
Processing Operations with Restrictions in RDBMS without External Sorting:
The Tetris Algorithm

Volker Markl* Martin Zirkel+ Rudolf Bayer*+

*Bayerisches Forschungszentrum +Institut für Informatik
für Wissensbasierte Systeme Technische Universität München

Orleanstr.34, 81667 München, Germany Orleanstr.34, 81667 München, Germany

volker.markl@forwiss.de {zirkel,bayer}@in.tum.de

http://mistral.informatik.tu-muenchen.de

Abstract
Most operations of the relational algebra or SQL require a
sorted stream of tuples for efficient processing. Therefore,
processing complex relational queries relies on efficient
access to a table in some sort order. In principle, indexes
could be used, but they are superior to a full table scan
only, if the result set is sufficiently restricted in the index
attribute. In this paper we present the Tetris algorithm,
which utilizes restrictions to process a table in sort order
of any attribute without the need of external sorting. The
algorithm relies on the space partitioning of a multidi-
mensional access method. A sweep line technique is used
to read data in sort order of any attribute, while accessing
each disk page of a table only once. Results are produced
earlier than with traditional sorting techniques, allowing
better response times for interactive applications and pipe-
lined processing of the result set. We describe a prototype
implementation of the Tetris algorithm using UB-Trees on
top of Oracle 8, define a cost model and present per-
formance measurements for some queries of the TPC-D
benchmark.

1 Introduction
Complex business applications like SAP R/3, statistical

databases, data warehousing and data mining have created
a strong demand for efficiently processing complex queries
on huge relational databases. An important issue is to
select the best access paths and processing techniques for
any query. Especially for OLAP environments specialized
access methods have been proposed [Inf97, OQ97]. Often
several indexes are created on one table in order to speed
up query processing [GHR+97].

The sort operation is useful for efficient implementation
of almost every operation of the relational algebra. Merge
sort algorithms are often superior to indexes, since a full
table scan utilizes pre-fetching techniques to substantially

Copyright 1999 IEEE. Published in the Proceedings of ICDE’99 March in
Sydney, Australia. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promo-
tional purposes or for creating new collective works for resale or redistri-
bution to servers or lists, or to reuse any copyrighted component of this
work in other works, must be obtained from the IEEE. Contact: Manager,
Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O.
Box 1331 / Piscataway, NJ 08855-1331, USA.

reduce the number of expensive random page accesses.
Our performance measurements on several commercial
DBMS indicate that for reading an entire relation a full
table scan is ten times faster than an index scan.

We focus on using multidimensional indexes to or-
ganize any table of a relational database. When considering
a tuple as a point in multidimensional space, processing
complex queries by a multidimensional organization of a
relational table is often superior to one-dimensional
clustering. However, current commercial DBMS do either
not support multidimensional indexes at all or only use
them in the context of geo-spatial applications.

The goal of our paper is to introduce the Tetris algo-
rithm, a query processing technique for sort operations
with multi-attribute restrictions, and thereby to show the
potential of integrating multidimensional indexes as first
class indexes into the kernel of a database system.

Multidimensional access methods are well researched in
the field of spatial databases. [GG97] and [Sam90] provide
excellent surveys of almost all of these methods. Multidi-
mensional indexes are used to utilize spatial restrictions
(e.g., range restrictions, intersection, overlap) and to effi-
ciently compute spatial joins [Rot91, Gün93].

The Tetris algorithm generalizes the range query algo-
rithm of a multidimensional index to efficiently process
sort operations in combination with restrictions. The basic
idea is to use the partial sort order imposed by a multidi-
mensional partitioning in order to process a relation in
some total sort order. Essentially a plane sweep [PS85]
over a query space defined by restrictions on a relation
partitioned by a multidimensional index is performed. The
direction of the sweep is determined by the sort attribute.
Only disk pages overlapping the query space are accessed.
With sufficient, but modest, cache memory each relevant
disk page is accessed only once.

Most work on applying multidimensional indexes to
RDBMS discusses restrictions by range queries.
[HNK+90] and [Bay97b] investigate joins and sorted
processing of data organized by a multidimensional index.
We extend this approach to restrictions by introducing a
single operator, which combines sorting and restrictions in
multiple attributes. Any multidimensional access method
like Grid-Files, R-Trees, UB-Trees [Bay96, Bay97a] or
hB-Trees can be used to organize the relation. However, it
is desirable to use an index which creates a

disjoint partitioning of the multidimensional space. To
illustrate our approach we use an implementation of the
UB-Tree, because the UB-Tree is easily implemented
above any RDBMS by utilizing the B*-Tree of this
RDBMS.

With the Tetris algorithm a multidimensional index can
reduce resource requirements for virtually any operation of
the relational algebra. Compared to the native access meth-
ods of Oracle 8 our prototype implementation of the Tetris
algorithm shows significant speedups for queries of the
TPC-D benchmark. In addition temporary storage require-
ments for the sorting process are reduced by two orders of
magnitude and first results of a sort operation are produced
several hundred times faster.

2 Query Processing
An important task of query processing in relational

DBMS is to efficiently implement algorithms for the basic
operations of the relational algebra. [Gra93] gives a con-
cise survey of query processing. If the selection condition
specifies a range in a single attribute, a clustering index
greatly speeds up query processing. Conjunctive selection
conditions are efficiently processed by composite indexes,
intersection of record pointers or multidimensional
indexes. The join operation is usually implemented by
nested loop algorithms, join indexes, sort-merge
algorithms or hash algorithms. [ME92] surveys join proc-
essing in relational databases. Projection, union, intersec-
tion and set difference are efficiently implemented by
processing a relation in some sort order and then either use
an index scan or a merge-sort. Efficient sort operations and
the use of restrictions to limit result sets are crucial to
many query processing algorithms. Very often queries
combine several operations of the relational algebra like
join and restriction. A multidimensional organization of a
table in combination with the Tetris algorithm can utilize
range restrictions in multiple attributes while processing a
table in some sort order.

3 The Tetris Algorithm
In accordance with [HNK+90] we use the notions of

wave, cluster and processing range to explain our general-
ized approach for processing sort queries with restrictions.
In order to describe the Tetris algorithm we define a formal
model for partitioned relations (cf. also Figure 3-1).

Let R be a relation having d attributes A1,..., Ad of do-
mains Ω1,..., Ωd composed of tuples x = (x1,..., xd). Let <i

be a total order on Ωi and λi resp. υi the minimum resp.
maximum value of Ωi.

Ω = Ω1 × ... × Ωd = [λ1, υ1] × ... × [λd, υ d]

is the base space of the relation R. R is a finite subset of Ω,
i.e., R ⊆ Ω. R is partitioned into PR = {p1, ..., pk}, a finite
set of pages. Each page p stores a limited number of tuples.

A region ρi is a subspace of Ω. In contrast to [HNK+90]
we neither require a region to be rectangular nor con-
nected.

A page p corresponds to a region ρ (p ↔ ρ), if all tu-
ples stored on p are located in the region ρ, i.e.,

p ↔ ρ ⇔ (x ∈ p ⇔ x ∈ ρ ∩ p)

A region partitioning of Ω for a partitioned relation
PR = {p1, p2, ..., pk} is a set of regions Θ = {ρ1, ..., ρk} with

U
k

i
i

1=
Ω=ρ and ∀j,i=1,...,k and j≠ i ρi ∩ ρj = ∅ and ∀i=1,...,k pi ↔ ρi

A query space is some subspace of a relation defined
by restrictions. Mostly restrictions define a query box, i.e.,
an iso-oriented multidimensional interval (hyper rectangle)
between two points y = (y1, ..., yd) and z = (z1, ..., zd), which
restricts each attribute Aj to the range [yj, zj]:

Q = [[y, z]] = [y1, z1] × ... × [yj, zj] × ... × [yd, zd]

A processing range for Aj is a linear interval [aj, bj].

A cluster is a query box, which restricts one attribute Aj

to a processing range [aj, bj]:

],[jj baC = [λ1, υ 1] × ... × [aj, bj] × ... × [λd, υ d]

A region wave of a processing range [aj, bj] of attribute
Aj of a query space Q for a region partitioning Θ is the set
of regions intersecting the cluster],[jj baC and Q with

respect to space intersection:

)(W],,[
r

Qba jj = {ρ ∈ Θ | ρ ∩ Q ∩],[jj baC ≠ ∅}

A page wave is the set of pages corresponding to the re-
gions in the region wave)(W],,[

r
Qba jj :

Qba jj],,[W (PR) = {p ∈ PR | p ↔ ρ and ρ ∈)(W],,[
r

Qba jj }

(c) (d)

cluster C[a2,b2]

region wave
Wr

[a2,b2], Q
query space Q

Wr
[a2,b2], Q ∩ C[a2,b2]

(a)

(b)

a2
1 b2

1 a2
2 b2

2 a2
3 b2

3

A2

A1

ρ1 ρ2

ρ3

ρ5

ρ6

ρ7

ρ4

Figure 3-1: Region partitioning, processing range,
cluster, query space and region wave

A slice of a processing range [aj, bj] is the set of tuples,
which satisfy the restrictions of the query box and actually
have a value of attribute Aj in this range:

)(],,[RS Qba jj
 = {x ∈ R | x ∈ Q ∩],[jj baC }

While processing range, cluster and region wave denote
subsets in one- resp. multidimensional space, page wave
denotes a set of pages and slice denotes a set of tuples.

3.1 Basic Idea
The Tetris algorithm [MB98] to process sort operations

on attribute Aj of a partitioned relation PR with restrictions
defined by a query box Q = [[y, z]] works as follows: for
each iteration i the smallest possible page wave

Qba i
j

i
j],,[W (PR) is read into a main memory cache. For the

first iteration the lower bound of the processing range aj
1 is

defined by yj, the lower bound of the query box in attribute
Aj. For the ith iteration the calculation method for bj

i de-
pends on the partitioning scheme, for UB-Trees we will
describe an algorithm with constant I/O-complexity in Sec-
tion 3.4. After completely reading the ith page wave the
cached slice)(],,[RS Qi

jbi
ja is sorted internally according

to Aj and transferred to the caller. The lower bound of the
next processing range is defined by aj

i+1= bj
i +1. Figure

3-1(b, c, d) shows iterations i = 1, 2, 3 of the Tetris algo-
rithm sorting the gray-dotted query box on A2 for the re-
gion partitioning of Figure 3-1a.

3.2 Choosing a suitable data structure
Using any variant of R-Trees [Gut84, BKK96] may re-

sult in a sub-optimal performance of the Tetris algorithm.
R-Trees may subdivide the universe into overlapping tiles,
which may result in multiple accesses to one disk page.
Grid-Files [NHS84], hB-Trees [LS90] or space filling
curves in combination with one-dimensional access meth-
ods [OM84, Jag90] provide a disjoint partitioning of the
multidimensional space. Because of its easy implementa-
tion, we use the UB-Tree [Bay96] for our prototype im-
plementation. However, the principal statements of this
paper also hold for Grid-Files, hB-Trees or any other space
filling curves mapped to one-dimensional access methods.
3.3 The UB-Tree

The UB-Tree [Bay96] uses a space filling curve to par-
tition a multidimensional universe while preserving multi-
dimensional clustering. Using the Lebesgue-curve (Figure
3-2a) it is a variant of the zkd-B-Tree [OM84].

10 54 1716 2120
32 76 1918 2322
98 1312 2524 2928

1110 1514 2726 3130
3332 3736 4948 5352
3534 3938 5150 5554
4140 4544 5756 6160
4342 4746 5958 6362

10 32 54 76

1
0

4

2

5

3

7
6

(a) (b)

Figure 3-2: Z-addresses

To define the UB-Tree partitioning scheme we need the
notion of Z-addresses and Z-intervals. We assume that
each attribute value xj of attribute Aj of a d-dimensional
tuple x = (x1,...,xd) consists of s bits1 and we denote the
binary representation of attribute value xj by xj,s-1xj,s-2...xj,0.

1 Our implementation uses different lengths for the binary representation
of attribute values. We just use identical lengths for an easy illustration.

A Z-address α = Z(x) is the ordinal number of a tuple x
on the Z-curve and is calculated by interleaving the bits of
the attribute values:

∑ ∑ ⋅=
−

= =

−+⋅1

0 1

1
, 2)Z(

s

i

d

j

jdi
ijxx

For an 8×8 universe, i.e., s = 3 and d = 2, Figure 3-2b
shows the corresponding Z-addresses.

A Z-region [α : β] is the space covered by an interval on
the Z-curve and is defined by two Z-addresses α and β.
Figure 3-3a shows the Z-region [4: 20] and Figure 3-3b
shows a partitioning with five Z-regions [0 : 3], [4 : 20],
[21 : 35], [36 : 47] and [48 : 63].

(a) (b) (c)

Figure 3-3: Z-regions

The UB-Tree partitions the multidimensional space into
Z-regions, each of which is mapped onto one disk page. At
insertion time a full Z-region [α : β] is split into two Z-re-
gions by introducing a new Z-address γ with α < γ < β . γ
is chosen so that the first half (in Z-order) of the tuples
stored on Z-region [α : β] is distributed to [α : γ] and the
second half is stored on [γ +1 : β]. Assuming a page
capacity of 2 points Figure 3-3c shows ten points which
created the partitioning of Figure 3-3b.

The UB-Tree requires logarithmic time for the basic
operations of insertion, point retrieval and deletion.

3.4 The Tetris Algorithm for UB-Trees

The Tetris algorithm for UB-Trees to sort a query box
[[y, z]] on Aj requires an order for retrieving the Z-regions
and their corresponding pages from secondary storage.
From the formula for Z(x) we observe that for an attribute
length of s bits and j ∈ {1,...,d} the bits α(s-1)⋅(j-1) ...α2⋅(j-1)αj-1

of a Z-address α form the value xj of attribute Aj. To sort
data with respect to Aj we create the Tetris order from Z-
addresses: for a Z-address α = Z(x1, ..., xd) we extract
attribute xj = extract(α, j) and concatenate () it to the Z-
address reduce(α, j) = Z(x1, ..., xj-1, xj+1, xd) of the (d-1)-
dimensional tuple (x1, ..., xj-1, xj+1, xd), i.e.,

Tj(x) = extract(Z(x), j) reduce(Z(x), j)
The ordinal numbers Tj(x) create a total ordering on Aj

from partial order of the ordinal numbers Z(x). Figure 3-4a
shows the Tetris ordering T2(x) and the corresponding
ordinal numbers. Hj(v) = {Z(x)| xj = v} defines the Z-ad-
dresses of a hyper-plane on a data space.

Iteration i of the Tetris algorithm retrieves Z-regions
and their corresponding pages in Tetris order to complete
the region wave to define the processing range [aj

i, bj
i]. In

the following let Φ be the space already retrieved by the

Tetris algorithm. Φ is constructed iteratively by adding the
next Z-region to the already retrieved space.

10 32 54 76

1
0

4

2

5

3

7
6

A2

A1

H2(0)

e3 ρ3

ρ2

ρ1

(a) (b)

0

63

Φ

next region event point sweep plane

e4

Figure 3-4: Tetris ordering

For the lower limit aj
i of the current processing range

the next Z-region to be retrieved is calculated by deter-
mining the next event point on the sweep plane Hj(aj

i) in
Tetris order that is not part of the retrieved space Φ (Tj

-1

denotes the inverse function of Tj):
e = (e1,e2...,ed) = eventpoint(Φ,Q) =

Tj
-1(MIN{ Tj (x) | (x ∈ Q) and (x ∉ Φ)})

After complete traversal of the hyperplane Hj(aj
i), i.e.,

Hj(aj
i) ⊆ Φ ∩ Q , and retrieval of the corresponding Z-re-

gions)(W],,[
r ΘQaa i

j
i
j , the next position of the sweep plane

aj
i+1 and the least upper bound bj

i = aj
i+1 - 1 of the current

processing range is determined by the first event point not
intersecting the sweep plane:

if Hj(aj
i) ⊆ Φ ∩ Q then aj

i+1 = ej

where e = eventpoint(Φ,Q)

For sorting the entire universe in A2 Figure 3-4b shows
the flow of operation of the Tetris algorithm for the sweep
plane H2(0) after ρ1 and ρ2 have been retrieved. The event
point e3 yields ρ3, the next region to be retrieved. The event
point e4 computed upon retrieval of ρ3 does not move the
sweep plane, since the entire hyper-plane has not been re-
trieved yet, i.e., H2(0) Φ ∩ Q.

a2
1

ρ3

ρ2

ρ1

ρ4

ρ5

e5

(a) (b)

H2(2)b2
1 Φ

Φ

ρ1

ρ2

ρ4

ρρ3

e5

Figure 3-5: Processing a relation in Tetris ordering
Figure 3-5a shows the complete region wave after the

region wave {ρ1, ρ2, ρ3, ρ4} has been retrieved. The next
event point e5 according to the retrieved space Φ defines
the sweep plane H2(a2

2)=H2(2) in Figure 3-5b. The upper
bound b2

1 (=1) of the processing range of iteration 1 then
is computed by decrementing a2

2 (=2).

Two iterations of an actual run of the Tetris algorithm
created by a visualization tool are illustrated in Figure 3-6.
The thick bordered query box is sorted from bottom to top
according to the vertical dimension. The part of each Z-
region from which tuples are cached is shaded in this fig-
ure. The visualization also gives a hint why we named this
algorithm Tetris algorithm: The processing order of the
regions reminds us of the Tetris computer game.

Figure 3-6: Sorted processing with Tetris

A large volume of a cached region does not mean that a
lot of cache memory is needed: The maximum number of
tuples in each Z-region and thus maximum cache size for
each cached Z-region is limited by the capacity of a page.

/* sort the query box according to attribute j and produce
 a sorted stream of tuples */
void tetris(Table *t, QueryBox *Q,int j,
 ResultBuffer *resultBuffer)
{
Z_address z_eventPoint, z_end, ad_tuple;
Region r;
Tuple tup;
Proc procRange_a, procRange_b;
RegionSet phi;
TupleCache tetrisCache;
z_address(&(Q->low),&z_eventPoint);
z_address(&(Q->high),&z_end);
procRange_a = extract(&z_eventPoint, j);
do{

/* retrieve the Z-region containing the event
 point and cache all tuples intersecting Q */

retrieveRegion(t, &z_eventPoint,&r);
insertIntoCache(&r,Q,&tetrisCache);

/* update phi and calculate the next even point */
insertIntoRetrievedRegionSet(&r,&phi);
nextEventPoint(&phi,q,&z_eventPoint);

/* if a new slice is completed, sort the cache and
 return all tuples intersecting the processing range */

if(procRange_a < extract(&z_eventPoint,j)){
 procRange_b = pre(extract(&z_eventPoint,j));
 sortCache(&tetrisCache,j);
 getNextTupleFromCache(&tetrisCache,&tup);
 while((!emptyCache(&tetrisCache)) &&
 (extract(z_address(&tup,&ad_tuple),j)<=

 procRange_b))
 {

insertToResultBuffer(resultBuffer,&tup);
removeFromCache(&tetrisCache,&tup);
getNextTupFromCache(&tetrisCache,&tup);

 }
 procRange_a = extract(&z_eventPoint,j);
}

}while(T(&z_eventPoint,j)<=T(&z_end,j));
}

Figure 3-7: Tetris algorithm for sorting Q on Aj

Retrieving a Z-region by the above algorithm merely re-
quires one point query in the UB-Tree (i.e., one B*-Tree
search) and inexpensive bit operations. Since almost all
levels of a B*-Tree are cached during the normal operation
of a DBMS, in average only one page access is necessary
to retrieve a Z-region. To sort a query box with the Tetris
algorithm only the Z-regions overlapping the query box are
retrieved and each Z-region is only accessed once to sort a
query box with respect to one attribute. The C implemen-
tation of the main routine of the Tetris algorithm is shown
in Figure 3-7.

3.5 Correctness of the Tetris Algorithm
Using the formal model of Section 3 the correctness of

the Tetris algorithm can easily be proven. We just state the
idea of the proof here: The Tetris order defines an ordering
on the multidimensional space that is identical to the re-
quested sort order. The Tetris algorithm is correct, since Z-
regions are accessed in Tetris order and no Z-region inter-
secting the query box is skipped.

4 Performance Analysis
For sorting a relation in combination with restrictions in

some attributes we define cost functions for response times
and intermediate temporary storage. Our analysis considers
the Tetris algorithm, an index organized table (IOT, clus-
tering B*-Tree) and a full table scan (FTS) with a merge
sort algorithm.

4.1 The Cost Model
In accordance with [HR96] we use a cost model that

takes random pages accesses and page transfers into
account. Let tπ be the (average case or worst case) posi-
tioning time and tτ be the transfer time of a hard disk. We
assume that the prefetching strategy of the file system
reads a physical cluster of C consecutive pages from disk
with one random access into the read-ahead cache. This
takes time tπ + tτ⋅C. Reading k pages in consecutive order
therefore takes

cscan(k) = k/C ⋅ tπ + max(k, C)⋅ tτ

4.2 Cost Functions
Using the cost model of Section 4.1 we calculate the

cost of sorting a relation of P pages restricted by a multi-
dimensional interval Q = [[y, z]] with a selectivity of sj in
attribute Aj using a main memory of M pages and a merge
degree of m for the merge-sort algorithm. For UB-Trees
we assume a d-dimensional organization of the relation.
We divide the sort process in a retrieval phase (which
retrieves the data to create initial runs for the merge-sort)
and a sort phase (which actually performs the merge-sort).
Using a full table scan (FTS) for the retrieval phase results
in the formula for cfts-sort. Using an index organized table
(IOT) with a composite B*-Tree in lexicographic order A1,
..., Ad allows to use the index for restriction in A1 at the
expense of having a random access for each page access of
the retrieval phase. If M > p⋅Πsi, sorting takes place in
main memory. The merge sort factor of cfts-sort and ciot-sort

then is reduced to zero. For ciot-sort the merge sort factor is
zero also, if the sorting attribute is A1.

()

() ∏

∏∏

=

==

⋅+=

+=
+=

⋅

 +

⋅=

 ⋅⋅

 ⋅⋅=

+⋅⋅=

⋅

 +

⋅=

d

j
jjj

tp

d

i
im

d

i
i

zyPdnttc

ccc

ccc

Pt
C

tc

s
M

p
sPP

ttPsc

Pt
C

tc

1
tetris

sortftssort-iot

sortftssort-fts

sortsort

11
sort

1iot

fts

),,,(

1

log2

1

Figure 4-1: Cost functions
ctetris for uniformly distributed data partitioned by a d-di-

mensional UB-Tree and a query box [[y, z]] is the product
of the number of Z-regions intersecting the multidimen-
sional interval [[y, z]] in each dimension [Mar99]. For each
attribute Aj the cost function ctetris requires the values yj and
zj to be normalized to [0, 1]. The formula

nj(d, P, yj, zj) = n(yj, zj, lj(d, P)) + ((n(yj, zj , lj(d, P) + 1)
- n(yj, zj , lj(d, P))) ⋅ pj(d, P)

to calculate the number of Z-regions intersected by the re-
striction [yj, zj] in attribute Aj of a d-dimensional UB-Tree
requires the following auxiliary functions:

• lower bound of recursive splits in Aj:

=↓ d

P
Pd

j
l 2log

),(

• actual number of completed recursive splits in Aj:

 ≤+

=
↓

↓

 otherwise,),(

 mod log if,1),(
),(

2

Pdl

jdPPdl
Pdl

j

j
j

• probability of an incomplete split in Aj:

 ()

 +=−=

 otherwise ,0

1 mod log if ,1
 2),(2log2

dP j
P

Pdp Pj

• number of Z-regions for lj completed splits in Aj:

+−

≠∧=−
=

 otherwise 122

1 1 if 22
),,(

jj

jj

l
j

l
j

jj
l

j
l

jjj
yz

yzy
lzyn

Our measurements have shown that this rather compli-
cated cost function describes the actual behavior of the
UB-Tree very accurately [Mar99].

4.3 Response Times
Current operating systems usually prefetch C = 16

pages with one random access. For our cost analysis for
sorting attribute A2 with restrictions on attribute A1 we

assume tπ = 10 ms and tτ = 1 ms, a main memory cache of
32 MB and a merge degree of m = 2.

0

50

100

150

200

0% 25% 50% 75% 100%
selectivity of the restriction on A 1

co
st

 (w
ei

gh
te

d
ac

ce
ss

 t
im

e)
 [s

]

IOT on A1 (restricted attribute)
IOT on A2 (order-by attribute)
FTS
Tetris

Figure 4-2: Sorting on A2 with a restriction in A1

Varying the selectivity of the restriction in A1 for a table
size of 125k pages (about 1GB for a page size of 8kB)
shows that the Tetris algorithm is superior to both an IOT
on A1, an IOT on A2 and a FTS (Figure 4-2). The figure
also shows that an IOT on A1 can only compete with a FTS
if A1 is restricted sufficiently. An IOT on A2 is only com-
petitive if A1 is hardly restricted. Varying the table size for
a selectivity of s1 = 20 % in A1 confirms these observations
(Figure 4-3).

0

250

500

750

1000

0 250.000 500.000 750.000 1.000.000

table size in pages

co
st

 (
w

ei
gh

te
d

ac
ce

ss
 t

im
e)

 [
s] IOT on A2 (order-by attribute)

IOT on A1 (restricted attribute)
FTS
Tetris

Figure 4-3: Sorting on A2 with a restriction in A1

4.4 Intermediate Storage and Pipelined
Processing

The Tetris algorithm requires less temporary storage
than FTS or IOT on a restricted attribute: While an IOT on
a sorting attribute requires no additional memory, the
merge-sort algorithm used by an FTS or by an IOT on a
restricted attribute requires a memory size of p⋅Πsi pages.
To sort Aj the Tetris algorithm just caches one slice, i.e.,

∏=
≠

=
ji
di

iii zyPdnjzyPdcache ,..,1
tetris),,,(),,,,(

For two-dimensional UB-Trees the cache size is a
square root function of the number of Z-regions overlap-
ping the query box, i.e., cachetetris(P,s1,s2) = 21 ssP ⋅⋅ .

The completion of a wave also means, that the corre-
sponding slice is available in sort order. Thus, first results
are available for further processing after a time of
 cachetetris(d,P,x,y)⋅(tπ+tτ). For an IOT on a restricted attrib-

ute and a FTS it is necessary to wait until the entire merge
sort is completed. This yields a tremendous performance
advantage of the Tetris algorithm for pipelined processing.
Using the parameters of section 4.3, Figure 4-4 shows the
intermediate storage sizes for the query of Figure 4-3 (s1 =
20%). Qualitatively Figure 4-4 also displays the time
delay, until the first result is available.

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

0 250.000 500.000 750.000 1.000.000
table size in pages

in
te

rm
ed

ia
te

 s
to

ra
ge

 in
 p

ag
es

IOT on A1 (restricted attribute) or FTS
Tetris Cache
IOT on A2 (order-by attribute)

Figure 4-4: Intermediate storage sizes

4.5 Further Results
Using our cost functions we found out that for sort op-

erations with restrictions in some attributes a multidi-
mensional partitioning and the Tetris algorithm are supe-
rior to one-dimensional access methods, unless a strongly
preferred sort order on one attribute per relation exists or
the restrictions are not selective enough to make up the
tenfold speed of the FTS.

5 Tetris Algorithm and Query Processing
Relational queries or SQL queries consist of restric-

tions, projections, ordering, grouping and aggregation and
join operations. The Tetris algorithm can accelerate all of
these operations. The performance results reported in this
section were measured with a prototype implementation of
the Tetris algorithm for UB-Trees on top of Oracle 8. We
compare the performance to native query processing tech-
niques of Oracle 8, namely access via an index organized
table (IOT), which essentially stores a relation in a clus-
tered B*-Tree, and access via a full table scan (FTS) of an
entire relation. We used a SUN ULTRA SPARC II with
512 MB main memory and an array of five 4 GB hard
disks with an average positioning time of 8ms and a trans-
fer rate of 0.7ms per page. To show the performance gain
of the Tetris algorithm we selected the queries Q3, Q4 and
Q6 of the TPC-D benchmark [TPC97].

The performance figures reported in this paper disfavor
the Tetris algorithm to some extent: The measurements
were conducted with UB-Trees emulated on top of Oracle
against IOTs and FTS integrated into the Oracle kernel.

5.1 Joins and Restrictions
Query Q3 of the TPC-D benchmark illustrates a com-

plex query with restrictions and join operations involving
three relations, which is efficiently processed by the Tetris
algorithm.

SELECT L_ORDERKEY, ,O_ORDERDATE, O_SHIPPRIORITY,
 SUM(L_EXTENDEDPRICE*(1- L_DISCOUNT)) AS REVENUE
FROM CUSTOMER, ORDER, LINEITEM
WHERE

C_MKTSEGMENT = ’FOOD’ AND
C_CUSTKEY = O_CUSTKEY AND

 L_ORDERKEY = O_ORDERKEY AND
 O_ORDERDATE < DATE 1.5.98 AND
 L_SHIPDATE > DATE 1.6.98
GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY
ORDER BY REVENUE DESC, O_ORDERDATE

Figure 5-1: Query Q3 of the TPC-D benchmark
The operator tree for Q3 generated by a standard RDBMS
is illustrated in Figure 5-2. We use σ for the selection
operator, for the join operator, γ for grouping, ω for
ordering and M for a merge operator on a sorted stream of
tuples. The query is processed by first applying the re-
strictions on each table and then performing a hash join or
a sort-merge join on the intermediate result. The join order
of Figure 5-2 is due to the fact that the LINEITEM relation
is four times larger than the order relation and 40 times
larger than the CUSTOMER relation. The intermediate
result of the second join is used for grouping with aggrega-
tion and final ordering.

CUSTOMER ORDER LINEITEM

σ(MKTSEGEMT) σ(ORDERDATE) σ(SHIPDATE)

γ (ORDERKEY, ORDERDATE,
SHIPPRIORITY)

ω(REVENUE, ORDERDATE)

ORDERKEY
ω(ORDERKEY), M(ORDERKEY)

CUSTKEY
ω(ORDERKEY), M(ORDERKEY)

Figure 5-2: Standard Operator Tree for Q3

With UB-Trees on CUSTOMER, ORDER and
LINEITEM Figure 5-3 and Figure 5-4 illustrate the Tetris
operator τσ,ω, which combines selection and sorting. Read-
ing the restricted part of each relation in sort order of the
join attribute causes a sorted stream of tuples. This stream
is transferred to the merge operator M and processed
further.

We measured the sorted table accesses of query Q3 for
TPC-D scaling factors (SF) from 0.1 to 1 (SF = 1 means a
size of 1GB for LINEITEM). We do not want to enter the
debate whether sort-merge joins or hash joins do perform
better [Mer81, DKO+84]. We chose a large main memory
for our test environment, since according to [CHH+91]
sort-merge join and hash join have a similar performance
for computer systems with large main memories. Conse-
quently we assume a sort merge-join.

CUSTOMER ORDER LINEITEM

 M
CUSTKEY

M
ORDERKEY

γ(ORDERKEY, ORDERDATE,
SHIPPRIORITY)

ω(REVENUE, ORDERDATE)

 ω(ORDERKEY)

τ
ω(CUSTKEY)

σ(ORDERDATE)

τ
ω(CUSTKEY)

σ(MKTSEGMENT)

τ
ω(ORDERKEY)

σ(SHIPDATE)

Figure 5-3: Tetris Operator Tree for Q3

Since the LINEITEM table is the major bottleneck for
Q3, we focus on this relation for our performance com-
parison. We created four instances of LINEITEM: an IOT
on SHIPDATE, an IOT on ORDERKEY and secondary
indexes on each restricted or sorted attribute.

O_ORDERKEY

O
_C

U
S

T
K

E
Y

O_O
RDERDATE

C_MKTSEG.

C
_C

U
S

T
K

E
Y

L_ORDERKEY

L
_S

H
IP

D
A

T
E

sort direction

CUSTOMER

ORDER

LINEITEM

1

2

Figure 5-4: Processing Q3

The optimizer favored a FTS over secondary indexes,
which our theoretical considerations and measurements
proved to be the right decision (forcing Oracle to process
Q3 with a secondary index on SHIPDATE or
ORDERKEY took more than 6 hours for SF = 1). Thus we
exclude secondary indexes from further considerations.

Figure 5-5 and Table 5-1 show that the Tetris algorithm
for UB-Trees is most preferable to answer this query. The
50% restriction on SHIPDATE is not selective enough for
an IOT on SHIPDATE to be competitive. The presorted
IOT on ORDERKEY does not require a merge sort and
therefore shows response times similar to a FTS with
merge sort. Using Tetris for sorting LINEITEM is more
than three times faster than FTS or any IOT. The first
response of Tetris is already produced after few seconds,

two to three orders of magnitude faster than with FTS or
any IOT. While the intermediate storage requirements of
Tetris are not exactly zero as for an IOT on ORDERKEY,
they are extremely low: Compared to an FTS or an IOT on
SHIPDATE they are several orders of magnitude lower.
Since for FTS and IOT on SHIPDATE storage require-
ments grow linearly with tablesize, the main memory is
exceeded soon: For our measurements we several times
had to enlarge the temporary Oracle tablespaces.

0

1000

2000

3000

4000

0 0,25 0,5 0,75 1
TPC-D scaling factor

ti
m

e
in

 s

IOT SHIPDATE
IOT ORDERKEY
FTS
Tetris

Figure 5-5: Q3 Response Times

As predicted by our cost functions the Tetris cache of
Figure 5-6 is almost 300 times lower than the intermediate
storage of the IOT on SHIPDATE or FTS; even for a
LINEITEM table sizes of several Terabytes the Tetris
cache easily fits into the RAM of current computers.

Table Size
Scaling Factor (SF)

326 MB
(0.25)

651MB
(0.5)

1302MB
(1)

Tetris 1st response 1,3s 1,3s 3,3s
Tetris Slices 256 256 512
Time IOT ORDERKEY 834.3s 1753.6s 3604.1s
Time IOT SHIPDATE 1223.7s 2569.8s 5286.4s
Time FTS-Sort 816.5s 1479.4s 3276.4s
Time Tetris 257.5s 441.2s 1062.2s
Cache Tetris 1.4MB 2.1MB 2.6MB
Temp Storage IOT/FTS 183MB 326MB 751MB

Table 5-1: Interactive response times and cache
sizes for sorting 50 % of LINEITEM

0

25

50

75

100

0 0,25 0,5 0,75 1
TPC-D scaling factor

te
m

po
ra

ry
 s

to
ra

ge
 in

 M
B

IOT SHIPDATE and FTS

Tetris

IOT ORDERKEY

Figure 5-6: Q3 Cache Size

5.2 Joins, Grouping and Restrictions
Restrictions, joins and grouping are efficiently handled

by the Tetris algorithm. Then external sorting is avoided

usually, while multi-attribute restrictions are utilized to
reduce I/O. We illustrate processing of these operations
with the Tetris algorithm by Q4 of the TPC-D benchmark.

SELECT O_ORDERPRIORITY, COUNT(*)
FROM ORDER
WHERE
O_ORDERDATE >= DATE ’[date]’ AND
O_ORDERDATE < DATE ’[date]’ + INTERVAL ’3’

MONTH AND
EXISTS (
SELECT *
FROM LINEITEM
WHERE
L_ORDERKEY = O_ORDERKEY AND
L_COMMITDATE < L_RECEIPTDATE)

GROUP BY O_ORDERPRIORITY
ORDER BY O_ORDERPRIORITY

Figure 5-7: Q4 of the TPC-D benchmark

L_COMMITDATE

L
_R

E
C

E
IP

T
D

A
T

E

60
%

L_O
RDERKEY

O_ORDERDATE

O
_O

D
E

R
PR

IO
R

IT
Y

O_O
RDERKEY

LINEITEM ORDER

3.5%

Figure 5-8: Processing Q4

Assuming a three dimensional organization of ORDER
and LINEITEM, query processing with the Tetris algo-
rithm is shown in Figure 5-8. Q4 groups the restricted
ORDER table depending on tuple existence in the
LINEITEM table. Efficiently processing this query means
processing ORDER in ORDERKEY order while using the
3.5%-restriction on ORDERDATE. To evaluate the
existential restriction, LINEITEM is processed in
ORDERKEY order and semi-joined to ORDER. The Tet-
ris-algorithm can be used to process the triangular search
space defined by COMMITDATE < RECEIPTDATE in
ORDERKEY order. CPU cost for comparisons may be
saved by processing each ORDERDATE-slice in
ORDERPRIORITY order.

0

250

500

750

1000

1250

1500

0 1 2 3 4
TPC-D scaling factor

ti
m

e
in

 s IOT ORDERKEY
FTS
IOT ORDERDATE
Tetris

Figure 5-9: Q4 Response Times

We just report the response times and cache sizes of
sorting ORDER in Table 5-2, since the enhancement of the

Tetris algorithm for non-rectangular query spaces has not
been implemented yet.

Table Size
Scaling Factor (SF)

322 MB
(1)

750MB
(2)

1.5GB
(4)

Tetris 1st response 0.1s 0.2s 0.3s
Tetris Slices 256 256 512
Time IOT ORDERKEY 813.8s 1627.5s 3254.9s
Time IOT ORDERDATE 95.4s 194.2s 390.4s
Time FTS-Sort 335.2s 758.6s 1396.7s
Time Tetris 29.7s 47.8s 113.9s
Cache Tetris 0.2MB 0.2MB 0.3MB
Temp Storage IOT/FTS 12.9MB 30.1MB 60.1MB

Table 5-2: Interactive response times and cache
sizes for sorting 3.5% of ORDER

The restrictions on ORDER are selective enough for an
IOT on ORDERDATE to be superior to FTS and IOT on
ORDERKEY. The Tetris algorithm is superior to FTS and
any IOT, since it utilizes restrictions and sorts the data at
the same time. Even for this quite selective ORDERDATE
restriction the Tetris algorithm is more than three times
faster than the IOT on ORDERDATE. The Tetris
algorithm for UB-Trees also is 11 times faster than an FTS
and about 30 times faster than an IOT on ORDERKEY.

5.3 Multi-attribute Restrictions

Like standard range query algorithms, the Tetris algo-
rithm may be used to efficiently process multi-attribute re-
strictions. Query Q6 of the TPC-D benchmark is a typical
example for this kind of query.

SELECT SUM(L_EXTENDEDPRICE*L_DISCOUNT)
FROM LINEITEM
WHERE
L_SHIPDATE >= [date] AND
L_SHIPDATE <= [date] + INVERVAL 1 YEAR AND
L_DISCOUNT BETWEEN [d] –0.01 AND [d] + 0.01
AND L_QUANTITY < [quantity]

Figure 5-10: Query Q6 of the TPC-D benchmark

Q6 is processed by either using an IOT on SHIPDATE
to materialize the result and then check the conditions on
DISCOUNT and QUANTITY, or perform a FTS, if no
such index exists. Figure 5-11 shows the portion of the
LINEITEM relation that the Tetris Algorithm and an IOT
on SHIPDATE process in order to answer Q6. Although a
FTS retrieves the entire relation, prefetching strategies
substantially reduce the number of random accesses and
make the FTS superior to any IOT.

Performing an index intersection on three secondary B*-
Trees is not very efficient, since the selectivity of an indi-
vidual attribute is relatively low (20%, 33% resp. 50%).
An intersection of bitmap indexes is not a good choice
either, since the number of distinct values for SHIPDATE,
DISCOUNT and QUANTITY is quite high. Since 1/30th of
all tuples of LINEITEM satisfy the restrictions of Q6, 200k
tuples have to be retrieved to process the query for a TPC-
D scaling factor of 1. Since bitmap indexes and secondary
B-Trees do not cluster the data, an FTS is preferable to

both access methods. Multidimensional indexes cluster
data symmetrically with respect to all index attributes.
With 8kB pages 80 tuples of the LINEITEM relation are
stored together on one page. Accessing 200k tuples then
means 2.5k random disk accesses. Thus a multidimen-
sional index is useful for this type of query.

LINEITEMTetris

L_SHIPDATE L
_D

IS
C

O
U

N
T

L_Q
UANTIT

Y

LINEITEM IOT

L_SHIPDATE L
_D

IS
C

O
U

N
T

L_Q
UANTIT

Y

Figure 5-11: Processing Q6 with Tetris and IOT

For Q6 we created five instances of LINEITEM,
namely a UB-Tree, an IOT on each restricted attribute and
a table with three secondary B-Trees, one on each re-
stricted attribute. As expected it was not possible to make
the optimizer perform an index intersection. The optimizer
always preferred a FTS instead. Forcing the optimizer to
use a single secondary index on SHIPDATE (the most
selective attribute) was much less efficient than a FTS.
Since this verifies our theoretical expectations, we exclude
secondary indexes also from our performance comparison
for Q6.

Table Size
Scaling Factor (SF)

326 MB
(0.25)

651MB
(0.5)

1302MB
(1)

Time IOT QUANTITY 460,7s 921,4s 1842,8s
Time IOT DISCOUNT 339,2s 678,4s 1356,8s
Time IOT SHIPDATE 208,1s 416,3s 832,5s
Time FTS 47,7s 93,9s 187,6s
Time Tetris 12,0s 21,3s 30,5s

Table 5-3: Interactive response times for Q6

Table 5-3 and Figure 5-12 again show the superiority of
a multidimensional organization over classical access
methods by a sixfold speedup of the Tetris algorithm for
UB-Trees over an FTS and by a speedup of two to three
orders of magnitude over any IOT.

0

50

100

150

200

0 0,25 0,5 0,75 1
TPC-D scaling factor

ti
m

e
in

 s

IOT QUANTITY

IOT DISCOUNT

IOT SHIPDATE

FTS

Tetris

Figure 5-12: Performance of Q6

6 Conclusions and Future Work
When sorting a relation or joining relations, restrictions

in multiple attributes should be efficiently utilized in order
to reduce I/O-cost and CPU-cost. The Tetris algorithm uses
a multidimensional access method and a sweep plane tech-
nique to combine the sort process and the evaluation of
multi-attribute restrictions in one single processing step.
We have shown that for dimensionalities typical for rela-
tional databases only I/O-time linear in the size of the
result set and sublinear temporary storage are necessary to
perform the Tetris algorithm. In contrast to a merge-sort
algorithm results are produced in a continuous flow of
operation. Therefore sorting is no longer a blocking
operation. Compared to existing techniques, the first re-
sults are available much earlier and thus allow better in-
teractive response times and better internal pipelining of
the data. The benchmark results for three queries of the
TPC-D benchmark show speedups of up to two orders of
magnitude in response time. Depending on the query,
temporary storage requirements are reduced by several
orders of magnitude. Further analysis indicates the usabil-
ity of our approach for an even broader range of queries.

In our future work we are particularly interested in a de-
tailed study of relational query processing with multidi-
mensional indexes. We are in the process of investigating a
methodology for query optimization with multidimensional
indexes, both for heuristics-based and cost-based query
optimizers. We will apply these techniques to practical
application scenarios of our commercial project partners.
Applications with real-world customer data then will prove
the practical usability of our methods.

Acknowledgments
We thank our project partners SAP, Teijin Systems Technol-

ogy, NEC and Hitachi for funding this research work. We also
thank our master student Roland Pieringer for his effort in doing
the performance measurements reported in this paper.

References
[Bay96] Bayer, R.: The universal B-Tree for multidimensional

Indexing. Technical Report TUM-I9637, TU
München, 1996

[Bay97a] Bayer, R.: The universal B-Tree for multidimensional
Indexing: General Concepts. - In: World-Wide Com-
puting and Its Applications '97 (WWCA '97),
Tsukuba, Japan, 10-11, LNCS, Springer, 1997

[Bay97b] Bayer, R.: UB-Trees and UB-Cache – A new Proce-
sing Paradigm for Database Systems. Technical Re-
port TUM-I9722, TU München, 1997

[BKK96] Berchtold, S. D.; Keim, D.; Kriegel, H.-P.: The X-
Tree: An Index Structure for high-dimensional Data.
22nd Int. Conf. on Very Large Data Bases, 1996

[BM98] Bayer, R.; Markl, V.: A Multidimensional Index and
its Performance on Relational Database Management
Systems, Report, FORWISS 1998

[CHH+91] Cheng, J.; Haderle, D.; Hedges, R.; Iyer, B.R.; Mess-
inger, T.; Mohan, C.; Wang, Y.: An efficient hybrid
hash join algorithm: a DB2 prototype, 7th Intl. Conf.
on Data Engineering, Kobe 1991, pp. 171-180

[DKO+85] DeWitt, D.J.; Katz, R.H.; Olken, F.; Shapiro, L.D.; et
al.: Implementation Techniques for Main Memory
Database Systems, SIGMOD Intl. Conf. on Manage-
ment of Data, 1984, pp. 1-8

[FNP+79] Fagin, R.; Nievergelt, J.; Pippenger, N.; Strong, H.
R.: Extendible Hashing – a fast access method for
dynamic files. ACM TODS 4(3), 1979, pp. 315 - 344

[Gut84] Guttman: A dynamic Index Structure for spatial
Searching. SIGMOD Intl. Conf. on Management of
Data, 1984, pp. 47 – 57

[Gra93] Graefe, G.: Query Evaluation Techniques for Large
Databases, Computing Surveys 25, pp. 73-170

[GG97] Gaede, V.; Günther, O.: Multidimensional Access
Methods. Humboldt Universität, Berlin, 1997,
http://www.wiwi.hu-berlin.de/~gaede/survey.rev.ps.Z

[Gün93] Günther, O.: Efficient computations of Spatial Joins,
9th Int. Conf. on Data Engineering, Vienna, 1993

[GHR+97] Gupta, H.; Harinarayan, V.; Rajaraman, A.; Ullman,
D. J.: Index Selection for OLAP. Intl. Conf. on Data
Engineering, 1997

[HNK+90] Harada, L.; Nakano, M.; Kitsuregawa, M.; Takagi,
M.: Query Processing Methods for Multi-Attribute
Clustered Relations, 16th Int. Conf. on Very Large
Databases, 1990, pp.59-70

[HR96] Harris, E.P.; Ramamohanarao, K.: Join algorithm
costs revisited, VLDB Journal, 5, 1996

[Inf97] Informix Software Inc.: A New Generation of Deci-
sion Support Indexing for Enterprisewide Data
Warehouses, http://www.informix.com/informix/
corpinfo/zines/whitpprs/wpxps.pdf, 1997

[Jag90] Jagadish, H.V.: Linear Clustering of Objects with
multiple Attributes. ACM SIGMOD Intl. Conference
on Management of Data, 1990, pp. 332 – 342

[LS90] Lomet, D.; Salzberg, B.: The hB-Tree: A Multiat-
tribute Indexing Method with good guaranteed Per-
formance. TODS, 15(4), 1990, pp. 625 – 658

[Mar99] Markl, V.: MISTRAL: Processing relational queries
with multidimensional access techniques, Disserta-
tion, Technische Universität München, 1999

[MB98] Markl, V.; Bayer, R.: The Tetris-Algorithm for Sorted
Reading from UB-Trees, In: “Grundlagen von Daten-
banken”, 10th GI Workshop, 1998

[ME92] Mishra, P.; Eich, M.H.: Join Processing in Relational
Databases, Computing Surveys, Vol. 24 No.1, 1992,
pp. 194-211

[Mer81] Merret, T.H.: Why sort-merge gives the best imple-
mentation of then natural join, SIGMOD Record 13,
1981, pp. 39 - 51

[NHS84] Nievergelt, J.; Hinterberger, H. ; Sevcik, K. C.: The
Grid-File. TODS, 9(1), March 1984, pp. 38-71

[OQ97] O´Neill, P.; Quass, D.: Improved Query Performance
with Variant Indexes. SIGMOD Intl. Conf. On Man-
agement of Data, Tucson, 1997, pp. 38-49

[OM84] Orenstein, J. A.; Merret, T. H.: A Class of Data Struc-
tures for Associate Searching. SIGMOD Intl. Conf.
on Management of Data, 1984, pp. 294-305

[Ora97] Oracle Corp.: Oracle 8 Documentation, Oracle
Corporation, 1997

[Rot91] Rotem, D.: Spatial Join Indices, Intl. Conf. on Data
Engineering, 1991, pp. 500-509

[Sam90] Samet, H.: The Design and Analysis of Spatial Data
Structures, Addison Wesley, 1990

[TPC97] TPC benchmark D. Transaction Processing Perform-
ance Council, http://www.tpc.org, 1997

