like the mariners
of the sea, we chart our course by
them.

(Carl Schurz)

Chapter 6

Performance Analysis

nalyzing the cost of query processing with certain access methodsis crucial

to cost-based query optimization. Next to that it allows one to simulate

query processing without actually creating the database and thus saves time

and resources while gaining a better understanding of access methods. In
addition a cost function is a benchmark for the query performance since it
defines the expected response time and thus allows one to judge the quality
of an access method implementation. Cost functions can further be used to predict the result
sizes of aquery or tell a user the expected processing time of a query before query execution
has started. Since multi-attribute restrictions and sort operations are very common in many
applications (cf. Section 1.1), we in this chapter investigate the cost of range queries and the
Tetris algorithm for UB-Trees. We define cost functions for page accesses for idealized
uniformly partitioned universes. The quality of our cost function is proven by comparing the
predicted number of page accesses with the actual number of page accesses measured with
our prototype implementation. We also explain how our cost function is linked to the
selectivity of a multidimensiona query box. Then we define a cost model for range queries
with sort operations for various further access methods and do an analytical performance
comparison of UB-Trees with bitmap indexes, clustering B-Trees, non-clustering B-Trees and
afull table scan. Chapters 7 and 8 will show that the results predicted by our cost functions do
also hold in practice.
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6.1 The Cost of UB-Tree Range Queries

For an analysis of the UB-Tree range query performance it is desirable to have a cost function
for the retrieved pages, i.e., the regions overlapped by a query box. This enables the
prediction of the run time of a range query and yields a base for query optimization. In
addition, a cost function permits to produce a statistical relevant number of measures by
simulating range queries with varying table sizes and dimensionalities. This is especially
useful, when practical measurements with our pilot implementation can not be performed due
to their memory requirements or their long run time. The cost function also alows a
theoretical analysis of the range query performance and provides an excellent insight in the
importance of the attribute order. It also explains the page jump phenomenon of UB-Tree
range queries. Several master students supervised by the author used this cost function to
simulate the behavior of the UB-Tree for several database sizes and dimensionalities [Fri97],
to analyze the effect of region fringes and to judge the quality of the region splitting strategy
[Sch9g], to analyze the space partitioning of VUB-Trees [Bau98] and to analyze the behavior
of UB-Treesfor sets of query boxes [Fen98].

To be useful for a broad range of applications, a cost function should not require too much
knowledge about the queried database. The minimum requirements for input parameters of a
cost function are the database size and the query restriction. For multi-dimensional index
structures the dimensionality of the index is also necessary. These parameters are in general
easy to obtain and maintain.

To derive a cost function using only these input parameters is not achievable in general, since
the data distribution is another decisive factor for the query performance. Yet it is possible to
develop such a cost function for a certain case of space partitioning, the so-called idealized
uniform partitioning, consisting of uniformly distributed and independent attributes.

6.1.1 A Cost-Function for Perfect Idealized Uniform Partitioning

In the following we use P for the number of data pages of a UB-Tree table. The query box is
specified by the lower bounds vector y and the upper bounds vector z. The lower bound and
upper bound of the restriction in dimension i are denoted by y; and z. The UB-Tree has been
built over atotal of d dimensions.

Definition 6-1 (perfect idealized uniform partitioning): A perfect idealized uniform
partitioning (i.e, P = 2% for some k > 0, cf. Figure 6-1a for a two-dimensional
example) subdivides the multidimensional space in P hypercubes with volume 2",
Otherwise we call an idealized uniform partitioning imperfect.

Thus for perfect idealized uniform partitioning each dimension j of the universe has been
partitioned recursively lj(d, P) = log, P / d = k times. In this case the number of Z-regions
intersected by a query box [[y, Z]] is identical to the number of subcubes overlapped by

[Ly. Z11.
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Figure 6-1: The cost function for perfect idealized uniform partitioning
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In the following we assume the boundaries of the query interval in each dimension to be
normalized to theinterval [0,1].

If we have s completed split levels in dimension j, the number of dices of the multi-
dimensional space that are overlapped by the query box [[y, Z]] in dimension j can be
determined by calculating the number of the slices, that are contained in interval [0, Z ], but
not in interva [0, y;], i e, the number of slices in [0, 2;] minus the number of slices in
[0, ¥;]. Since the slice containing y; is aso a slice overlapped by the query box, we must
increment the above number by one to get the correct number of dlices. If the number of slices
for the interval [0, €] is calculated as [€[2°] a non-existing slice 2°+1 is added for z, =1 by
the formula derived above. We must correct this error for the case y; < 1and 2, = 1. Thisis
achieved by decrementing the number of slices by one. For y;, = 2z, = 1 the subtraction
removes the error, therefore no correction is necessary here.

Thus the number of dices n(y;, z ,I;) in dimension j overlapped by the query interval [y;, z] for
l; completed splitsin dimension j can be calculated by the following formula:

20 -[§.2"[] ,if 2, =109, #1
n(y,.2,.1,) =1

Hz 2" [1[§,2" [+1 ,otherwise

The number of subcubes intersected by the query box c(y, z, P, d) then is the product of n(y;,
z, li(d, P)) over al dimensions:

d

c(d,P,y,2) = |‘l n(y,.z,.1,(d,P))

j=



132 CHAPTER 6: PERFORMANCE ANALYSIS

6.1.2 A Cost Function for Semi-perfect | dealized Uniform Partitioning

An imperfect idealized uniform partitioning produces rectangular regions, where each region
has €either the shape of a subspace with volume 27™9%PU or consists of two of these subspaces.
In this case the multidimensional space has been partitioned recursively [og, PCO0mod d times
for some dimensions and [Jog, PC0mod d + 1 times for some other dimensions. One dimension
may exist, where some parts of the space already have been partitioned og, PC0mod d + 1
times, while other parts of the space only have been partitioned [log, PCImod d times.

Because of the above considerations we distinguish two cases of imperfect partitioning:

Definition 6-2 (semi-perfect and probabilistic idealized uniform partitioning): If P = 2
for some k > 0 , we call an imperfect idealized uniform partitioning semi-perfect.
Otherwise we call it probabilistic.

Definition 6-3 (probabilistic dimension): For a probabilistic idealized uniform partitioning
we call a dimension probabilistic, if with respect to this dimension some parts of the
space have been partitioned [Dog, POOmod d + 1 times, while other parts of the space
only have been partitioned [log, PCImod d times.

Lemma 6-1: Each probabilistic idealized uniform partitioning has exactly one probabilistic
dimension.

Pr oof:

Bit interleaving takes place in a fixed order of dimensions. Our implementation of bit
interleaving starts with the rightmost dimension. 2' splits need to take place to completely
split the space with respect to split level | (i.e., bit | of the binary representation of the Z-
address). After these 2' splits have taken place (i.e., enough data has been inserted into the
UB-Tree), the next split takes place at split level | + 1 (i.e, bit | + 1 of the binary
representation of the standard address). This split level corresponds to the next bit in the
binary representation of standard addresses as obtained by bit interleaving. Therefore it splits
the next dimension in the order of dimensions as used by bit interleaving.

Since splits complete one split level before moving to the next split level, only one dimension
may have both subspaces with split level | and subspaces with split level | + 1. O

As a consequence of the proof of Lemma 6-1 the index of the probabilistic dimension in the
order of dimension as used by bit interleaving (Algorithm 5-1) is calculated as:

probabilistic(d, P) =d - ( [fbg, P[modd)
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Example 6-1:

Split levels for perfect and imperfect uniform partitioning are illustrated in Table 6-1 for a 6-
dimensional space: For atable size of 64 pages the space is perfectly partitioned (k=1,d =
6) with one split level for each dimension. With 512 (k = 9) pages this space is partitioned
semi-perfectly with one split level in the first three dimensions and two split levels for the last
three dimensions. With a page number of 700, the partitioning is probabilistic with dimension
3 as probabilistic dimension.

Pages Split Levels per Dimension

Diml1 |Dim2 |Dim3 |Dim4 |Dim5 |Dim6

64 (perfect) 1 1 1 1 1 1
512 (semi-perfect) |1 1 1 2 2 2
700 (probabilistic) |1 1 >1 2 2 2

Table 6-1: Split levels

For a semi-perfect idealized uniform partitioning the number of completed splits I;(d,P) with
respect to dimension j is calculated as

0 (d,P)+1 ,if g, P[modd < | g, PO
i — 2

With 1;(d,P) as defined above the c(y, z P, d) is calculated in the same way as for perfect
idealized uniform partitioning:

_E 2" -[§,2" [0 ,if 2, =109, #1
n(yjizjslj)_lj

Hz,2"[$[§,2"[#1 ,otherwise

The key attributes are independent and the query box [[X, y]] is iso-oriented with respect to
each dimension. Therefore the total number of pages is obtained by multiplication of the
slicesin each dimension:

C(d,P, Y, Z) = ﬁn(yj,z,- 1|j (d’P))

IE



134 CHAPTER 6: PERFORMANCE ANALYSIS

6.1.3 A Cost Function for Probabilistic | dealized Uniform Partioning

If an idealized uniform partitioning is probabilistic, the formula n(y;, z, l;(d, P)) needs to be
modified for the probabilistic dimension to take the probability of an incomplete split into
account.

o ST

Figure 6-2: The cost function for probabilistic uniform partitioning

The complete split levels produce only 2™9%PU pages, thus P - 2P0 additional regions are
needed to obtain the given number of pages, i.e., the table size. These regions are created from
the 2™9:PU pages by splitting these pages with respect to attribute j. Therefore the probability
of an additional split in an attribute| is:

probebility  (d, P) = %m ~1 ,if j = probabilistic(d, P)

H O , otherwise

If the probability of an incomplete split is taken into account, the number of slices overlapped
by a query range in a certain dimension can be derived from the value for the completed
splits. By subtraction we calculate, how many slices would be overlapped additionaly, if
another completed split were existing. For each of these splits the probability of its existence
is probabilityj(d, P). The average number of additional splits may then be calculated by
multiplication.

Thus, the average number of slicesin dimension j overlapped by the range[y;, z] is:
ni(d, P, i, ) = n(y;, 2, 1j(d, P)) + (n(y;, 7, l;(d, P) + 1) - n(y;, 3, |;(d, P))) Cprobability;(d, P)
The key attributes are independent and the query box [[X, y]] is iso-oriented with respect to

each dimension. Thus the total number of pages is obtained by multiplication of the slicesin
each dimension asin the previous sections.
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6.1.4 Cost Function and Selectivity

For independently uniformly distributed data the restriction of each attribute in percent of
space also defines the selectivity of that attribute. Thus the restriction [y;, z] in attribute A; has
aselectivity of § = 2, - ;.
[1 ny(d, P, y;, z) can be considered to be []s; [P with s; as a special ceiling function rounding
the selectivity s of dimension | to the next partitioning grid point. Then the cost function can

also be represented as:

c(d,P,s) = ﬁ'nj(d,P,O,s.) = PEﬁ'S—

J

Note that by using O and s instead of z and y; some information for the accuracy of the cost
function is lost, since the position of the query box influences the number of Z-regions
overlapped by a query box. Thus c(d, P, y, ) should be used instead of c(d, P, s), if not only
the selectivity, but also start and endpoint of the query in space are known.

6.1.5 The Cost Function: Theory and Practice

Figure 6-3 shows the number of pages predicted by the cost function as well as the actually
retrieved number of pages for two range query series. Both measurement series where
conducted on a six dimensional UB-Tree of 211218 pages storing 10 million uniformly
distributed tuples. The left series shows a query that constantly restricts five dimensions to
40% of their domain and varies the sixth dimension from 1% to 100% of its domain. The right
series varies the restriction in each dimension from 1% of its domain to 100% of its domain at
the same time. Thus the |eft series creates a linearly growing result set, whereas the result set
of the right series grows with the 6™ power.

7.500 —— Predicted 200.000 [
Retrieved -
r/ - Predicted
5.000 —a— 150.000 Retrieved
s /f & 100.000
2.500 7 /
; 50.000 i
T—*—‘ /
0 T T T T 1 0 — ——n— . . .
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
restriction in % retriction in %

Figure 6-3: Cost function and reality

Both series show the accuracy of the cost function with an average prediction error of 8%.
The maximum deviation is 22% in the | eft series and 30% in the right series.



136 CHAPTER 6: PERFORMANCE ANALYSIS

The deviation is due to two facts:

 The data is just distributed uniformly, but there is actually no idealized uniform
partitioning.
* Themode isprobabilistic, thus a certain error isinherent to the cost model.

The effect of the e-splitting algorithm (cf. Section 5.4) on the exactness of the cost function is
shown in Figure 6-4. The six dimensional UB-Tree of this figure consists of 1 million tuples
of uniformly distributed data stored on about 22000 pages (the actual number of pages differs
for each &, since the degree of filling for each page depends on &). The figure shows the
actually retrieved pages for various values of € as well as the theoretically expected value
from the cost function for a query which restricts five dimensions to 15% of their domain and
varies the sixth dimension from 1% to 100%. The larger € gets, the better the region
partitioning approximates an idealized uniform partitioning. The figure therefore shows the
accuracy of the cost function and the potential of the region splitting algorithm to reduce the
number of pages overlapped by a range query. In genera a trade-off between space
partitioning (i.e., range query performance) and page utilization exists. However, as the figure
shows, an € of around 3% is already quite effective. Due to the probabilistic nature of the cost
function an £ of 100 % sometimes even retrieves less pages then predicted. For more details to
the &-splitting algorithm please refer to sections 4.2 and 5.4.
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Figure 6-4: e-split and cost function
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6.2 A Cost Model

In the following we define a cost model to compare the cost of various access methods for
range queries. Our cost model takes both CPU-time and I/O-time for query processing into
account. For I/O-time we consider both clustered access and random access in our cost model.

Clustering places data that is likely to be accessed together physically close to each other. The
goa of clustering is to limit the number of disk accesses required to process a query by
increasing the likelihood that query results have already been cached. We distinguish two
kinds of clustering: Tuple clustering stores tuples of one or severa relations on one disk page,
if the tuples are likely to be used together to create the result set of a query. If the tuples do
not fit on one page, the tuples have to be stored on several pages. Normally new pages are
physically placed on disk in insertion order. Page clustering in addition to tuple clustering
also maintains physical clustering between disk pages.

Let t, be the (average case or worst case) positioning time of a hard disk, t; be the transfer
time of a hard disk and t; the CPU time'” spent for page processing after retrieval. We assume
that the prefetching strategy of the file system reads a physical cluster of L consecutive pages
from disk with one random access into the read-ahead cache. This takes time t + (t; + tg) [L.
In addition we assume that each page has a capacity of C tuples. With this cost model page
clustering (i.e., reading k tuples in consecutive order) takes time

Tuple clustering requires to position the read/write-head of the hard disk for every page and
therefore takes time

Ctup|e(C y t'r[, t'[, tE ,k): ml n(l:k/C-I' 1|_—,| k) [(t'r[ +t§ + t'[)

Random access without caching requires to position the read/write-head of the hard disk for
every tuple and therefore takes time

Crandom(tm ty, & ,k): k E(tn + i+ tE)

In the following considerations we assume that a query retrieves large result sets. We
consequently omit the “+1” in the cost formulas for page clustering and tuple clustering, since
this additional summand is negligible for large result sets. Basically this means that we
assume a best case distribution of the tuples on pages so that the first tuple of the result set
also is the first tuple on a page (i.e., a result set of lesCthaples will always be stored on

one page).

" Note that t; heavily depends on the specific query. For complex restrictions like multidimensional intervals or
IN-clauses of SQL t; may be considerably higher than for simple single-attribute restrictions.
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6.3 The Cost of Range Queries

For retrieving or sorting a relation in combination with multidimensional hierarchical
restrictions we define cost functions for response times and intermediate temporary storage.
Our analysis considers a UB-Tree, a composite secondary index (CSl, clustering B™-Tree)
over al attributes (foreign keys of each dimension and measure attributes) of a fact table, a
single secondary index (SSI, non-clustering B™-Tree) on the attribute with the least selectivity
and a full table scan (FTS). In addition we analyze the performance of bitmap index
intersection (BI1), which combines the bitmaps of each restricted attribute to determine the re-
sult set of the query. Note that an index organized table (10T) as introduced in section 2.3 can
be regarded to be a specia case of a CSI, which stores the entire tuple in the B-Tree leaf
pages and therefore does not have to store any tuple identifier there.

An FTS to answer multidimensional range queries with selectivity s in dimension j can
exploit prefetching techniques to reduce the number of random page accesses at the expense
of having to read the entire table.

Using a CSI with a composite B -Tree in lexicographic order Ay, ..., Aq alows one to use the
index for the restriction in A; at the expense of having a random access for each page.

A SSI on A requires arandom page access for each tuple satisfying the restriction in A;, since
no clustering of the tuples is available. The number of random accesses of an SSI is limited to
P, if the row identifiers of the SSI are sorted and then processed in physical page order for
data page retrieval. For point restrictions on the index attribute, sorting of row identifiers may
even be avoided: index pages for tuples with identical index attributes may be organized in
the physica order of the row identifiers. Then point restrictions will get a list of row
identifiers sorted according to the physical location of the tuple. This makes a SSI not to
degenerate and behave similarly to an FTS in worst case.

BIl requires a random access for each tuple satisfying the restrictions in all attributes. In
addition the corresponding part of each bitmap index has to be retrieved. In analogy to an SSI
the result of BIl is a bitmap which is used to access data pages in physical order. Thus
multiple random accesses to one data page will not occur. Figure 6-5 shows how two specific
bitmap indexes process atwo dimensional partial match query.

bitmap for organization = , TM“| 1..... 1.1121.12...1.1, 1.1...2.2. ...1.1.... ..1.1...1. 34 9% of tuples
bitmap for region = ,Asia“ 11.1...... 1.11..... 1.1.1..1... 1.1.1..... .1..1.1... [32%of tuples
result of bitmap intersection | 1 A D Lo v 1..... 10 % of tuples
accessed disk pages (shaded)  page 1 Page ‘2 Page 3 Page 4 Page 5 80 % of pages

Figure 6-5 Bitmap index intersection
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For each restriction, the bitmap is retrieved from the corresponding bitmap index. After
intersecting these two bitmaps by a bitwise AND-operation the tuples corresponding to 1-bits

are retrieved (The zero bits in the figure are denoted by a “.” instead of a “0”). In the figure
we assum€ = 10 tuples to fit on one page, thus ten consecutive bits correspond to the tuples
on one disk page. The selectivities for both dimensions are 32% respectively 34%, resulting in
an overall selectivity of 10%. Since the data is not clustered on the pages, the query needs to
retrieve 80% of the fact table to retrieve 10% of the tuples. In practice this ratio is even worse:
Actual values folC range between 20 and 400 for 8kB pages.

The shaded part of each cube in Figure 6-6 shows the part of a three dimensional database
which is retrieved by the corresponding access method to answer a three-dimensional range
query with & = 25%, s, = 33%, ands; = 17%). an FTS retrieves the entire database
exploiting clustering and prefetching. In contrast to that an SSI will rarely utilize any
clustering benefits for small result sets. Bll retrieves each bitmap by clustered access, whereas
the data itself will often be spread over many data pages and then must be retrieved by ran-
dom access to each page. However, for larger result sets the probability rises that prefetching
might be applicable for bitmap indexes. This means, that Bll will not be much less efficient
than an FTS in worst case. A CS| wity as first attribute in concatenation order utilizes
clustering but only exploits the 17% restriction/Ay In contrast to that the UB-Tree utilizes

the restrictions of all dimensions and retrieves the data in a clustered way.

'

Ay
g ;-
page clustering £ 2 33%{ 53
§ ] B 5%
e 2 —
17%
FTS SS Csl UB-Tree

Figure 6-6: Access methods and clustering

6.3.1 Cost Functions

Using the cost model of Section 6.2 we calculate the cost of processing a fact table consisting
of T tuples stored on P pages restricted by a multidimensional interval Q = [[y, Z]] = [y1, z1] X
Xy, ] x ... % [yq, Zg) with aselectivity of s in attribute A;. For UB-Trees we assume a d-
dimensional hierarchical organization of the table. For secondary indexes we assume B; to be
the size in pages of a secondary index on A. Figure 6-7 displays cost formulas for these
access methods.
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Figure 6-7: Cost functions for retrieval of a multidimensional interval

Interestingly, non-clustering indexes may utilize tuple clustering for large result sets, since the
probability of tuples of the result set to be located on the same page increases with growing

result set size. This “clustering effect” of non-clustering secondary indexes is taken into
account by our cost functions by introducing a functhrster that with growing result set

size of a query grows from 1 @and interpolates linearly with the selectivity:

d
duster(T, P, s,.....s,) =max(LC Bbelectivity(Q))anaX(lC ED s) forsecondary index intersection

H max(L,C[%,) forasinglesecondary index on A

Thus min(cluster) = 1 and max(cluster=

In the same way secondary indexes may utilize page clustering when retrieving large result
sets. The function prefetchP,si,... ) denotes the actual prefetching for the retrieval of a
result set by secondary indexes and grows from IL: t&/ith growing result set size the
probability of tuples to be located on consecutive pages increases.

%%

for S

SRR
ingh maxg,—
-

E‘%“‘l

PIL

%Eﬁ%

0
0
prefetch(T, P,s;,....5,) = min% maxELT [selectivity(Q)
-
0
gm for SSl on A
0

Thus min(prefetch) = 1 and max(prefetch).=

For T = 2610° tuples on P = 87&0° pages,C = 30 andL = 16, Figure 6-8 shows the
functions prefetch and cluster depending on the selectivity of the query. As soon as the
selectivity exceeds @ (=3,33%) several tuples of the result set are stored on one page.
Prefetching already shows benefits when the selectivity exce&d8)1#(0,21%.
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Figure 6-8: prefetch(T, P, s, ..., Sg) and cluster(T, P, sy, ..., Sq)

These definitions are used for prefetch and cluster in the cost functions of Figure 6-7.

Note that in order to utilize tuple clustering or page clustering the tuple identifiers of a
secondary index (intersection) need to be sorted with respect to the physical storage order.
Sorting can be avoided, if the restriction is a point restriction and tuples with identical index
keys are stored in physical order in the secondary index. Note that tuples are delivered in
physical order and not in the sort order of any index, if clustering is utilized in this way by
secondary indexes. With optimized storage structures, like bitmap representation for row
identifiers, partial match queries can be handled efficiently. However, the loss of the index
key order limits the usability of the approach for range queries in combination with sort
operations on an index attribute (see Section 6.4).

6.3.2 Simulation Results

Current operating systems usually prefetch L = 16 pages with one random access. We assume
t. = 10 [mg], t; = 0,6 [ms] and t; = 0,4 [ms]. We assume a four dimensional organization of
the UB-Tree.

Figure 6-9a shows the cost [in g| for a range query with (s; = 33%, s, = 25%, S3 = 17%, S4 =
100%) against 4-dimensional UB-Trees compared to other access techniques. The table size
is varied from one page up to one million pages.

Varying the selectivity of the restriction in A; for a table size of P = 878k pages (about 7GB
for a page size of 8kB) shows that UB-Trees are superior to a CSI on the most selective
attribute Az, since this CSI cannot exploit any restriction but the one on Az. UB-Trees can
exploit the restrictions on A; and A in addition to the restriction on Asz. Thus UB-Trees are
also superior to an FTS and to Bl using bitmap indexes for all four dimensions (Figure 6-9b).
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Note that due to the high selectivity in Az a SSI always degenerates to an FTS. For an overall
selectivity of 75% [117% [25% [1100% = 3,1875 % an FTS is aready preferable to Bll. Since
bitmap indexes do not cluster the data, the result set defined by the restrictions in all
dimensions must be sufficiently small for BIl to be competitive.
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Figure 6-9: Simulation of a four dimensional range query

6.4 The Cost of Range Querieswith Sort Operations

The Tetris Algorithm of Section 4.7 allows one to process queries with multi-attribute
restrictions and sort operations. Since only very little main memory is needed, in genera no
external sorting will be necessary. In this section the response times and storage requirements
of the Tetris algorithm are compared to those of a merge sort algorithm in combination with
any of the access methods of Section 6.3.

6.4.1 Cost Functionsfor Secondary Storage

The Tetris cache is considerably smaller than the temporary storage of PIs required by the
merge-sort algorithm that is necessary after the data has been retrieved by an FTS or any
index on arestricted attribute. To sort A the Tetris algorithm just requires to cache one dlice,
e,

CaCheTQI'iS(dv P! yv Z, J) = |_I |=l,d r]| (dr P! yl ’ Zi )
1]

For a two-dimensional UB-Tree the above formula results in a square root function of the
number of Z-regions overlapping the query box, i.e., cacherais(2, P,S1,%, j) = P33, forj
0{1,2}.
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6.4.2 Cost Functionsfor Response Time

For the following considerations we assume a merge sort algorithm using a main memory of
M pages and a merge degree of m. We divide the sort process in a retrieval phase (which
retrieves the data to create initial runs for the merge-sort) and a sort phase (which actualy
performs the merge-sort). Because of the multi-attribute filtering of the retrieval phase the
data set to be sorted is usually smaller than the entire table. With s denoting the selectivity of
the restriction in attribute A; and independence of the attributes, PN pages need to be sorted.
The cost functions of Section 6.3 can be used to calculate the cost of the retrieval phase to
create the initial runs for the sort operation. If an access method does not return the tuplesin
the requested sort order, sorting with the cost of ¢t takes place. If M = PIIls, sorting takes
place in main memory. Csr then is the cost of an internal sort operation. Csr is zero, if a CSl
with A, asfirst attribute is used for the retrieval phase and the sorting attribute is A, since the
data then is already retrieved in the desired sort order.

O d <. H
O t, P S; Eﬂog% S JFM>P S;
<
: o s 1]
Cot (d,P,C,mM,s,,..., S
o SeeSa) R 4 a2 %:[I—J E]ogm El_ll otherwise
qorc " g _H MTETTEM L |
E consecutive access ﬁe& pagestosort  number of merge phases

As shown in the section before, SSI and CSI on restricted attributes are only efficient for
fairly small result sets. In this case sorting would take place in main memory. One can expect
that as soon as externa sorting is necessary, SSI and CSl are not efficient for the retrieval
phase anymore. Therefore we do not consider SSI and CSI in this section, since we focus on
external sorting here.

The Tetris agorithm has to sort each cached slice. Since the algorithm reads n(y;, z ,I;) slices,
the overall cost of internal sorting according to A; is:

Creris(ds P, Y, 2, J) =t: (N(y;, Z; || ;) [€acherqys(d, P, Y, z, |) log cachereyis(d, P, ¥, , |)

6.4.3 Cost Functionsfor Interactive Response Times

When the Tetris agorithm has completed a dlice, it is usually sorted internally and then is
available in sort order. Thus first results are available for further processing after a time of
cacheeyis(d,p,x,y)(tr + t + tz). For a CSI (or 10T) on arestricted attribute and an FTS it is
necessary to wait until the entire merge sort is completed. This yields a tremendous
performance advantage of the Tetris algorithm for pipelined processing and interactive
response times.
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6.4.4 Simulation Results

Using the same parameters as in Section 6.3 and additionally using a main memory cache of
32 MB and a merge degree of m = 2 for the merge sort agorithm Figure 6-10 shows the cost
[in s] for sorting the result set of a fact table defined by restrictions in multiple hierarchical
dimensions
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O tablesizein pages 10 0% slectivity of A, in% 100%
@ (b)

Figure 6-10: Simulation of sorting a four dimensional query box

Figure 6-10a shows the cost [in s] for sorting a four dimensional query box with (s; = 33%, s,
= 25%, s3 = 17%, 54 = 100%) according to A;. Again the table size is varied from one page to
one million pages. Since the selectivity of each restriction exceeds 10%, processing this query
by a single secondary index usually degenerates to an FTS. The speed up of the Tetris
algorithm for UB-Trees grows superlinearly with increasing table size, since all other access
methods require an external merge sort. Varying the selectivity of the restriction in A; for a
table size of P = 878k pages in Figure 6-10b shows the superiority of the Tetris algorithm,
since multidimensional clustering allows one to exploit multi-attribute restrictions to reduce
the number of random accesses and at the same time avoids an expensive externa sort
operation. Sorting with Tetris takes place in main memory as long as this memory suffices to
hold one dlice of the query box. Figure 6-11(a, b) shows that the temporary storage for the
merge sort algorithm used by FTS, BIll, and CSI Az soon exceeds the main memory sorter
cache of M = 32 MB when processing the queries of Figure 6-10 (a, b). In contrast to that
sorting with Tetris never requires more than 14 MB of cache for one dlice and thus sorting can
take place in main memory.
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Figure 6-11: Temporary storage required for the sorter cache (simulation)

A CSl or SSI on A; does not require any sorter cache. The tradeoff of these two access
methods is the inability to use restrictions in multiple dimensions. Overal, the Tetris
algorithm for UB-Trees outperforms any access method either with respect to response time
or with respect to both response time and temporary storage requirements.

6.5 Summary:. Cost Analysis

Using our cost functions we found out that for sort operations with restrictions in some
attributes UB-Trees and the Tetris algorithm are superior to one-dimensional access methods,
unless a strongly preferred sort order on one attribute per relation exists or the restrictions are
not selective enough to make up the tenfold speed of the FTS. Another limitation of our
technique is the number of dimensions as investigated in Section 3.9: Increasing
dimensionality exponentially reduces the potential of the multidimensional space partitioning
to create atotal sort order in one dimension. Our theoretical and practical analysis shows that
multidimensional indexes of up to 6 dimensions are handled very well with table sizes around
1 GB. These dimensionalities are typical for data warehousing applications and in particular
for the TPC-D benchmark (see Section 8.1). With larger table sizes even further attributes
could be added to the multidimensional index in order to speed up queries with restrictions or
sorted processing in this attribute.
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In science, as in life, learning and
knowledge are distinct, and the
study of things, and not of books, is
the source of the latter.

(Thomas H. Huxley)

Chapter 7

Performance M easurements

L

arge-scale experiments with our prototype implementation are reported in
this chapter. We investigate the behavior of our prototype implementation of
the UB-Tree for relations storing artificialy generated, uniformly
distributed data of up to 10 million tuples. We show the performance of
insertion into UB-Trees, clustering B-Trees and multiple non-clustering B-
Trees for various dimensionalities. After a brief summary of main results of

point query investigations we more closely look on the range query performance. We first
identify the main factors that influence the range query behavior of the UB-Tree. Then several
types of measurements are defined. Performance figures for range queries measured with our
prototype implementation on top of two relational DBMS are listed and interpreted. Due to
legal considerations the DBMS have been made anonymous. Last but not least performance
figures are given for partial match queries that restrict only a subset of the dimensions of the
UB-Tree. This chapter practically undermines our observations from Chapter 3 and also
proves the accuracy of our cost functions from Chapter 6 for uniformly distributed data.
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7.1 Insert Performance

Figure 7-1 shows performance measurements of the insert performance of the prototype
implementation on DBMSL1 on a 167 MHz ULTRA SPARC 2 with an IBM hard disk with
8ms positioning time for 3-dimensiona (a), 6-dimensional (b), and 12-dimensiona data (c).
Each measurements series shows the time in ms for the insertion of one additional tuple for
the database size shown on the horizontal axis. The performance of UB-Trees is compared to
insertion into an index organized table (IOT) on the attributes and to insertions into multiple
secondary indexes over 3, 6 resp. 12 dimensions (MSl).
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Figure 7-1: Insert performance

Figure 7-2 shows how the insertion time for UB-Tree insert is distributed to CPU for address
calculation, 1/0O for page retrieval, CPU for page modification and I/O for page update. The
time distribution in the barsis from top to bottom aslisted in the legend.
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Figure 7-2: Time distribution for UB-Tree insertion

All in all the performance of UB-Tree insertion is similar to insertion into an index organized
table. This is not surprising, since the UB-Tree merely requires CPU operations for address
calculation in addition to index organized tables. This additional address calculation overhead
is negligible. For a 6-dimensional integer tuple it uses less than 1% of the total insertion time.
For a UB-Tree of height h UB-Tree insertion is about (h-1)/h Od times faster than insertion
into multiple B-Trees. The factor (h-1)/h in the above formula is due to the fact that for a
given database the UB-Tree in the average is one level higher than each of the secondary
indexes.

Detailed measurements and investigations of insert performance on the prototype
implementation of UB-Trees can be found in [Fri97] and [Bau97].

7.2 Exact Match Query Performance

A point can be found in O(logk T) time, where T is the number of objects in the relation and k
= 14C, since UB-trees are balanced and searched exactly like the variant of B-tree used as the
underlying data structure for the UB-tree. Thus the point query performance of a UB-Tree is
similar to that of an I0T. The additional address calculation overhead is negligible. Detailed
measurements and investigations of exact match query performance on the prototype
implementation of UB-Trees on DBMS1 can be found in [Fri97].
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7.3 Storage Requirements

As expected, the storage requirements of UB-Trees are equivalent to those of concatenated B-
Trees (I0Ts). UB-Trees require more storage than a simple sequential file organization (FTS),
since one additiona B-Tree is mantained in order to store the Z-addresses of the
multidimensional space partitioning. However, this yields a tremendous reduction in storage
regquirements over multiple secondary indexes (MSI), which require to maintain one B-Tree
for each dimension.

FTS IOT (A1..Ag) |MSI (6dim.) |UB-Tree
Table Sizein Pages/ MB | 21115/ 42,2 |27759/55,5 | 76678 /153,3 |21616/ 43,2
Height of B-Tree - 4 3 4
Leaf Page Utilization 100% 89,677% 90,003% 99,301%

Table 7-1: Table Sizes of a 1 million 28 Byte tuples relation on DBMS1 (2kB pages)

Table 7-1 and Table 7-2 show the storage requirements for a one million respectively ten
million tuple DBMSL relation organized as FTS, 10T, 6 multiple secondary indexes and a 6-
dimensional UB-Tree on 2kB pages. Due to the smpler page handling of our prototype
implementation (e.g., no variable length attributes, only support for numbers and character
data), storage requirements for UB-Trees are lower than those of native DBM S1 B-Trees.

FTS [OT (A1..Ap) MSI (6 dim.) UB-Tree
Table Sizein Pages/ MB | 256082/ 512,2 296284 /592,6 |775951/1551,8 |211218/422,4
Height of B-Tree - 4 4 5
Leaf Page Utilization 100% 89,677% 90,003% 99,301%

Table 7-2: Table Sizes of a 10 million 28 Byte tuples relation on DBMS1 (2kB pages)

For DBMS2 Table 7-3 shows the storage requirements for several 6-dimensional relations
with different tuple sizes and table sizes. Due to some implementation overhead of B-Treesin
DBMS2, the table size of a sequentia file (FTS) for small relationsis considerably lower than
the table size of B-Trees as used for IOT and UB-Tree.

Tuples 125.000 250.000 1 million 1 million 2 million 4 million

Tuple Size | 428 Byte 428 Byte 28 Byte 228 Byte 228 Byte 228 Byte

FTS 7814/61,0 |15629/122,1 |6274/49,0 |34484/269,4|68969/538,8 |137934/1077,6
Pages/ MB

10T 13915/ 108,7 | 27810/ 217,3 | 11700/ 93,5 | 60705/ 474,3 | 96124 /947,6 | 153420/ 1198,6
Pages/ MB

UB-Tree 13629/ 106,0 | 27194 /212,5 |5059/39,5 |48119/376,0|121295/751,0 |166669 /13021
Pages/ MB

Table 7-3: Table Sizes of several tables on DBMS2 (8kB pages)
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7.4 Range Query Performance

Answering a range query over a database, which is organized as a UB-tree, requires time
proportional to the number of Z-regions overlapping the query box. For non-uniformly
distributed data this number is not just a function of the restriction in each dimension, but also
depends on the data distribution. Thus the parameters that influence the behavior of the UB-
Tree range query algorithm are:

* query box volume

* query box position

» query box width in each dimension (degree of query box generation [Fri97])
» tablesize

» Z-region partitioning (i.e., data distribution, split parameters, etc.)

* dimensionality

Many of these parameters were investigated in detail in the master theses of Nils Frielinghaus
[Fri97] and Roland Pieringer [Pie98]. There the cost function of Section 6.1 was used to
simulate idealized uniformly partitioned UB-Trees. In addition measurements on a prototype
implementation of the UB-Tree were conducted for various dimensionalities, database sizes,
and data distributions. Here we just sketch the main results and present the most interesting
measurement series.

For uniformly distributed data the range query performance exponentially decreases with the
dimensionality of the UB-Tree (cf. also Section 3.9). The more dimensions are restricted, the
better the range query performance gets, since each restriction is utilized by the UB-Tree (see
also Section 7.4.3). However, restricting a dimension to less than 2 of its domain for a split
level of | in that dimension does not further reduce the number of pages, since the split level
defines the limit of resolution of the partitioning grid. The position of the query box on the
partitioning grid can increase or decrease the number of regions overlapped by the query box
even for uniformly distributed data and therefore influences the range query performance
[Fri97]. The finer the grid, the less this effect may be observed. Since the grid is finer for
larger databases or lower dimensionalities, dimensions that are not restricted by a query harm
the query performance. An entire dlice of Z-regions with respect to the not restricted
dimension has to be retrieved. Summing up, the dimensions stored in the UB-Tree should be
used for restriction. Thus proper index modeling is still necessary with UB-Trees, since the
curse of high dimensionality forbids to add all attributes as dimensions to an index.
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Figure 7-3: Range queries in sparsely (a) and densely (b) populated parts of a universe

In Figure 7-3 (a and b) range queries against the same non-uniformly distributed UB

Tree are

shown. In this Figure the Z-regions are shaded that intersect the query box. The query box of
Figure 7-3b has aresult set of 617 points and overlaps 27 regions. Although the query box of
Figure 7-3a has the same volume, it only covers a sparsely populated part of the universe and
thus only 78 points in 3 regions are retrieved by the range query. Since a Z-region

corresponds to aleaf page of the UB-Tree, Figure 7-3 shows that the number of disk accesses

is proportional to the result set size of the range query.
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Figure 7-4 (aand b) show two query boxes of different volume located in different parts of a
uniformly distributed UB-Tree. The larger the query box in volume, the more Z-regions are
overlapped by the query box and retrieved by the range query algorithm. Since with a larger
guery box volume many Z-regions are entirely contained in the query box, one can also state
that the number of retrieved Z-regionsis proportional to the result set of the query box.
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Figure 7-5: Range queries and scalability
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Figure 7-5a displays a range query against a UB-Tree storing 1000 tuples on 25 Z-regions.
The UB-Tree in Figure 7-5b stores 50000 tuples on about 2500 Z-regions. Thus Figure 7-5
shows that the query box is approximated more closely by the Z-region partitioning as the
database increases.

7.4.1 Typesof Measurements

Definition 7-1 (range method measurement for an access method): A range query
measurement for an access method is an experiment that executes a range query on a
single table with ranges in d attributes Ay,...,Aq Using a certain access method for table
access and measures certain parameters (e.g., response time or number of 1/Os) of the
guery execution. Depending on the access method used for the table access we speak
of

*  FTSmeasurement for full table scans

* |OT A measurement for an index organized table on attribute A as first key in
concatenation order

e UB-Tree measurement for UB-Trees
* SY A measurement for single secondary index on attribute A;

»  SI measurement for intersection of secondary indexes
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Definition 7-2 (measurement for a set of access methods): A measurement uses the same
restrictions to perform a range query measurement for each access method of a set of
access methods.

Definition 7-3 (measurement series): A measurement series is an ordered sequence of
measurements for a set of access methods.

In the following sections we investigate two types of measurement series on a relation with d
index attributes, namely c%-measurement series and cube measurements series.

Definition 7-4 (c%-measurement series): A c%-measurement series restricts d-1 attributes
to c% of their domain, whereas one attribute (the variable attribute) is varied from 0%
to 100%.

For independently uniformly distributed data the selectivity of a c%-measurement with a
selectivity of x% in the variable attribute is c%* X%.
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Figure 7-6: Characteristics of a c%-measurement series

The upper left part of Figure 7-6 shows the volume of the query box for three measurements
of a two-dimensional c%-measurement series. Below that two-dimensiona visualization the
Figure shows the linearly growing result set size for a 35%-measurement series against a six-
dimensional database storing 10" tuples. The right part of Figure 7-6 shows the number of Z-
regions intersected by the query boxes of a 35%-measurement series against a Six-
dimensional UB-Tree storing 10" uniformly distributed tuples on 211218 Z-regions. In the
Figure one can see atypica characteristic of c%-measurements for UB-Trees: The number of
Z-regions intersecting the query box is a staircase function for a c%-measurement series. This
staircase behavior is due to the fact, that for uniformly distributed data the Z-region
partitioning is a discrete d-dimensiona grid with clearly defined partitioning points (which
are the points 50%, then 1/4 and 3/4, then 1/23, 3/2%, 5/2° and 7/2°, etc. depending on the data
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base size, cf. Section 6.1). A small enlargement of the query box in the variable dimension
does not exceed a grid point and thus does not cause any further Z-region to be intersected. As
soon as the query box exceeds a grid point, one additional slice of Z-regions is intersected.
The height of the staircase (i.e., the number of additionally intersected Z-regions) in the new
slice of the grid depends on c%, the restriction in the variable dimension and on the number of
dimensions of the grid. A larger value for c% means that the query box covers alarger part of
the multidimensional space and therefore a higher number of Z-regions will be intersected
when exceeding a grid point. Similarly, with a higher dimensionality more Z-regions are
intersected when partitioning point is exceeded. With a linearly growing result set the
staircase function approximates a linear function. Further analysis of the staircase
phenomenon can be found in [Fri97].

Definition 7-5 (cube measurement series): A cube measurement series varies the restriction
on all attributes from 0% to 100% at the same time.

For a cube measurement on independently uniformly distributed data the selectivity of the
restriction in each dimension isidentical. Thus a selectivity of x% in each dimension resultsin
an overall selectivity of x% for the query. In analogy to Figure 7-6, Figure 7-7 shows the
volumes for three measurements of atwo dimensional cube measurement series. In addition it
shows the result set size and the number of intersected Z-regions for a cube measurement
series against a 6-dimensional UB-Tree of 10’ tuples on 211218 pages. The number of
intersected Z-regions again shows a staircase behavior, which in this case approximates the
polynomial function.
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Figure 7-7: Characteristics of a cube measurement series

Thus with growing restriction in the variable attribute(s) the result set of a cube measurement
series grows polynomially, whereas the result set of a c% measurement series grows linearly.
This means, that cube measurement series are a good way to theoretically analyze the
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performance degeneration of a multidimensional index from very small to very large result
sets ranging from (1%) (is usually just one or very few tuples) to 100% (the entire relation).
c% measurement series indicate whether an index degenerates if the restriction is varied only
in one attribute and therefore alow to judge the symmetry of a multidimensional index over
the dimensions.

7.4.2 Compar ative Performance M easur ements

With the prototype implementation of the UB-Tree performance measurements were
conducted on several commercial DBMS. Here we just list the results of DBMS1 and
DBMS2. The results on the other DBMS are qualitatively equivalent to either DBMSL or
DBMS2 and can be found in [Ova99] and [Pfa99]. To get comparable results, precautions
were taken in order to eliminate caching effects. Descriptions of these precautions can be
found in [Fri97] for DBMS1 and [Pie98] for DBM S2.

Because of different resources and configurations of the database servers for DBMS2 and
DBMSL, the measurements on both DBMS are not comparable quantitatively. This holds
especially because of the different table sizes. However, a qualitative comparison is possible.
Qualitatively, the performance gain of the UB-Tree compared to an IOT is identica for
DBMS2 and DBMSL1. The only qualitative difference is the performance of an FTS: DBMS1
implements relations as 10Ts; an FTS retrieves the data in primary key order by tuple
clustered access. Thus an FTS in DBMSL is identical to reading 100% of a relation via an
IOT. In contrast to that DBMS2 utilizes page clustering for FTSs. Therefore an FTS in
DBMS2 is more efficient than in DBM S1.
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Figure 7-8: DBMS1

The measurements of Figure 7-8 were conducted on DBMS1 on a SUN ULTRA SPARC II
167 MHz with an IBM 8ms hard disk. The test table stores 10 million independently
uniformly distributed 6-dimensional tuples on 211218 pages. Figure 7-8a shows a 35%
measurement sequence, where A, to Ag are the constant dimensions, whereas the restriction in
A, isvaried from 0% to 100%. As mentioned before, an FTSin DBMSL1 isidentical to an 10T
on A; without any restriction in the index attribute. An IOT on Ay, Az, A4, As, Or Ag has to



157

SECTION 7.4: RANGE QUERY PERFORMANCE

retrieve 35% of the database. This results in a response time 35% of that of an FTS. Actually
the FTS is not constant, but slightly increases with a growing selectivity in A;. The linearly
growing result set causes linearly growing CPU time for result set processing and inter-
process communication time for result set transfer. While this time is clearly visible for FTS
and 10T on Ay, As, A4, As, Or Ag, it isaso included in the response times of the other access
methods. Intersection of secondary indexesin DBMSL requires the retrieval of the 35% of the
five secondary indexes on A, to As and a certain percentage of the secondary index on A;.
After that an expensive intersection operation and a random access for each tuple of the result
set are performed. Therefore SlI is worse than tuple clustered access of the |OTs aready for
gueries with a selectivity of less than 1%. The UB-Tree requires less time than any 1OT, since
it allows a tuple clustered access to the result set defined by the restrictions in all attributes,
whereas an 10T on A; only utilizes the restriction on A; and therefore grows linearly on a
much larger scale than the UB-Tree. The performance figures for the UB-Tree do hardly
depend on the variable attribute: If A; was left constant and any other attribute is varied, the
response time of the UB-Tree is similar to that reported in the figure (actually it depends on
the number of recursive splitsin that attribute; see [Fri97] for measurement charts or Chapters
3 and 6 for an analytical explanation).

Selectivity in A, UB-Tree| 10T A, 10T A, Sl FTS
20% 39s 1242 s 194,2 s 1890,3 s 458,9 s
40% 6,6 S 228,1s 200,4 s 21209 s 477,3s

Table 7-4: Response times for 35%-measurements on DBMS1 with A; as variable attribute

Figure 7-8b shows a cube measurement sequence where the selectivity of each attribute is
varied from 0% to 100% at the same time. For a selectivity of less than 8% in each dimension
(an overall selectivity of (8%)° < 1/3.5[10°° for the query, i.e., a result set of about 3 tuples!)
Sl is preferable to an FTS, since the part of each B-Tree that needs to be retrieved as well as
the result set are sufficiently small. Since the result set grows polynonially with the 6™ power,
the response time of the FTS grows with the 6™ power due to CPU time for result set
processing. This additional CPU time is also included in the response time of the other
indexes. For a selectivity of 100% FTS, 10T, and UB-Tree take the same time to respond to
the query, since the data is retrieved by tuple clustered access by all of these access methods.
Up to a selectivity of 75% in each dimension (an overall selectivity of (75%)° = 17,7%, i.e., a
result set of 1.7 million tuples) the UB-Tree has a significant performance advantage, since
the restrictions in all attributes are used to limit the number of page accesses to answer the

query.

Selectivity UB- 1OT Sl FTS
in each dimension | Tree
20% 09s 120,7 s 12351s 4498 s
40% 175s 228,2s 27533 s 4759s

Table 7-5: Response times for cube measurements on DBMS1
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Summing up, our measurements indicate that the range query performance of UB-Trees on

DBMSL1 is more symmetrical than that of an 1OT. It also shows a better absolute performance

than SlI, when a sufficient number of attributes is specified. In our 6-dimensional test

database this is already true for 2 or 3 dimensions. The UB-Tree range query performance is

on the average severa orders of magnitude faster than 10Ts and SlI. We measured an

increase in speed of several thousands compared to SSI and — depending on the restriction —
between two and one-hundred compared to a compound index. Performing an index scan over
the whole relation with a UB-Tree results in a performance similar to a scan over a clustered
primary compound B-Tree (see also [Fri97]).
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Figure 7-9: DBMS2

Figure 7-9 shows 35%-measurements and cube measurements on DBMS2 performed on a 4
CPU Pentium Pro 200 MHz with Windows NT 4.0. The test table stores 250 thousand
independently uniformly distributed 6-dimensional tuples on 27194 pages. Besides the more
efficient FTS and the use of a SSI instead of Sll these measurement series are qualitatively
identical to those of DBMS1 on Solaris 2.5.1 as described above. The only difference to
DBMSL1 is that DBMS2 does not perform an intersection of secondary indexes for this query.
Using bitmap indexes resulted in a performance worse than any of the IOT. Instead, we
measured the use of a single secondary index (SSI) on the most selective attribute. Further
measurements on DBMS2 (varying tuple size, varying table size, comparison between NT
and Solaris) showed the behavior as predicted by our cost model (see [Pie98]).

Sdlectivity in A, UB-Tree| 10T A; 10T A, Ssl FTS
20% 14s 550s 98,3s 4157 s 214s
40% 24s 108,6 s 98,5s 725,1s 21,3s
Table 7-6: Response times for 35%-measurements on DBMS2 with A; as variable attribute
Selectivity UB- 0T SSl FTS
in each dimension | Tree

20% 01s 55,8s 4284 209s
40% 45s 112,1s 852,2s 214s

Table 7-7: Response times for cube measurements on DBMS2
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7.4.3 Partial Range Queries

The following measurements illustrate the performance of the UB-Tree for partia range
gueries. The measurements were aso performed with DBMS2 on a4 CPU Pentium Pro 200
MHz with Windows NT 4.0. The test table stores 250 thousand independently uniformly
distributed 6-dimensional tuples on 27194 pages.

While Section 7.4.2 restricted each of the d attributes of the UB-Tree to an interval smaller

than the domain of an attribute, some dimensions are not restricted on this measurement. The
measurement series here resembles a 35%-measurements series with the only difference that

less than d-1 dimensions are restricted to 35%. The number a in the legend entry “UR + 1”

of Figure 7-10 shows how many dimensions are restricted to 35%. The dbtaér
dimensions are not restricted. The graph shows a variatian fodm 1 to 5 for the 6-
dimensional UB-Tree (note that “UB 5 + 1" is the actual 35%-measurement series of the
previous section). “IOT var” in the legend of the figure means that an 10T on the variable
attribute of the 35%-measurement is used for answering the query, whereas “IOT 35%” resp.
“IOT 100%” use an IOT on an attribute with a selectivity of 35% resp. 100% for processing
the query. The measurement shows that as soon as two dimensions are restricted the UB-Tree
is superior to 10Ts, unless the restriction in the first attribute of the 10T is sufficiently small.
The performance increase of the UB-Tree with a growing number of restricted dimensions
shows that the UB-Tree indeed utilizes the restriction in all dimensions in order to reduce I/O.
As soon as at least 4 out of 6 dimensions are restricted, the UB-Tree is also superior to an FTS
even though the FTS of DBMS2 uses page clustering. The UB-Tree is also superior to an
FTS, if at least 3 out of 6 attributes are restricted with a selectivity of less than 50% or 2 out
of six attributes are restricted to a selectivity of less than 25%.

Figure 7-11 resembles a cube measurement series, where tfa [&¢fend entry means that

only a out of d attributes are restricted. “UB 6” of that figure is equivalent to the cube
measurement series of the previous section .”IOT var” here means that an 10T on a variable
dimension is used for query processing, whereas “IOT const” uses an IOT on a non-restricted
attribute. Again the figure shows that further restricted attributes are used by the UB-Tree to
reduce the response time for query processing, while FTS and IOTs cannot take any
advantage of additional restrictions. An IOT on a variable attribute is superior to the UB-Tree,
if only this attribute is restricted by the query (i.e., the query defines a hyperplane, only one
dimension is restricted). Of course a specialized one-dimensional index like an IOT in this
case is better than a multidimensional UB-Tree. However, as soon as at least two out of six
attributes are restricted, the UB-Tree is superior to an IOT. As soon as at least 3 out of 6
attributes are restricted to a selectivity of less than 50%, the UB-Tree is also superior to an
FTS even though the FTS of DBMS2 uses page clustering.
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Figure 7-10: Varying the number of restricted dimensions for 35% restrictions (DBMS2)
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Change is not made without
inconvenience, even from worse to
better.

(Richard Hooker)

Chapter 8

| mpacts on Relational Query Processing

B-Trees and the Tetris algorithm can be used to accelerate aimost any
guery processing operation: Relational queries or SQL queries consist of
restrictions, projections, ordering, grouping and aggregation, and join
operations. In the presence of multidimensional restrictions or sorting

these operations are efficiently implemented by either using the range
query algorithm or the Tetris algorithm. In this chapter we investigate the
impacts of our approach on query processing in RDBMS. We present performance
measurements for two application scenarios. We selected three queries of the TPC-D
benchmark to show the potential of the UB-Tree range query algorithm and the Tetris
algorithm. We then show the benefits of Multidimensiona Hierarchical Clustering by
performance measurements of queries in a star schema typical for data warehousing
applications. The performance results reported in this chapter were measured for one of our
project partners with our prototype implementation of UB-Trees on top of DBMS2. We
compare the performance of UB-Trees to native query processing techniques of DBMS2,
namely access viaan index organized table (I0T), which essentially stores arelation in a clus-
tered B*-Tree, and access via a full table scan (FTS) of an entire relation. In addition we
measure the performance of a single secondary B*-Tree index (SSI) and of an intersection of
multiple bitmap indexes (BIl) to answer multidimensional range queries.
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8.1 Relational Operationswith UB-Treesand the Tetris-
Algorithm

In accordance with the definition of O(n) (e.g., [AHU74]) we define the terms CPU-
complexity, asymptotic CPU-complexity CPU(n), I/O complexity, asymptotic I/O-complexity
10(n), space complexity and asymptotic space complexity SPACE(n). These operations will
be used to investigate the complexity of the operations of the relational algebra using UB-
Trees with the range query algorithm and the Tetris algorithm.

Definition 8-1 (CPU-complexity, asymptotic CPU-complexity CPU(n)): The CPU-
complexity of an agorithm is the CPU-time needed by an algorithm expressed as a
function of the size of the input data. An agorithm with a CPU-complexity defined by
a function g(n) has an asymptotic CPU-complexity CPU(f(n)), if there exists a
constant ¢ such that g(n) < cff{n) for all but some finite (possibly empty) set of non-
negative values for n.

Definition 8-2 (I/0-complexity, asymptotic I/O-complexity 10(n)): The I/O-complexity of
an agorithm is the 1/O-time (usually measured by the number of random disk
accesses) needed by an algorithm expressed as a function of the size of the input data.
An agorithm with a I/O-complexity defined by a function g(n) has an asymptotic 1/0-
complexity 10(f(n)), if there exists a constant ¢ such that g(n) < cff(n) for all but some
finite (possibly empty) set of non-negative values for n.

Definition 8-3 (SPACE-complexity, asymptotic SPACE-complexity SPACE(n)): The
SPACE-complexity of an algorithm is the temporary storage space needed by an
algorithm expressed as a function of the size of the input data. An algorithm with a
SPACE-complexity defined by a function g(n) has an asymptotic SPACE-complexity
SPACE(f(n)), if there exists a constant ¢ such that g(n) < clf{n) for all but some finite
(possibly empty) set of non-negative values for n.

8.1.1 Asymptotic complexity of the UB-Tree Range Query Algorithm

In the following we assume a multidimensiona query box with the selectivities sy, ..., Sy over
arelation of T tuples stored on P pages. We consequently also assume Z-addresses to have a
length of a bits.

Thus the range query agorithm has a CPU-complexity which depends on the number of Z-
regions intersecting the query box. According to our cost functions of Section 6.1 this number
is related to the selectivity of the restrictions of the query box. In addition the CPU-
complexity of the range query algorithm linearly depends on the length of the Z-addresses.
The Z-address length is identical to the length of the index attributes of a tuple (see Section
5.3). Thus the range query algorithm also depends linearly on the tuple size (see Section 5.7).

The 1/0-complexity solely depends on the number of Z-regions intersecting the query box and
only one Z-region needs to be stored to perform the range query algorithm. Thus the storage
gpace complexity of the range query algorithm is constant with respect to the problem size.
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Using the results of Section 6.1 and 5.7, the range query algorithm for a query box has an
asymptotic CPU-complexity of

d
CPU% (P El_l s, Ebit operations,
j:

an asymptotic I/O-complexity of

d
IOE:> EI_' 5, Erandom disk accesses,
]':

and an asymptotic space complexity of

SPACE(1).

8.1.2 Asymptotic complexity of the Tetris Algorithm

The Tetris agorithm has to retrieve the same number of Z-regions as the range query
algorithm. The number of CPU-operations for determining the next Z-region in Tetris order
are also identical to those of the range query algorithm. Thus from a complexity point of view
the only difference between the Tetris algorithm and the range query algorithm is the storage
complexity, which in this case is determined by the Tetris cache.

We again assume a multidimensional query box with the selectivities sy, ..., Sy over areation
of T tuples stored on P pages. We also assume a UB-Tree with a Z-address length of a bits.
Then the Tetris algorithm to sort the query box with respect to attribute A, has an asymptotic
CPU-complexity of

cpu%mqjéj%

an asymptotic I/0O-complexity of

d
IOED El_l s, Erandom disk accesses,
j:

and an asymptotic space complexity of

irys,

SPACEE,%BdiSk pages.
-

In the above formula lx = n(d, P, yi, z) is the number of slices of the query box in dimension k
with respect to the multidimensional space partitioning (see Section 6.1).
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8.1.3 Asymptotic complexity of Operations of Relational Query Processing

The UB-Tree range query agorithm may be used to efficiently process multi-attribute
restrictions. The Tetris algorithm may be used to implement most operations of the relational
algebra or SQL with linear I/O-complexity, if the Tetris cache size suffices to hold one
processing slice of the Tetris algorithm [Bay97b]. This assumption is realistic, since our
measurements showed that sorting 50 % of a 1.3 GB table only requires a cache size of 2.6
MB (cf. Section 8.2.1). The actual cache size depends on the multidimensional partitioning of
the table and thus on the data distribution. While it is not possible to give an upper bound for
the cache size (besides the relation size), experiments with various database sizes showed that
usually a reasonabl e partitioning exists which keeps the cache size very low.

We denote the selection operations by o, the join operation by ><, grouping by y, ordering by
w, set union by [, intersection by n and difference by \. These operations are implemented
by operator trees processing several operators on tuple streams. Next to the access primitives
range and tetris (which implement the UB-Tree range query agorithm and the Tetris
algorithm) we use the operator merge to merge two sorted streams of tuples based on identity
in an attribute set, the operator remove-duplicate, which eliminates duplicates of a sorted
stream of tuples and aggregate, which performs grouping and performs the required
aggregations. In addition we use the tuple stream operators union, intersection and difference
that perform set union, intersection and difference on an ordered stream of tuples.

The range query algorithm and the Tetris algorithm can be used to implement the following
operations of SQL or the relational algebra, since an efficient implementation of this
algorithm may utilize a sorted stream of tuples:

« projecting R to attr with duplicate elimination: T (R)

» sorting R with respect to attr: wa(R)

» grouping R with respect to attr and aggregating attributes with aggregation functions as
specified in agy: Yattr,agg(R)

* equi-joining R with Swith respect to attr: R Dgyr S

 setunionof Rand S: RO S

* satintersectionof RandS:Rn S

» setdifferenceof Rand S: R\'S

If multi-attribute restrictions on the relation(s) are used in combination with any of the above
operations, these restrictions are utilized on the fly and thus reduce both the Tetris-cache size
and number of page accesses necessary to perform the operation.
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Ocond(R) = rangecond(R) (selection)
Titr(Ocond(R)) = remove-duplicate(tetriSyir cond(R)) (projection)
Wattr(Ocond(R)) = tetriscond(R, attr) (ordering)
Yattr,agg(Ocond(R)) = aggregate(tetrisond(R, attr), agg) (grouping and aggregation)
Ocond1(R) Pattr Ocond2(S) = merge(tetrisonaa(R, attr), tetrisong(S attr)) (join)
Ocond1(R) U Gconaz(S) = union(rangecona1(R), rangeconaz(S)) (set union)
Ocond1(R) N Teona2(S) = intersect(rangecond1(R), rangecondz(S)) (set intersection)
Ocond1(R) \ Oconaz(S) = difference(rangeconay(R), rangeconaz(S) (set difference)

Figure 8-1: Transformation rules for the implementation of algebraic operations

Figure 8-1 gives transformation rules for projection, ordering, grouping and aggregation and
join in combination with multi-attribute restrictions, so that the Tetris operator can be used for
efficient implementation of these operations. In the Figure R, S denote relations, cond, condl,
cond2 denote conditions defining multidimensional intervals, attr denotes an attribute of R
respectively Sand agg denotes a specification of attributes and an aggregation function for the
attributes. The rules given in this figure may be used as transformation rules for algebraic
guery optimization.

Applying the transformation rules of Figure 8-1, Table 8-1 lists the asymptotic CPU-, 1/O-
and space-complexity of the basic operations of relational query processing and opposes them
to their complexity with a B-Tree implementation.

d
In the table we write V :PEl_l S, to denote the size of the result set of condition cond
j:

(analgoudly for VR, Vs for condg and conds). We assume the B-Tree to be built on the attribute
i and denote the selectivity of that attribute by s. If the index attribute i is also the sort
attribute attr, then s = 0 and V = P. We denote the length of atuple in bits by a.
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UB-Tree/Tetris B-Tree/Mergesort
CPU 110 SPACE CPU 110 SPA-
CE

Ocond(R) O(v[a) oV) o) O((P8+VlIbg V)@) |O(PE+VIbgV) |OV)
Tar(Ooond(R)) | O(@WIOg V) | O(V) olv E O((PE+Vibg V)@) |O(PE+VIbgV) |O(V)
War(0ong(R)) | O@VIDGV) | O(V) olv E O((PE+Vibg V)@) |O(PE+VIbgV) |O(V)
Yatrago(Ocond(R)) | O(@WIg V) | O(V) ol E O((PE+Vibg V)@) |O(PE+VIbgV) |O(V)
Oconaa(R) O(alVrlIbg Vr) | O(Vr+Vs) O%L»uk% O((P=5+VilIbg VR)@) | O(PRE+VRlIog Vi) | O(V)
[><]am + attr kattr + +
Ocond2(S) O(alVdlIbg Vs) O((PsS+Vdlbg Vg)d) | O(PgS+Vsllbg Vs)
Oconan(R) O(alVr) O(Ve+Vs) | O(1) O((PrS+VRlIog VR)@) | O(PHS+Vrlog Vi) | O(V)
] + + +
Ocond2(S) O(alVs) O((PsS+V4dlbg Vg)d) | O(PgS+Vslbg Vs)
Oconcn(R) O(alVr) O(Ve+Vs) | O(1) O((PiS+Vrllbg VR)@) | O(PHE+VIbg Vi) | O(V)
N + + +
Ocondz(S) O(alVs) O((Pd5+VsIog V9[@) | O(PsS+VsIog Vo)
Oconc(R) O(alVr) O(Ve+Vs) | O(1) O((PiS+Vrllbg VR)@) | O(PHE+VrIbg Vi) | O(V)
\ + + +
Ocondz(S) O(alVs) O((Pd5+VsIog V9[@) | O(PsS+VsIog Vo)

Table 8-1: Complexities of relational operators

Thus UB-Trees and the Tetris algorithm have the potential to speed up any operation
involving multi-attribute restrictions and sort operations. In Section 8.2 we will show
performance measurements and comparisons for queries using some these operations. In
Section 8.3 we will investigate a special variant of a multiway join-operation, the so-called
star-join, and reduce it to multi-attribute restrictions with the technique of multidimensional
hierarchical clustering as described in Section 5.3.4.
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8.2 Complex Querieson Generated Data: The TPC-D

Benchmark

We anayzed the entire TPC-D benchmark [TPC97] for the usability of multidimensional
access methods. From our analysis we expect that 12 out of 17 queries will benefit from
multidimensional indexing techniques and the Tetris algorithm. The five queries that will not
benefit from multidimensional indexes either only restrict a single attribute without complex
joing/sort operations or retrieve aresult set whose size makes an FTS preferable to any access
method. To show the performance gain of UB-Trees and the Tetris algorithm we selected the
TPC-D queries Q3, Q4 and Q6.

We used a SUN ULTRA SPARC Il with 512 MB main memory and an array of five 4 GB
hard disks with an average positioning time of 8ms and a transfer rate of 0.7ms per page to
generate the ORDER, LINEITEM, and CUSTOMER tables (cf. Figure 2-2) for severa
scaling factors of the TPC-D benchmark. Actually the Tetris performance is even better than
reported in this section: The measurements were conducted with UB-Trees emulated on top of
DBMS2 and are compared against IOTs and FTS integrated into the DBM S2 kernel.

8.2.1 Joinsand Restrictions

Query Q3 (cf. Figure 8-2) of the TPC-D benchmark is a shipping priority query, which
retrieves the shipping priority and potential revenue of the orders having the largest revenue
among those that had not been shipped as of a given data. This query consists of restrictions
and join operations involving three relations and is efficiently processed by the Tetris
algorithm.

SELECT L_ORDERKEY, SUM L_EXTENDEDPRI CE*(1-L_DI SCOUNT)) AS REVENUE,
O _ORDERDATE, O SHI PPRIORITY
FROM CUSTOVER, ORDER, LI NEI TEM
VWHERE
C_MKTSEGVENT = ' FOOD' AND
C_CUSTKEY = O _CUSTKEY AND
L_ORDERKEY = O ORDERKEY AND
O_ORDERDATE < DATE 1.5.98 AND
L_SHI PDATE > DATE 1.6.98
GROUP BY L_ORDERKEY, O ORDERDATE, O SHI PPRIORITY
ORDER BY REVENUE DESC, O ORDERDATE

Figure 8-2: Query Q3 of the TPC-D benchmark

The operator tree for Q3 which is generated by a standard RDBMS like DBMS2 is illustrated
in Figure 8-3a. The query is processed by first applying the restrictions on each table and then
performing a hash join or a sort-merge join on the intermediate result. The join order of
Figure 8-3a is due to the fact that the LINEITEM relation is four times larger than the
ORDER relation and 40 times larger than the CUSTOMER relation. The intermediate result
of the second join is used for grouping with aggregation and final ordering.
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Figure 8-3: Operator trees for Q3

With UB-Trees on CUSTOMER(CUSTKEY, MKTSEGMENT), ORDER(ORDERKEY,
CUSTKEY, ORDERDATE), and LINEITEM(SHIPDATE, ODERKEY) Figure 8-3b and
Figure 8-4 illustrate the Tetris operator 14, Which combines selection and sorting. Reading
the restricted part of each relation in sort order of the join attribute causes a sorted stream of
tuples. This stream is transferred to the merge operator 1 and processed further.
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Figure 8-4: Processing Q3 with the Tetris algorithm
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We measured the sorted table accesses of query Q3 for different TPC-D scaling factors (SF)
from 0.1 to 1 (SF = 1 means a size of 1GB for LINEITEM). We do not want to enter the
debate whether sort-merge joins or hash joins perform better [Mer81, DKO+84]. We chose a
large main memory for our test environment, since according to [CHH+91] sort-merge join
and hash join have a similar performance for computer systems with large main memories.
Consequently we use a sort-merge join because this method is easier to handle by our test
environment.

Since the LINEITEM table is the major bottleneck for Q3, we focus on this relation for our
performance comparison. We created four instances of LINEITEM: an IOT on SHIPDATE,
an |OT on ORDERKEY and a relation with secondary indexes on each restricted or sorted
attribute. The optimizer favored an FTS over secondary indexes, which our theoretical
considerations and measurements proved to be the right decision (forcing DBM S2 to process
Q3 with a secondary index on SHIPDATE or ORDERKEY took more than 6 hours for SF =
1). We therefore exclude secondary indexes from further considerations.

Figure 8-5 and Table 8-2 show that the Tetris algorithm for UB-Trees is most preferable to
answer this query. The 50% restriction on SHIPDATE is not selective enough for an 10T on
SHIPDATE to be competitive. The presorted IOT on ORDERKEY does not require a merge
sort and therefore shows response times similar to an FTS with merge sort. Using Tetris for
sorting LINEITEM is more than three times faster than FTS or any IOT. The first response of
Tetrisis aready produced after few seconds, two to three orders of magnitude faster than with
FTSor any IOT. While the intermediate storage requirements of Tetris are not exactly zero as
for an IOT on ORDERKEY, they are extremely low: Compared to an FTS or an IOT on
SHIPDATE they are several orders of magnitude lower.

4000 100
10T SHIPDATE ~ /
10T ORDERKEY /' s -=|OT SHIPDATE and FTS
3000 1 : _|I:_';s ‘% & — Tetris
2 = g 10T ORDERKEY
= ]
qg, 2000 / 4 50 /
. 8
1000 — 3 25
/ g
0 T T T Y 0 #r

0 0,75 1 0 0,25 0,75 1

TPC-D scglsing factor
Figure 8-5: Response times and temporary storage for sorting 50 % of LINEITEM for Q3

0,25 0,5
TPC-D scaling factor

Since for FTS and 10T on SHIPDATE storage requirements grow linearly with tablesize, the
main memory is exceeded soon. To conduct our measurements we had to enlarge the
temporary DBM S2 tablespaces severa times. In contrast to that the Tetris cache grows with
Jtablesize (cf. Section 6.4.1) and fits into the main memory of current computer systems even
for table sizes of several Terabytes.
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Table Size 33MB| 81MB| 131 MB| 163MB| 326 MB| 651MB | 1302MB
Scaling Factor (SF) (0.025) | (0.0625) | (0.1) (0.125) | (0.25) (0.5) (1)
Tetris 1% response 0.3s 0.5s 0.7s 1,1s 1,3s 1,3s 3,3s
Tetris Slices 64 128 128 128 256 256 512

TimelOT ORDERKEY | 64.7s 184.3s |306.7s |356.2s |834.3s |1753.6s | 3604.1s

TimelOT SHIPDATE 72.5s 226.9s |401.3s |554.3s |1223.7s | 2569.8s |5286.4s

Time FTS-Sort 34.1s 126.7s 234.0s 381.1s 816.5s 1479.4s | 3276.4s
TimeTetris 23.1s 64.4s 92.5s 106.2s | 257.5s |441.2s |1062.2s
CacheTetris 0.3.MB | 0.3MB 0.9MB 1.1MB 1.4MB 2.1MB 2.6MB

Temp Storage |IOT/FTS | 17MB 40MB 65MB 81MB 183MB 326MB | 751MB

Table 8-2: Interactive response times and cache sizes for sorting 50 % of LINEITEM

8.2.2 Jains, Grouping, and Restrictions

The query Q4 (cf. Figure 8-6) of the TPC-D benchmark is an order priority checking query,
i.e., it counts the number of orders placed in a given quarter of a given year in which at least
one line item was received by the customer later than its committed date. The query lists the
count of such orders for each order priority sorted in ascending priority order. Since Q4
involves restrictions, joins, and grouping, it is efficiently supported by the Tetris algorithm.

SELECT O ORDERPRI ORI TY, COUNT(*) AS ORDER COUNT
FROM ORDER
WHERE
O ORDERDATE >= DATE ’[date]’ AND
O _ORDERDATE < DATE ’[date]’ + INTERVAL '3 MONTH AND
EXI STS ( SELECT *
FROM LI NEI TEM
WHERE
L_ORDERKEY = O ORDERKEY AND
L_COMM TDATE < L_RECEI PTDATE )
GROUP BY O _ORDERPRI ORI TY
ORDER BY O _ORDERPRI ORI TY

Figure 8-6: Q4 of the TPC-D benchmark

Assuming athree dimensional organization of ORDER (ORDERDATE, ORDERPRIORITY,
ORDERKEY) and LINEITEM (COMMITDATE, RECEIPTDATE, ORDERKEY), query
processing with the Tetris algorithm is shown in Figure 8-7. Q4 groups the restricted ORDER
table depending on tuple existence in the LINEITEM table. Efficiently processing this query
means processing ORDER in ORDERKEY order while using the 3.5%-restriction on
ORDERDATE. To evauate the existential restriction, LINEITEM is processed in
ORDERKEY order and semi-joined to ORDER. The Tetris-algorithm can be used to process
the triangular search space defined by COMMITDATE < RECEIPTDATE in ORDERKEY
order. Processing each ORDERDATE-dice in ORDERPRIORITY order reduces the number
of CPU operations, since groups can be built without comparisons. When processing the last
ORDERDATE dlice, completing an ORDERPRIORITY dlice allows one to transfer the
corresponding group immediately to the user.
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Figure 8-7: Processing Q4

We just report the response times and cache sizes of sorting ORDER in Figure 8-8 and Table
8-3, since the enhancement of the Tetris algorithm for non-rectangular query spaces has not
been implemented yet. The restrictions on ORDER are selective enough for an IOT on
ORDERDATE to be superior to FTS and IOT on ORDERKEY . In accordance with our cost
functions the sudden increase of the FTS for SF = 0.5 is due to the fact that at this point the
main memory is not sufficient anymore to sort the result internally. The Tetris algorithm is
superior to FTS and any IOT, since it utilizes restrictions and sorts the data at the same time.
Even for this quite selective ORDERDATE restriction the Tetris algorithm is more than three
times faster than the IOT on ORDERDATE. Tetris also is 11 times faster than an FTS and
about 30 times faster than an IOT on ORDERKEY..
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Figure 8-8: Responses time and temporary storage for sorting 3.5% of ORDER for Q4

0

As predicted by our cost functions (cf. Section 6.4.1), the Tetris cache of Figure 8-8 is more
than 60 times lower than the intermediate storage of an IOT on ORDERDATE or FTS. Even
for aORDER table of 1.5GB (SF = 4) the 0.3 MB Tetris cache easily fits into main memory.
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Table Size 32MB| 79MB| 131 MB| 161 MB| 322MB| 750MB | 1498MB
Scaling Factor (SF) (0.2) (0.25) | (0.4) (0.5) @) 2 4
Tetris 1% response 0,2s 0/4s 0,1s 0,1s 0.1s 0.2s 0.3s
Tetris Slices 64 128 128 128 256 256 512
Time|OT ORDERKEY 62.0s 1784s| 2959s| 4069s| 813.8s| 1627.5s 3254.9s
TimelOT ORDERDATE 3.2s 9.2 16.8s 34.3s 95.4s| 194.2s 390.4s
Time FTS-Sort 5.2s 12.5s 19.9s| 1464s| 335.2s| 758.6s 1396.7s
TimeTetris 3.3s 7.8 10.5s 12.2s 29.7s 47.8s| 113.9s
Cache Tetris 0.1IMB |01MB |02MB |0.2MB |0.2MB 0.2MB| 0.3MB
Temp Storage |OT/FTS 13MB |32MB |52MB |64MB |129MB | 30.1MB | 60.1MB

Table 8-3: Interactive response times and cache sizes for sorting 3.5% of ORDER

8.2.3 Multi-attribute Restrictions

Query Q6 (cf. Figure 8-9) of the TPC-D benchmark is a forecasting revenue query, which
lists the amount by which the total revenue would have increased if the discounts had been
eliminated for line items with a quantity less than a given quantity in a given year with a
discount deviating 0.01 from a given discount. The UB-Tree range query algorithms may be
used to efficiently process this query involving multi-attribute restrictions and aggregations.

SELECT SUM L_EXTENDEDPRI CE*L_DI SCOUNT) AS REVENUE
FROM LI NEI TEM
VWHERE

L_SH PDATE >= [date] AND

L_SHI PDATE <= [date] + I NVERVAL 1 YEAR AND

L_DISCOUNT BETWEEN [discount] —0.01

AND [discount] + 0.01 AND
L_QUANTITY < [quantity]

Figure 8-9: Query Q6 of the TPC-D benchmark

Q6 is processed by either using an 10T on SHIPDATE to materialize the result and then
check the conditions on DISCOUNT and QUANTITY, or perform an FTS, if no such index
exists. Performing an index intersection on three secondary B’-Trees is not very efficient,
since the selectivity of an individua attribute is relatively low (20% for SHIPDATE, 33% for
DISCOUNT and 50% for QUANTITY). An intersection of bitmap indexes is not a good
choice either, since the number of distinct values for SHIPDATE, DISCOUNT, and
QUANTITY is quite high. Since 1/30" of all tuples of LINEITEM satisfy the restrictions of
Q6, 200k tuples have to be retrieved to process the query for SF = 1. Bitmap indexes and
secondary B-Trees do not cluster the data. Therefore an FTS is preferable to both access
methods. Multidimensional indexes cluster data symmetrically with respect to all index
attributes. With 8kB pages 80 tuples of the LINEITEM relation are stored together on one
page. Accessing 200k tuples then means 2.5k random disk accesses. Thus it makes sense to
use amultidimensional index for this type of query.
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For Q6 we created five instances of LINEITEM, namely a UB-Tree, an 10T on each restricted
attribute, and a table with three secondary B-Trees, one on each restricted attribute. As
expected it was not possible to make the optimizer perform an index intersection. The
optimizer aways preferred an FTS instead. Forcing the optimizer to use a single secondary
index on SHIPDATE (the most selective attribute) was much less efficient than an FTS. Since
this verifies our theoretical expectations, as before we exclude secondary indexes also from

our performance comparison for Q6.
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Figure 8-10: Processing Q6 with UB-Tree, IOT and FTS

The shaded part of Figure 8-10 shows the part of LINEITEM that is retrieved by the Tetris
algorithm, the 10T on SHIPDATE, and the FTS in order to process Q6. Although an FTS
retrieves the entire relation, prefetching strategies substantially reduce the number of random
accesses and make the FTS superior to any 10T.

TableSize 33MB| 81MB| 131MB| 163MB| 326 MB| 65IMB | 1302MB
Scaling Factor (SF) (0.025) | (0.0625) | (0.1) |(0.125) [(0.25 | (05) o)

TimelOT QUANTITY 436s | 109,2s | 180,1s | 2252s | 460,7s | 921,4s | 1842,8s

Time|OT DISCOUNT 31,2s 783s | 126/4s | 158,2s | 339,2s | 6784s | 1356,8s

TimelOT SHIPDATE 21,2s 53,7s 81,6s | 102,1s | 208,1s | 416,3s | 832,5s
TimeFTS 52s 12,1s 19,2s 23,8s 47,7s 93,9s | 187,6s
TimeUB-Tree 1,1s 2,5 4,5s 5,8s 12,0s 21,3s 30,55

Table 8-4: Interactive response times for Q6

Table 8-4 and Figure 8-11 again show the superiority of a multidimensional organization over
classical access methods by a sixfold speedup of the Tetris algorithm over an FTS and by a
speedup of two to three orders of magnitude over any IOT. The results also show that an FTS
is superior to any one dimensional index, since the FTS uses page clustering whereas indexes
only use tuple clustering. In accordance with our cost formulas from Section 6.3, the
restriction in any dimension is not selective enough for an IOT to make up the page clustering
advantage of the FTS. However, a multidimensional organization of the table with a UB-Tree
utilizes the restriction in all dimensions and thus clearly outperforms the FTS. In addition, an
FTS puts an enormous load on the system in both 1/0O-resources and CPU-resources, since
each tuple of the relation is retrieved and processed in main memory (cf. [Pie98]). Thus,
especialy for multi-user environments indexes may be preferable to an FTS because of
concurrency considerations.
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Figure 8-11: Performance of Q6

8.2.4 Summary: TPC-D Performance Measurements

Our performance measurements of three TPC-D queries have shown that UB-Trees and the
Tetris algorithm are superior to one-dimensional access methods with respect to both response
time and systems resources for storing intermediate results. With the Tetris algorithm a new
operator may be introduced into query processing, the so-called Tetris operator. This operator
combines the evaluation of multi-attribute restriction with a sort operation in one processing
step, if arelation is organized by a multidimensional index.

Usually no more than 3 to 6 foreign keys are used to describe the foreign keys relationships
between tables. For these dimensionalities only 1/0O-time linear in the size of the result set and
sublinear temporary storage are necessary to perform the Tetris algorithm. In contrast to a
merge-sort algorithm results are produced in a continuous flow of operation. Therefore
sorting is no longer a blocking operation. Compared to existing techniques, the first results are
available much earlier and thus allow better interactive response times and better internal
pipelining of the data. The benchmark results for three queries of the TPC-D benchmark show
speedups of up to two orders of magnitude in response time. Depending on the query,
temporary storage requirements are reduced by severa orders of magnitude
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8.3 A Real World Data Warehouse: The Juice& More

Benchmark

The most established relational data models for data warehousing applications are the star
schema and the snowflake schema. In both approaches there is a central fact table that
contains the measures and the dimension tables are situated around it. The connection
between a fact tuple and the corresponding dimension members is realized via foreign key
relationships. In the star schema the dimension tables are completely denormalized while in
the snowflake schema they may be normalized. Queries usually contain restrictions on
multiple dimension tables (e.g., only sales for specific customer group and for a specific time
period are asked) that are then used as restrictions on the usualy very large fact table. This
operation (star join ) is typical for such models. In ROLAP hierarchies are usualy modeled
implicitly by a set of attributes A, ..., A, where A; corresponds to hierarchy level i.

In this section we investigate, how our technique of multidimensiona hierarchical clustering
of Section 5.3.4 may be used to accelerate star-joins, the most frequent operation of query
processing for relational data warehouses.

We use the schema of the beverages supplier ‘Juice & More’, a real customer of one of our
project partner. In the data warehouse of ‘Juice & More’ data is organized along the
following four dimensions: CUSTOMER, PRODUCT, DISTRIBUTION and TIME. Figure
8-12a shows the hierarchies over the dimensions (the number in parentheses specifies the
maximal number of level members).

[probuct| [ customer| [ pistriBuTiON| [ TIME]| FESELET DISTRIBUTION
12 rows
PRODKEY DISTKEY
| Type (5) | | Region (8) | S{:ll&_ Year (3) TYPE SALESORG
Organization (5) BRAND. FACT CHANNEL
A4 A4 ¢ | | CATEGORY 26M rows
Brand (8 Nati — Month (12) CONTAINER PRODKEY
| ( )l | ation ml Distribution CUSTKEY
Channel (3)
\4 v DISTKEY
| Category (19)| | TradeType (2) | CUSTOMER TIMEKEY
7030 rows SALES
\4 v CUSTKEY DISTCOST
| Container (lO)l | BusinessType (7)| RECION TIME
NATION 36 rows
TRADE-TYPE TIMEKEY
BUSINESS-TYPE YEAR
MONTH

(@ (b)
Figure 8-12 Hierarchies in the ‘Juice & More’ schema and the corresponding star schema

The ROLAP data model for the ‘Juice & More’ schema (Figure 8-12b) is a typical star
schema with one fact table FACT and a table for each of the 4 dimensions. Let ‘SALES’ and
‘DISTCOST be some of the measures in the fact table. We used the methodologies of

'8 The company and the data presented here has been made anonymous.
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surrogates and multidimensional hierarchical clustering as described in Section 5.3.4 for
clustering the fact table of ‘Juice & More’ with UB-Trees.

In the following we describe some example queries involving star joins for the ‘Juice &
More’ schema. These queries were taken from the real-world decision support system of
‘Juice & More’. The database schema and data of ‘Juice & More’ are real world data which
we obtained from our project partners. Thus next to the investigation of multidimensional
hierarchical clustering this section is interesting from a second point of view: The highly
skewed data distribution of the ‘Juice & More’ will prove that UB-Trees and the Tetris
algorithm are not only applicable to laboratory environment tests with generated data, but also
prove their efficiency in the practical application scenarios. In order to show the highly
skewed data distribution we included an entire section displaying the one-dimensional data
distribution of ‘Juice & More’ for every dimension.

We then present measurements performed with our prototype implementation of the UB-Tree
on top of DBMS2. For the evaluation of our clustering technique we defined a benchmark
with 36 queries. In comparison we also conducted measurements with native DBMS2 access
methods: full table scan (FTS) and bitmap indexes (BIl). For these measurements we used a
completely denormalized fact table, that is, no additional joins had to be performed to answer
the queries. The bitmap indexes were created on each hierarchy level. We did not include
secondary indexes in our comparison measurements because earlier experiments showed that
they are neither competitive to the UB-Tree nor to FTS or Bll [MZB99].

8.3.1 Queries on the ‘Juice & More’ Schema

In the following we present typical queries that are taken from rea applications for the
schema given in the previous section. We will use these queries to illustrate our approach and
we will present performance measurements for exactly these queriesin Section 8.3.4.

Query 1 (Q1, cf. Figure 8-13) computes the sales for a given product group (TYPE and
BRAND specified as (X1, X2)) and a given customer group (NATION and REGION
specified as (Y1, Y 2)) for the months from October to December of 1993.

SELECT SUM Sal es)
FROM Fact F, Custoner C, Product P, Tine T
WHERE F. ProdKey = P. ProdKey AND F. CustKey = C. Cust Key AND
P. Type = X1 AND P.Brand = X2 AND
C.Region = Y1 AND C Nation = Y2 AND
F. TimeKey = T.TimeKey AND T. Year = 1993 AND
T.Month >= Cctober AND T. Month <= Decenber

Figure 8-13: Time Interval (Q1)

Query 2 (Q2, cf. Figure 8-14 ) calculates the cost of distribution of the products of type X for
each distribution channel.
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SELECT SALESORG CHANNEL, SUM Di st Cost)
FROM Fact F, Distribution D, Product P
VWHERE F.Di stKey = D. Di st Key AND
F. Product Key = P. Product Key AND
P. Type = X
GROUP BY D. Sal esOr g, D. Channel

Figure 8-14: Distribution cost (Q2)

Query 3 (Q3, cf. Figure 8-15) restricts all dimensions on the first level of the hierarchies.

SELECT SUM SALES)

FROM Fact F, Distribution D, Product P, Custoner C, Tine T

WHERE F.Di stKey = D.DistKey AND F. Ti nreKey = T. Ti neKey
AND F. Cust Key = C. CustKey AND F. ProdKey = P. ProdKey
AND P. Type =t AND D.SalesOg = s AND T. Year =y
AND C. Region =r

Figure 8-15: Partial match query in the first hierarchy level (Q3)

8.3.2 Data Distribution

The data of ‘Juice & More’ is real world data from one of our project partners. In contrast to
the data distributions used for most of the performance analyses and measurements in the
previous sections, the ‘Juice & More’ data distribution of both the fact table and the
dimension tables is highly skewed: The dimensions neither distributed uniformly nor are
independent. The original fact table consisted of 823.464 tuples (about 175 MB). To get a
realistic large data cube, the fact table was enlarged to 26.350.848 tuples (about 5,6 GB). Our
project partner implemented an augmentation algorithm with minimal impact on the data
distribution (see [Pie98]).

In the following we show some charts which describe the one-dimensional data distribution
for each dimension. However, we once more stress that the dimensions are not independent
(e.g., some customers always order the same subset of products, some customers or products
only exist for a certain time, etc.). Thus in general, the overall selectivity of a query restricting
several dimensions isot the product of the selectivities of the one-dimensional restrictions
(which is shown in the following charts). We will see this deviation in Section 8.3.3.

The fact table of ‘Juice & More’ stores several measures (e.g., distribution cost, sales)
aggregated on a daily basis with respect to the dimensions time, customer, product and
distribution. Since the data is sensitive real-world business data, it is not possible to show the
labels/names of the hierarchy members in the charts.
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8.3.2.1 TheTimeDimension

The time dimension of ‘Juice & More’ consists of a two-level hierarchy of months and years.
The test data stored the years from 1993 to 1995. As shown in Figure 8-12a, the days of the
time dimension are organized by a two level hierarchy (year and month). Figure 8-16 shows
the cumulated data distribution of the fact table with respect to the time dimension grouped by
year and month. The horizontal axis displays the hierarchy members, with “All” at the very
bottom (i.e., the lowest level), the years 1993, 1994, and 1995 in the middle and the twelve
months for each year above the year. The arrows in the horizontal axis indicate the
relationship between the members of neighboring hierarchy levels.

Thus the fact table of ‘Juice & More’ is almost uniformly distributed with respect to the time
dimension. The minimum number of facts for one month is 2,70% of the fact table (in January
1993, December 1993 and January 1995), whereas the maximum number of facts per month
is 2,83% (in March of each of the three years). Thus with a multidimensional clustering using
5 split levels (cf. sections 3.10 and 6.1) restrictions to one month in the time dimension
(=1/36) can be expected to reduce the amount of data to arodrd11B2.
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Figure 8-16: Data distribution of the time dimension

8.3.2.2 TheProduct Dimension

The top level of the hierarchy on product has five entries. The data distribution is quite
skewed, there are three product groups to which 93% of all tuples of the fact table belong. 1%
of the data is unclassified. The distribution of the first level of the product hierarchy is
illustrated in Figure 8-17a. Multidimensional hierarchical clustering as described in 5.3.4
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ensures that a restriction in the first hierarchy level will result in a 1%, 27%, 6%, 32%
respectively 34% reduction of 1/0Os which are necessary to retrieve the result set. Without
exactly showing the relationship between the hierarchy members, we show the skew of the
data distribution over the first four product levels in Figure 8-17b. The distribution of the first
two hierarchy levels is illustrated in Figure 8-18. The horizontal axis again displays the

relationship of the members of the first two hierarchy levels.
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Figure 8-17: Data distribution of the product dimension
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8.3.2.3 The Customer Dimension

According to business administration literature 20% of the customers contribute to 80% of the
business. The customer dimension of ‘Juice & More’ is a typical example for a classification
of customers in such a company. A high number of customers (in this case 88%, the very left
entry of Figure 8-19) are not classified (maybe they are not interesting for the company
because of small turnover or it is not possible to find a classification). The classified customer
groups contain 0% to 3% of the tuples stored in the tdBl@e hierarchical relationships on

the horizontal axis show that the hierarchy of the customer dimension is not balanced, since
several hierarchy members just have one child.

The consequence of the small number of classified customers is that in queries the customer
dimension will be restricted to a small range (3%) and therefore the result set will be small.
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Figure 8-19: Data distribution of the customer dimension

8.3.2.4 TheDistribution Dimension

There are seven entries on the first level of the distribution hierarchy. The data distribution of
the fact table with respect to the distribution dimension is highly skewed. Figure 8-20a shows
the distribution of the first hierarchy level (i.e., sales organization), while Figure 8-20b shows
the distribution of facts in the fact table for each distribution channel of each sales
organization. Again the arrows indicate the hierarchical relationship of the members of
neighboring hierarchy levels with the hierarchy root “All” at the bottom of the Figure.

9 Note that the data in the ‘Juice & More’ warehouse is aggregated on a daily basis, thus the amount of data is
usually compressed for large customers, thus the proportion of large customers is reduced.
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Figure 8-20: Data distribution of the distribution dimension

8.3.3 Multidimensional Hierarchical Clustering of ‘Juice & More’

Figure 8-21 shows the compound surrogates for the ‘Juice & More’ data warehouse, which
are calculated as fixed length compound surrogates as described in Section 5.3.4. For any of
the 4 hierarchies the length of the compound surrogate does not exceed 15 bits and thus can
be stored in a single integer value. These compound surrogates are used as attributes for each
of the four dimensions of ‘Juice & More’ to calculate the Z-address for each tuple of the

‘Juice & More’ fact table.

CSprOduct = p15 p14 pl3 p12 pll plO p9 p8 p7 pG p5 p4 p3 p2 pl

levell level 2 level 3 level 4
= CpCyCgCrCeCs €, C3C,C
%/_/

levell level2  level3  level4

CS

customer

Cstime = t6t5t4t3t2tl
—_——

levell |evel 2
CSgigribution = d5d,ds d,d,
levell level2

Figure 8-21: Compound surrogates for each dimension of ‘Juice & More’

The UB-Tree for the ‘Juice & More’ fact table consists Bf= 878362 pages, which
corresponds to:
| =log P =10g,878362 = 19,7

hierarchical split levels. With bit interleaving in the order of dimensions product, customer,
time, and distribution the Z-addregs for a tuple of the ‘Juice & More’ fact table is
calculated as:

= PisCioles PraCols s PuaCelsds ProCrtsd, Pty Ay PioCsly PoCs PoCs P7C2 PoCy Ps Pa Ps P2 Py

completely partitioned for any data distribution partly split partitioned depending on the data distribution
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The first 19 bits of the Z-address are guaranteed to be used to partition the four dimensional

universe of the ‘Juice & More’ fact table. This means that the binary s{rig@sp13p12p11 Of

the compound surrogate of produgiCoCsCsCs Of customeriststatst, of time anddsdsdsd, of
distribution are used to partition the universe. For each of the four dimensions the first
hierarchy level is completely used for the partitioning. The second hierarchy level is used to a
large extent to partition the universe. Therefore a restriction in the first hierarchy level will
result in a reduction of the number of pages as determined by the data distribution of Section
8.3.2, i.e., a restriction of the product main group to “910” will reduce the number of pages to
be retrieved to 27%, a restriction to “912” will result in a reduction to 6,41%. This holds for
the restriction of the first hierarchy level in any dimension. If the top hierarchy level is
restricted in several dimensions and the independence assumptions holds for these
dimensions, the reduction is multiplicative. Table 8-5 shows the predicted selectivity
calculated as the product of the selectivity in each dimension, the actual selectivity and the
loaded pages in percent of the entire pages in the database for two queries, which restrict the
first hierarchy level of three out of four dimensions.

Scustomer Soroduct | Sdistribution | Stime pages loaded pra:h cted actual |loaded
selectivity | selectivity | pagesin %

0,78% |6,41% |375% |[100% |178 0,0182% |0,0199% | 0,0207%

87,34% |6,41% |37,5% |100% |18996 2,0981% |2,1618% |2,1627%

Table 8-5: Restrictions in the first hierarchy level in 3 of 4 dimensions

However, the data is not independently distributed in the entire 4-dimensional universe of
‘Juice & More’. In this case the predicted selectivity does not describe the actual selectivity
anymore. Thus some bits of the first 19 bits are correlated. This means that not all
combinations of these bits occur and some partitioning will take places in the bits below bit
number 19 of the Z-address. In this case the second level may already be completely
partitioned and even a third hierarchy level partitioning may have started for some
dimensions. A typical part of the multidimensional space where this will happen is the
customer hierarchy “unclassified”, which stores 87,34% of the customers. At most the three
bits c10coCs Of the customer hierarchy are needed to distinguish these customers from all other
customers. Thus for the unspecified customers theii®f the first 19 bits of the Z-address

are correlated to;ocoCs and two further bits may be used for partitioning. Tthuill be split
completely,p;o will be used for the partitioning aridwill be partly split €5 is also correlated

to C10CoCg). Actually, this is a puff-pastry effect, which due to the surrogate calculation is
beneficial for query performance since it allows to have further partitioning steps for
correlated hierarchy levels. Our measurements show that this effect also holds for other
dimensions. Table 8-6 shows queries where the first two hierarchy levels of customer, product
and time are restricted, whereas the distribution dimension is not restricted. The selectivity
predicted by the cost functions here differs from the actual selectivity of the query because of
dependencies in the data distribution. However, the percentage of pages loaded is similar to
the actual selectivity of each query.
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Scustomer | Sproduct Ssistribution | Stime pages loaded pfedl cted |actual |loaded
selectivity | selectivity | pagesin %

2,95% |3,64% |100% 38,41% |312 0,0414% |0,0310% |0,0355%

2,95% |27,99% |100% 38,41% | 782 0,0318% |0,0851% | 0,0890%

Table 8-6: Restriction in the first two hierarchy levels in 3 of 4 dimensions

Each of the 878362 pages of the ‘Juice & More’ fact table stores 30 tuples. All of the
measurements showed that when restricting the first hierarchy level in each dimension in
average 99,99% of the tuples on the pages contributed to the result set. A standard deviation
of less than 0,001 for these measurements means that the multidimensional hierarchical
clustering is perfect for multidimensional restrictions in the first hierarchy level. When
additionally restricting the second hierarchy level in average 557 pages were loaded, where
10,7% of the tuples did not contribute to the result set. The standard deviation here was 0,06.
Additionally restricting the third hierarchy level of each dimension usually created result sets
with only one page.

Thus multidimensional hierarchical restrictions are very well processed by UB-Trees storing
compound surrogates which are created by the multidimensional hierarchical clustering
technique introduced in Section 5.3.4. Again, the basic consideration about the UB-Tree in
terms of dimensionality (cf. Section 3.9) and restricted dimensions (cf. Section 7.4.3) hold.
For star schemas as used in present data warehousing applications this approach may
significantly speed up query performance and reduce resource requirements in disk space and
processing time. We are currently refining the technique of multidimensional hierarchical
clustering by using hash clusters for the calculation of each individual surrogate. This
refinement will be implemented to hierarchically cluster a data warehouse of marketing data
provided by one of our project partners.

8.3.4 Performance M easur ements

The measurements for ‘Juice & More’ were performed on a SUN Enterprise with four 300
MHz UltraSPARC processors and 2 GB RAM under Solaris 2.6. As secondary storage a
partition on a SPARCstorage array with RAID level 0 (6 disks striping, 5-6 MB/s transfer rate
per disk) was used. All measurements were done in a single-user environment.

It is important to note that our implementation still causes significant overhead due to the fact
that we have implemented the UB-Tree on top of a DBMS and not in the kernel itself. First,
the number of SQL statements that have to be processed (UB: 1 statement for each page in the
result set, DBMS2 methods: 1 statement in total) leads to extensive inter-process
communication (about 30% of the total processing time) and DBMS overhead (e.g., parsing
of statements). Second, our table is larger than the one for the FTS and the bitmap indexes
due to unimplemented compressing techniques in the UB-Tree (for 8 KB pages: UB: 878362
pages, FTS: 723539 pages, Bll: FTS+31134 pages).
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Figure 8-22 shows result set sizes and response times of the three example queries (Section
8.3.1). Q1 shows that the UB-Tree with multidimensional clustering is over 2 times faster
than BII even for very small result sets. Q3 which is processed by the unoptimized UB-Tree
at least 10 times faster than with any other access method undermines this observation.
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Q2 1696416 6,52%
Q3 19752 0,08%

Figure 8-22: Query response times and result set sizes

The result set of query Q2 is quite large but the amost perfect clustering factor of the UB-
Tree (in average more than 29 out of 30 tuples/page belong to the result set) still leads to a
speed up of more than 30 % in comparison to Bll. The time for FTS for Q2 differs from the
times for Q1 and Q3 due to the less complex WHERE clause of the statement. The number of
comparison operations is therefore much smaller than for the other queries which causes the
faster execution.

All these results on real data show how well the multidimensional hierarchical clustering with
UB-Trees works in practice and the accuracy of our theoretical cost model. In total more than
77% of al benchmark queries (28 out of 36) showed a speed up between a factor of 1.3 and
10 over traditional techniques [Pie98]. Figure 8-23 lists two instances for each of five further
queries of that benchmark. For each query Table 8-7 lists the number of hierarchy levels that
by each query are restricted to a point for each dimension. Since the data is non-uniformly
distributed, the selectivity of each query depends on the exact point restriction, not only on
the number of restricted hierarchy levels. We thus present two instances of the queries, each
of which has adifferent selectivity.

Customer | Product |Distribution |Time |Selectivity |Selectivity
Instance 1 |Instance 2
Q4 |2 2 0 1 0,0414% | 0,3176%
Q5 |1 1 1 1 0,0070% | 3,4383%
Q6 |1 1 1 0 0,0182% |2,0981%
Q7 |1 0 0 1 1,1346% | 1,1346%
Q8 |0 1 0 1 6,0000% | 34,0000%

Table 8-7: Restricted hierarchies and selectivities for five queries against the
‘Juice & More’ data warehouse
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8.3.5 Summary: Data Warehouse Perfor mance M easur ements

Our performance measurements have shown that multidimensional hierarchical clustering
reduces the number of random accesses to the fact table for star joins and other queries with
restrictions in multiple hierarchies. In addition, sort operations as necessary for grouping and
aggregation are performed on the fly without additional 1/0. For dimensionalities typical for
data warehousing only I/O-time linear in size of the result set prior to aggregation and
sublinear temporary storage are necessary to aggregate parts of a data cube. Thus secondary
storage space and pre-computation time for many aggregates and bitmap indexes can be
avoided. In addition the widely discussed view maintenance problem is minimized. The
benchmark results for typical queries of a 7 GB real world retail data warehouse confirmed
our analytical expectations and showed significant speedups up to a factor 10 in response
time. Depending on the query, temporary storage requirements for sorting are reduced by
severa orders of magnitude. Our clustering approach also holds not only for ROLAP but also
for MOLAP implementations of a data warehouse since both ROLAP fact tables and MOLAP
data cubes can be clustered in this way.
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A thousand things ... suddenly
added up like a column of figures
in her mind.

(William Humphrey)

Chapter 9

Summary

efore drawing conclusions and describing future research work, we briefly
summarize the contribution of this thesis to the research in database

management systems. We have analyzed the application of a

multidimensional access method to RDBMS. After introduction of a formal
model for multidimensionally partitioned relations we discussed severa
query types and identified the significance of multidimensional range
gueries and sort operations for query processing. Discussing current access methods we
motivated the need for a multidimensiona partitioning of relations. We described the UB-
Tree in combination with algorithms for insertion, deletion, point queries, and range queries.
We further introduced two new algorithms, the spiral algorithm for nearest neighbor queries
with UB-Trees and the Tetris algorithm for efficient access to a table in arbitrary sort order.
We aso gave a detailed analysis of the UB-Tree space partitioning. We defined a cost model
and compared the cost of range queries and sort operations for UB-Trees to the state of the art
in current DBMS. The practical applicability of our approach was shown by performance
measurements on a prototype implementation of UB-Trees on top of the RDBMS DBMS1
and DBMS2. These experiments with artificial data, for the TPC-D benchmark and for a star
schema data warehouse confirmed the theoretically expected superiority of UB-Trees and the
algorithms developed in this thesis over traditional access techniques with respect to both
response times and storage requirements.
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9.1 Conclusions

Next to a prototype implementation of most of the algorithms discussed in this thesis, our
main contributions are the analytical cost model (Chapter 6), the Tetris algorithm (Section
4.7) and the technique of multidimensional hierarchical clustering (Section 5.3.4). The
performance measurements of Chapters 7 and 8 proved, that all of these techniques are
feasible and of practical relevance. Moreover, the expectations derived from our theoretical
cost model in Chapter 6 are met by these performance measurements. In addition, some
interesting algorithmic problems were solved during the work on this thesis (e.g., bit-
interleaving for address calculation (cf. Section 5.3) or the reduction of the complexity of the
calculation of the next Z-region intersection from exponential to linear (cf. Section 5.7.1).

The cost model may be used as a basis for cost-based query optimization. Using histograms
[PIH+97] to determine the selectivity of the multidimensional restrictions, the selectivity
based cost formula (Section 6.1.4) will aso give a reasonable cost estimation for non-
uniformly distributed partitioned multidimensional universes.

With enumeration types (cf. Section 5.3.3), multidimensional hierarchical clustering (cf.
Section 5.3.4) and variable UB-Trees (cf. Section 5.3.5) we have introduced three techniques
to overcome the puff-pastry effect which is inherent in Z-ordered data spaces (cf. Section
3.10). Suitable data modeling should ensure that these techniques are applicable in order to
obtain a suitable multidimensional partitioning of arelation.

By the virtue of the cost model and by experiments we found that multidimensional indexes

are useful for partitioning data according to up to 10 dimensions (cf. Section 3.9). For large
dimensionalities a subset of the attributes should by chosen by proper physical data modeling
techniques. However, dimensionalities of 6 — 10 dimensions are usual in relational data
models, since one relation seldom has more than 6 — 10 foreign keys. Note that the number of
key attributes is not identical to the dimensionality of the data space, which is often much
smaller if foreign keys are composite keys.

The Tetris algorithm allows to accelerate most operations of relational query processing, if
multidimensional range restrictions and/or sort operations are involved. Due to that fact one
of our project partners has started to integrate UB-Trees and the Tetris algorithm into the
kernel of its RDBMS. With suitable heuristics for query optimization, the Tetris algorithm
thus may substantially speed up query processing in RDBMS. For dimensionalities typical for
relational databases only I/O-time linear in the size of the result set and sublinear temporary
storage are necessary to perform the Tetris algorithm. In contrast to a merge-sort algorithm,
the sorted relation is produced in a continuous flow of operation. Therefore, using the Tetris
algorithm, sorting is no longer a blocking operation. Thus internal pipelining is tremendously
improved, since results are earlier transferred to other nodes of the operator tree or even to the
user. Thereby the Tetris algorithm offers the chance to efficiently process iceberg queries for
ranking [FSG+98], if the desired measure is used as a further dimension of the UB-Tree. The
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Tetris agorithm then does not read the entire query box in the sorting dimension, but
terminates after processing thefirst slices.

Aggregations can be calculated on-the-fly and allow better interactive response times. When
sorting arelation or joining relations, restrictions in multiple attributes can be efficiently util-
ized in order to reduce I/O-cost and CPU-cost. The benchmark results for three queries of the
TPC-D benchmark show speedups of up to two orders of magnitude in response time.
Depending on the query, temporary storage requirements are reduced by several orders of
magnitude. Further analysis indicates that our approach is useful for an even broader range of
queries.

A star join with a point restriction of some hierarchy level of each dimension table resultsin a
range restriction on each compound surrogate, if the fact table is organized with
multidimensional hierarchical clustering using surrogate encoding for the foreign keys. In the
same way intervals on the children of one hierarchy level result in a range of the corre-
sponding compound surrogates. Thus, with multidimensional hierarchical clustering a star
join on a schema with d dimensions creates a d-dimensional interval restriction on the fact
table. Therefore star-joins in data warehouse benefit from the Tetris algorithm and the range
query algorithm for UB-Trees as described in the previous paragraph. For dimensionalities
typical for data warehousing only 1/O-time linear in size of the result set prior to aggregation
and sublinear temporary storage are necessary to aggregate parts of a data cube. Secondary
storage space and pre-computation time for many aggregates and bitmap indexes can be
avoided. In addition the widely discussed view maintenance problem is minimized. The
benchmark results for typical queries of a 7 GB real world retail data warehouse confirmed
our analytical expectations and showed significant speedups up to a factor 10 in response
time. Depending on the query, temporary storage requirements for sorting are reduced by
severa orders of magnitude. Our clustering approach also holds not only for ROLAP but also
for MOLAP implementations of a data warehouse since both ROLAP fact tables and MOLAP
data cubes can be clustered in this way.

9.2 FutureWork

In our future work we are particularly interested in a detailed study of relational query
processing with multidimensional indexes. We are in the process of investigating a
methodology for query optimization with multidimensional access methods, both for
heuristics-based and cost-based query optimizers. We will do performance measurements in
multi-user environments where we expect even more significant speedups. In ajoint research
project with TransAction Software we are currently integrating the UB-Tree into the DBMS1
kernel in order to reduce the overhead of the current implementation.

An interesting enhancement of UB-Trees might be the use of Hilbert curves [Hil91] as space
filling curves for the UB-addresses. As our theoretical considerations in Section 3.3 showed,
Hilbert curves will result in a better space partitioning because spatial proximity for both
neighbors on the Hilbert curve is guaranteed. However, the agorithms for dealing with
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Hilbert addresses (H-addresses) are more complicated than these for Z-addresses, since the
subcube in space defined by each step of an H-address depends on the previous steps of the
H-address. A prototype implementation and performance measurements of the overhead for
H-address calculation and next intersection calculation of the range query algorithm will have
to show if the better space partitioning pays off.

Query optimization with multidimensional access methods is an area which has not been
researched in detail yet. The ability to handle multi-attribute restrictions with tuple clustered
access methods will have to be taken into account by query optimizers. The Tetris operator of
sections 4.7 and Chapter 8 shows that query optimization with multidimensional access
methods will alow more complex operations to be handled by a single operator. In order to
take advantage of multidimensional access methods, it is not sufficient for cost based
optimizers to rely on one-dimensional statistical information. In addition, approaches like
multidimensional histograms [PIH+96, Poo97] should be used here. For these applications
our cost model of Chapter 6 could be further refined and adapted.

Multidimensional access methods can also be used for the organization of intermediate
results. Very often a node of an operator tree gets an input stream sorted with respect to one
attribute A;, whereas a sorted processing with respect to another attribute Ay is required. A
refinement of the Tetris algorithm could be used to perform a sorted writing of the
intermediate result in sort order of A while taking advantage of the sorted input in order to
reduce the cache size and to avoid the external sorting process. The implementation of this
refinement of the Tetris algorithm for sorted writing as well as the implementation and
analysis of the operators of the relational algebra with multidimensional access methods will
be an interesting task of future research.

Another issue which has not been addressed in this thesis are the issue of parallelization and
data partitioning. In our opinion many of the algorithms proposed in this thesis have a high
potential for parallelization (e.g., the UB-Tree range query algorithm and the Tetris
algorithm). Multidimensionally partitioning data with respect to several disks or RAID
systems [PGK88] will aso allow to exploit parallelism. Another issue with respect to data
partitioning is the organization of huge databases on tertiary storage. Indexing of tertiary
storage archives might also take our approach of multidimensional clustering into account.

Further research can also be done in the field of locking, where locking strategies might take
advantage of the multidimensional organization of arelation. Spatial locking is a special kind
of predicate locking which efficiently takes the physical organization of the relation into
account in order to reduce contention problems. Page locking then corresponds to locking
regions in multidimensional space. Spatial locking with UB-Trees might result in a
hierarchical spatial locking concept which might be an improvement over classical locking
mechanisms in both CPU-time for lock operations as well as space required for maintaining
the locking information.
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During the work for the thesis we aso envisioned the lack of a universal physical data model.

While a broad variety of data models has been introduced on the conceptual and logical level

(e.g., E/R-moddl, relational model, object-oriented data models, multidimensional data
models) no standardized physical data model has been established. Since for any logical

model the data must be mapped to primary, secondary and tertiary storage, a universal
physical data model would allow to use a single physica DBMS engine to implement any

logical model. With appropriate mapping strategies a (time optimal, space optimal, etc.)
physical model for a certain system configuration (logical DBMS schema, set of queries, set

of access methods, hardware configuration) could be automatically derived (in analogy to the

Auto Admin tool of Microsoft's SQL Server 7 [MS98a]). This might result in cost savings for
DBMS application development, since a DBMS could offer views of the same physical data
in several logical models. In addition, cost for DBMS administration might be reduced, since

performance tuning is separated from the application data model and can be solely performed
on the physical model.
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Time present and time past are
both perhaps present in time
future. And time future contained
in time past.

(T. S Eliot)
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Csl composite secondary index (see Section 7.4.2,
aso O 10T) Section 6.3,
Section 2.3
C-value synonym to [ C-address
dimension Section 2.1
dimensionality synonym to [J arity Section 2.1
distance Section 2.1.3
domain D, D, |Section2.1.1
Qi
domain, actual subset of adomain actually used | V; Definition
inarelation 3-34
domain, maximum value Ui Section 2.1.1
domain, minimum value Ai Section 2.1.1
domain, multidimensional cross product of one-dimensional | Q Section 2.1.1
domains
FTS full table scan Section 2.3,
Section 2.4,
Section 7.4.2,

Section 6.3
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H-address index of a point on the Hilbert Section 3.1
curve
H-curve synonym to [1 Hilbert curve
Hilbert curve space filling curve created by the Section 3.1
leitmotif of D. Hilbert [Hil91]
H-value synonym to [ H-address
idealized uniform partitioning special region distribution of a Section 3.7.3,
multidimensionally partitioned Section 6.1
universe
index candidate attribute restricted or sorted Definition
during the processing of a query 2-22
interval, multidimensional [[X, VY]], |Definition
]]X’ y]]’ 2-8
[[x W
11 il
interval, one-dimensional [a, b], |Definition
la,b], |2-7
[a, b,
la, b
10T index organized table, clustering Section 7.4.2,
B'-Tree Section 2.4.1
Lebesgue curve synonym to [ Z-curve
length O volume vol Section 2.1.3
lexicographic ordering synonym to [1 compound < Section 2.3.2,
ordering Example 2-6
MSI multiple secondary index Section 2.4.2,
intersection (see aso [ BII) Section 7.4.2,
Section 6.3
Multidimensional ~ Hierarchical | encoding technique for Section 5.3.4

Clustering

multidimensional hierarchies
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neighbor of a point point, which only differsin one Section 2.1.1
coordinate from a given point
and the difference between the
two pointsin this coordinate is
the limit of resolution
normalization, scalar a Definition
2-5
normalization, tuple A Definition
2-6
page byte container or (ordered) set Definition
storing tuples of arelation 2-15
point, d-dimensional vector of coordinates which X, ¥,z |Section2.1
defines alocation in d-
dimensional space
predecessor, point Definition
39
predecessor, value Definition
3-8
puff pastry degree degree of unsymmetry of a Z- Section 3.10
ordered space
query Definition
2-18
guery box Q Definition
2-21
query, arbitrary volume Section 2.2.3
guery, exact match Section 2.2.1
query, partial match Section 2.2.1
guery, partial range Section 2.2.2
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guery, range Section 2.2.2
region subspace of Q Definition
2-14
relation set of tuples R S Section 2.1
relation, base space O multidimensional domain of a Section 2.1.1
relation
relation, multidimensionally | set of tuples stored on a set of Pr, Ps |Section 2.1.5,
partitioned pages, where each page Definition
correspondsto aregionin 2-17
multidimensional space
relation, partitioned set of tuples stored on a set of Pr, Ps |Section 2.1.5,
pages Definition
2-17
restriction logical predicate defined by a Definition
query 2-20
restriction interval subspace defined by a query Definition
2-21
result attribute attribut projected into the result Definition
set of aquery 2-22
result set tuples satisfying a query Definition
condition 2-18
row synonym to [J tuple Section 2.1
selectivity percentage of tuplesin the Definition
database satisfying arestriction 2-19
spiral algorithm algorithm to process nearest Section 4.6
neighbor querieson
multidimensionally partitioned
data spaces
SS| single secondary index Section 6.3,

Section 2.3
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successor, point Definition
39
successor, value Definition
3-8
table synonym to [ relation R S Section 2.1
Tetris algorithm algorithm to process sort Section 4.7,
operations while processing Section
multi-attribute restriction on 5.3.4.6,
multidimensionally partitioned Section 6.4
data spaces
tuple, d-dimensional X, ¥,z |Section2.1.1
type type of an attribute Section 2.1
UB-Tree multidimensional access method Definition
based on Z-ordering 4-1
variable UB-Tree encoding technique for Section 5.3.5
independent, arbitrarily
distributed dimensions
volume percentage of space covered by a | vol section 2.1.3
subspace compared to the entire
multidimensional space
Z-address index of apoint on the Z-curve Definition
33,
Definition
3-19,
Definition
3-20
Z-area subspace of the multidimensional | A1, /A, | Definition
space constructed by a Z-address |Aj, ... | 3-19
Z-curve space filling curve created by bit- Definition
interleaving of the co-ordinates 34

of the points
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Z-ordering linear ordering of < Definition
multidimensional space created 35
by the Z-curve

Z-region (closed) subspace covered by thepart of |[a: 8] | Definition
the Z-curve starting with Z- 3-17, Section
address a and ending with Z- 3.6
address B

Z-region (open) subspace covered by thepart of |]a: 8] | Definition
the Z-curve starting with Z- 3-23

address a and ending with Z-
address S, where a is not
included in the region

Z-vaue

synonym to [ Z-address




