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Abstract 

Star queries are the most prevalent kind of que-
ries in data warehousing, OLAP and business in-
telligence applications. Thus, there is an impera-
tive need for efficiently processing star queries. 
To this end, a new class of fact table organiza-
tions has emerged that exploits path-based surro-
gate keys in order to hierarchically cluster the 
fact table data of a star schema [DRSN98, 
MRB99, KS01]. In the context of these new or-
ganizations, star query processing changes radi-
cally. In this paper, we present a complete ab-
stract processing plan that captures all the neces-
sary steps in evaluating such queries over hierar-
chically clustered fact tables. Furthermore, we 
present optimizations for surrogate key process-
ing and a novel early grouping transformation for 
grouping on the dimension hierarchies. Our algo-
rithms have been already implemented in a 
commercial relational database management sys-
tem (RDBMS) and the experimental evaluation, 
as well as customer feedback, indicates speed-
ups of orders of magnitude for typical star que-
ries in real world applications.   

1.   Introduction 
Data warehousing (DW) has evolved into a major trend in 
database technology through the last decade. Furthermore, 
the multidimensional paradigm seems to be the undis-
puted winner as a design choice for such databases. Re-
gardless of the underlying physical layer, relational tech-
nology or proprietary multidimensional structures, the 
conceptual model adopted is a data warehouse consisting 
of facts (or measures) organized into a set of dimensions, 
which in turn are organized into levels of different aggre-
gation (i.e., detail) that comprise one or more hierarchies. 
In particular, for relational databases, the multidimen-
sional data warehouse consists of one or more star sche-
mata [CD97a].  

The information stored in a star schema is in the form 
of detailed facts organized by dimension values and can 
produce all kinds of invaluable insights with appropriate 
querying. The most prevalent kind of query submitted to 
such a system is the star query. Star queries impose re-
strictions on the dimension values that are used for select-
ing specific facts; these facts are further grouped and ag-
gregated according to the user demands. The major bot-
tleneck in evaluating such queries has been the join of the 
central (and usually very large) fact table with the sur-
rounding dimension tables (also known as a star join). To 
cope with this problem various indexing schemes have 
been developed [NG95, NQ97, Sar97, CI98, WB98, 
Wu99, WOS01]. Also precomputation of aggregation 
results has been studied extensively - mainly as a view 
maintenance problem - and is used as a means of acceler-
ating query performance in data warehouses [GM95, 
Rou98, SDJL96].  
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However, the need for doing On-Line Analytical Proc-
essing (OLAP) on the data makes processing of ad hoc 
star queries, i.e. queries that are not known in advance, 
also a necessity. For this kind of queries the usage of 
precomputed aggregation results is extremely limited or 
even impossible in some cases. Even when elaborate 
indexes are used, due to the arbitrary ordering of the fact 
table tuples, there might be as many I/Os as are the tuples 
resulting from the fact table. The only alternative one can 
have for such queries is a good physical clustering of the 
data, and it is exactly for this reason that a new class of 
primary organizations for the fact table has emerged 
[DRSN98, MRB99, KS01].  These organizations exploit a 
special kind of key that is based on the hierarchy paths of 
the dimensions, in order to achieve hierarchical clustering 
of the facts. This physical clustering results in a reduced 
I/O cost for the majority of star queries, which are based 
on the dimension hierarchies. Moreover, [MRB99] and 
[KS01] exploit a multidimensional index for storing the 
tuples. A typical star join is transformed then into a mul-
tidimensional range query, which is very efficiently com-
puted using the underlying multidimensional data struc-
tures. 

In this paper, we study the processing of ad hoc star 
queries over hierarchically clustered fact tables. We show 
that the processing entailed is significantly different from 
the ones in previous approaches. In particular, we present 
a complete abstract processing plan that covers all the 
necessary steps for answering such queries. This plan 
directly exploits the benefits of hierarchically clustered 
fact tables and opens the road for new optimization chal-
lenges. To this end we propose optimizations for the 
processing of surrogate keys, when evaluating dimension 
restrictions, and a novel early grouping transformation 
that drastically reduces the number of fact table tuples 
participating in a sequence of joins with dimension tables. 
Our proposals have already been implemented in a com-
mercial RDBMS [TBHC] and have been deployed to cus-
tomers. Finally, we present preliminary measurements 
that have been confirmed in real-life applications and 
show significant performance gains for typical star que-
ries.  

The rest of the paper is organized as follows. In sec-
tion 2 we give an overview of related work. Section 3 
describes the general concept of processing star queries 
using hierarchical clustering, while section 4 contains 
optimizations for the proposed processing plan. Meas-
urement results are presented in section 5. Section 6 reca-
pitulates our work and summarizes the benefits of our 
proposal compared to the conventional processing plans 
of star queries.  

2.   Related Work 
One of the most important parts of a star query is the 
processing of the star join. Star join processing has been 
studied extensively and specific solutions have been also 

implemented in commercial products. See [CD97b] for an 
overview.  

The standard query processing algorithm to execute a 
star join over n dimensions first evaluates the predicates 
on the dimension tables, either on normalized (snowflake) 
or de-normalized (star) schema, resulting in a set Ri of ni 
tuples of dimension Di. It then builds a cartesian product 
of the dimension result tuples (R1 x R2 x … x Rn). The 
cardinality of the cartesian product is n1 · n2 ·…· nn for the 
n restricted dimensions. With these cartesian product tu-
ples, we perform a direct index access on the composite 
index built on the fact table. For non-sparse fact tables 
and queries that restrict most dimensions of the composite 
index in the order of the index attributes, the access to the 
fact tuples is quite fast. The next processing step then 
joins the resulting fact tuples with the dimension tables in 
order to allow grouping and aggregating.  

However, for large sparse fact tables and high dimen-
sionality, such a query processing plan does not work 
efficiently enough. The cardinality of the cartesian prod-
uct resulting from the dimension predicates grows very 
fast, whereas the number of affected tuples in the fact 
table may be relatively small.  This is the point where a 
call is made for specialized indexing or clustering meth-
ods. 

Bitmap indices are often used to speed up the access 
to the fact table. The bitmaps corresponding to the differ-
ent dimension values are ANDed or ORed depending on 
the selection condition. The resulting bitmap is used to 
extract tuples from the fact table [NG95, NQ97]. When 
the query selectivity is high, only a few bits in the result 
bitmap are set. If there is no particular order among the 
fact table tuples, we can expect each bit to access a tuple 
in different page. Thus there will be as many I/Os as there 
are bits set. 

Multidimensional clustering has been discussed in the 
field of multidimensional access methods (e.g., [GG97] 
and [Sam90]). [ZSL98] addresses the issue of hierarchical 
clustering for the one-dimensional case.  The importance 
of good physical clustering in OLAP has been shown in 
[KR98], where packed R-trees are exploited for storing 
the results of the data cube operator ([GBLP96]). In 
[DRSN98], the benefits of hierarchical clustering for star 
queries was observed as a side effect of using a chunked 
file organization for enabling caching with chunk as the 
caching unit. 

Among others, in [MRB99] the UB-tree multidimen-
sional index [Bay97] is used as a primary organization of 
the fact table. Surrogate keys based on the dimension hi-
erarchies are exploited and hierarchical clustering of the 
fact table is achieved. Consequently star joins are trans-
formed to multidimensional range queries. The combina-
tion of the two mechanisms results in a greatly reduced 
I/O cost for star joins.  

In [KS01] a physical organization based on a hierar-
chical chunking of the fact table is presented. Fact data 
are clustered physically according to the dimensional hi-

 



erarchies. To achieve this clustering, special path-based 
dimension keys are exploited. In particular, these keys 
guide the clustering (called chunking) process. Star joins 
are transformed to range queries in the multidimensional 
and multi-level data space of a cube. The adopted multi-
dimensional structure is a variant of the Grid File 
[NHS84]. 

Several aspects of processing and optimizing star join 
queries on hierarchically clustered fact tables are also 
presented in [TT01]. The paper considers a star schema 
with UB-Tree organized fact tables and dimension tables 
stored sorted on a composite surrogate key. For a particu-
lar class of star join queries, the authors investigate the 
usage of sort-merge joins and a set of other heuristic op-
timizations. 

Based on the significance of the above organizations, 
it is clear that there is a need for a general query process-
ing framework that addresses all issues involved in star 
query processing over hierarchically clustered fact tables. 
We proceed next to present such a framework. 

3.   Processing Star Queries 

3.1 Preliminary Concepts   

OLAP data are divided into two main categories. The 
measures (or facts) are mainly numeric values, which 
correspond to measurements of some value related to an 
event at specific points in time (e.g., amount of money 
appearing in a line of an invoice at a particular day, or 
balance of an account at the end of each day, etc.) and are 
expected to change rapidly. The dimension data (or sim-
ply dimensions) are used to characterize the measures and 
are considered to be almost static in (or slowly changing 
with) time. The dimension values characterize a specific 
measure value in the same way that coordinate values 
characterize a specific point in a multidimensional space. 
Examples of dimensions for a retailing business can be 
DATE, PRODUCT, CUSTOMER, LOCATION etc. 

Each dimension represents a distinctive property of a 
measure. In a relational OLAP (ROLAP) implementation 
a dimension is stored into one or more dimension tables 
{D1, D2, D3…} each having a set of attributes. In the sim-
plest case, a dimension is represented by only one table 
with only one attribute, say h1. Based on the values of h1 
one may add additional attributes (h2, h3, …) to the di-
mension table in order to form a classification hierarchy. 
In this case the h1 attribute is classified by the h2 attribute, 
which is further classified by the h3 attribute, etc. We call 
the attributes h1, h2, h3, … hierarchical attributes because 
they participate in the definition of the hierarchy. For ex-
ample day, month and year can be a hierarchical classifi-
cation in the DATE dimension. In general, a single dimen-
sion may contain many different hierarchical classifica-
tions that stem from a common grain level (i.e., the most 
detailed level). For the purposes of this paper we will as-
sume a single hierarchy for each dimension.  

A dimension table may also contain one or more fea-
ture attributes f. A feature attribute is a descriptive attrib-
ute and is semantically different from a hierarchical at-
tribute in that it cannot participate in the dimension hier-
archy. Feature attributes contain additional information 
about a number of hierarchical attributes and are always 
functionally dependent on one (or more) hierarchical at-
tribute. For example, population could be a feature attrib-
ute dependent on the region attribute of dimension LO-
CATION. 

3.2 Database Schema 

As mentioned earlier, the dimensions are used to charac-
terize measures, which in turn are stored in fact tables. A 
fact table may contain one or more measure attributes and 
is always linked (by foreign key attributes) to some di-
mension tables. This logical organization consisting of a 
central table (the fact table) and surrounding tables (the 
dimension tables) that link to it through 1:N relationships 
is known as the star schema [CD97a]. In a typical sce-
nario, the hierarchical attribute representing the most de-
tailed level will be the primary key of the respective di-
mension. Each such attribute will have a corresponding 
foreign key in the fact table. 

In order to create a fact table that is clustered accord-
ing to the dimension hierarchies we first need to apply a 
hierarchical encoding (HE) on each dimension table. We 
achieve this by assigning to each dimension table D con-
taining the hierarchical attributes hm, hm-1, …, h1 (hm being 
the most aggregated level and  h1 the most detailed one) a 
surrogate key (sk)  attribute that has a unique value for 
each tuple. This is something very common in data ware-
housing practice, since surrogate keys provide a level of 
independence from the keys of the tables in the source 
systems [Kim96]. In our case, surrogate keys are defined 
over hm, hm-1, …, h1 and are essentially the means to 
achieve hierarchical clustering of the fact table data. We 
will refer to these keys as hierarchical surrogate keys 
(hsk) or simply h-surrogates. 

The main idea is that an h-surrogate value for a spe-
cific dimension table tuple is constructed as a combina-
tion of encoded values of the hierarchical attributes of the 
tuple. For example, if h1, h2, h3 are the hierarchical attrib-
utes of a dimension table from the most detailed level to 
the most aggregated one, then the h-surrogates for this 
dimension table will be represented by the values 
oc1(h3)/oc2(h2)/oc3(h1), where the functions oci (i = 1,2,3) 
define a numbering scheme for each hierarchy level and 
assign some order-code to each hierarchical attribute 
value. Obviously the h-surrogate attribute of a dimension 
table is a key for this table since it determines all hierar-
chical attributes, which in turn functionally determine all 
feature attributes. The h-surrogate should be a system 
assigned and maintained attribute, and typically should be 
made transparent to the user. 

 



The actual implementation of the hierarchical surro-
gate keys depends heavily on the underlying physical or-
ganization of the fact table. Proposals for physical organi-
zations [MRB99, KS01] exploit such path-based surro-
gate keys in order to achieve hierarchical clustering of the 
stored data of a fact table.  

In this paper we adopt a de-normalized approach for 
the design of a dimension, i.e., we represent each dimen-
sion with only one table. The hierarchical attributes (h1, 
h2, …,hm), the feature attributes (f1, f2, …, fk) as  well as 
the hierarchical surrogate key hsk  are stored in a unique 
dimension table D. De-normalization of the dimension 
tables is a common data warehousing practice. It is based 
on the rationale that the major overhead in storage space 
comes from the fact table and therefore, normalizing the 
dimension tables will not exhibit any significant space 
savings. On the other hand, de-normalization enhances 
performance significantly, since it avoids the consequent 
joins between the tables of the same dimension.  Although 
the alternative of normalized schemata (also known as 
snowflake schemata [CD97a]), is also another option, in 
this paper we will not address it due to lack of space and 
for the sake of simplicity of the presented abstract proc-
essing plan (see section 3.4). However, our ideas are fully 
applicable to normalized schemata as well, with the only 
difference that extra joins between the several dimension 
tables (corresponding to separate hierarchy levels) must 
be included in the plan.  
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Figure 1: Star schema with flat dimension tables 

The star schema of Figure 1 is a typical star schema 
where the dimension tables have been hierarchically en-
coded. This schema consists of N dimensions stored in the 
dimension tables D1, …, DN. Each dimension is logically 
structured in a hierarchy. The hierarchy elements for di-
mension Di are h1, h2, … hji. Each dimension table Di may 
also include a set of feature attributes f1, f2,…,fri that char-
acterize one or more hierarchical attributes. In Figure 1 
we depict h1, i.e. the most detailed level in each hierarchy 
as the primary key of each dimension table. In Figure 1 

we can also see the h-surrogate attribute (hski), which is 
an alternate key for each table Di (i = 1,…N). 

The fact table contains the measure attributes (m1, m2, 
…mk), the reference to the h-surrogate of each dimension 
(hsk1, hsk2, …, hskN) and a reference to the most detailed 
hierarchical attribute of each dimension (d1, d2, …,dN).  
Hence, d1 is a reference to h1 of D1, d2 is a reference to h1 
of D2 and so on. All measure values refer to the most de-
tailed level of the hierarchy of each dimension.  For an 
example of a star schema, the reader is referred to Figure 
4 of section 3.5. 

In the fact table of Figure 1, we have two alternative 
composite keys: (a) (d1, d2, …,dN) that links to the corre-
sponding lowest hierarchical attribute of each dimension 
and (b) (hsk1, hsk2, …, hskN) that links to the h-surrogate 
attribute. Note that the former is not necessary in order to 
achieve hierarchical clustering of the data and thus could 
be omitted in order to reduce storage overhead.  

In this paper, we use a special physically organized 
schema. The fact table is stored hierarchically clustered in 
a multidimensional index, i.e., the index attributes of this 
clustering index are the h-surrogates. 

3.3 Star Queries 

OLAP queries typically include restrictions on multiple 
dimension tables that trigger restrictions on the (usually 
very large) fact table. This is known as a star join. In this 
paper, we use the term star query to refer to flat SQL que-
ries, defined over a single star schema, that include a star 
join. Star queries represent the majority of OLAP queries. 
In particular, we are interested in ad hoc OLAP queries. 
With the term “ad hoc” we refer to queries that are not 
known in advance and therefore the administrator cannot 
optimize the DBMS specifically for these. 

In Figure 2, we depict an SQL query template for ad 
hoc star queries. The template defines the most complex 
query structure supported and uses abstract terms that act 
as placeholders. Note that queries conforming to this tem-
plate have a structure that is a subset of the above tem-
plate and instantiate all abstract terms. 

Our template will be applied on a schema similar to 
the one in Figure 1, which is a typical star schema. Look-
ing at the part containing the join constraints between the 
fact table and the dimension tables (JC), we see that it 
includes a star join. Apart from the star join, there is a 
GROUP BY and HAVING clause (HP).  In general any at-
tribute (hierarchical, feature, or measure) can appear in a 
GROUP BY clause (GAh, GAf, GAm). However, most que-
ries impose a grouping on a number of hierarchical and/or 
feature attributes. Finally, there is an ORDER BY clause 
for controlling the order of the presented results (OL).  

LOCPREDi(Di) is a local predicate on a dimension 
table Di (LP). The characterization “local” is because this 
predicate includes restrictions only on Di and not on other 
dimension tables or the fact table. This predicate is very 
important for the h-surrogate processing phase explained 

 



later, and is used to produce the necessary h-surrogate 
specification for accessing the fact table.  

Note that the vast majority of OLAP queries contain 
an equality restriction on a number of hierarchical attrib-
utes and more commonly on hierarchical attributes that 
form a complete path in the hierarchy. E.g., the query  
“show me sales for area A in region B for each month of 
1999” contains two whole-path restrictions, one for a di-
mension LOCATION and one for a DATE: (a) LOCA-
TION.region = ‘A’ AND LOCATION.area = ‘B’ and (b) 
DATE.year = 1999. This is reasonable since the core of 
analysis is conducted along the hierarchies. We call this 
kind of restrictions hierarchical prefix path (HPP) restric-
tions. Note also that even if we impose a restriction on an 
intermediate level hierarchical attribute, we can still have 
an HPP restriction, as long as hierarchical attributes func-
tionally determine higher level ones. 

 
SELECT SGA, Aggr 
FROM ft, D 
WHERE JC AND LP AND MP 
GROUP BY GAh, GAf, GAm 
HAVING HP 
ORDER BY OL 
SGA: Selection attribute(s) of dimension table(s) 

(Di.hj∈GAh or Di.fj∈GAf) and/or, measure 
attribute(s) of the fact table (ft.mi∈GAm).  

Aggr: Aggregation function(s) (MIN, MAX, COUNT, 
SUM) on measure attribute(s) of the fact table 
(ft.mi) and/or, on attribute(s) of the dimension 
table(s) (Di.hj or Di.fj; Di∈D).  

ft: The fact table. 
D: Dimension table(s) involved in the query (D1, 

D2, …, DN). 
JC: Natural join conditions; joining the fact table ft 

with the involved dimension tables Di (Di∈D) 
on key-foreign key (ft.di=Di.h1) 

LP: A conjunction of local predicates on some of 
the involved dimension tables: 
LP=LOCPRED1(D1)∧LOCPRED2(D2)∧… 
∧LOCPREDk(Dk); D1,D2,…,Dk∈D 

MP: Restriction predicate on measure attribute(s) of 
the fact table. 

GAh: Grouping hierarchical attribute(s) of dimension 
table(s) (Di.hk, Di ∈D). 

GAf: Grouping feature attribute(s) of dimension 
table(s) (Di.fk , Di ∈D). 

GAm: Grouping measure attribute(s) of fact table 
(ft.mi) 

HP: Restriction predicate on grouping attributes 
(GAh∪GAf∪GAm) and/or on aggregation 
functions. 

OL: An ordered list of attributes. 
(OL⊆GAh∪GAf∪GAm) 

Figure 2: The ad hoc star query template 

Finally, MP is a predicate that contains any con-
straints on measures of the fact table. Those constraints do 
not reference any dimension tables. An example would be 
to ask for sales figures that exceed a certain value thresh-
old. 

3.4 Abstract Processing Plan 

In this section we will describe the major processing steps 
entailed when we want to answer star queries over a hier-
archically clustered fact table.  
Step 1 – Identifying relevant fact table data: The proc-
essing begins with the evaluation of the restrictions on the 
individual dimension tables, i.e., the evaluation of the 
local predicates (section 3.3). This step performed on a 
hierarchically encoded dimension table will result in a set 
of h-surrogates that will be used in order to access the 
corresponding fact table data. Due to the hierarchical na-
ture of the h-surrogate this set can be represented by a 
number of h-surrogate intervals called the h-surrogate 
specification. Using the notation of [KS01] an interval 
can for example have the form v3/v2/∗, where v3, v2 are 
specific values of the h3 and h2 hierarchical attributes of 
the dimension in question. The symbol ‘∗’ means all val-
ues of the h1 attribute in the dimension tuples that have h3 
= v3 and h2 = v2. In the case of a DATE dimension, the h-
surrogate specification could be 1999/January/* to allow 
for any day in this month.  We will show in the next sec-
tion that this step can be performed very efficiently. We 
will use the term range to denote the h-surrogate specifi-
cation arising from the evaluation of the restriction on a 
single dimension. 

Once the h-surrogate specifications are determined for 
all dimensions, the evaluation of the star join follows. In 
hierarchically clustered fact tables this translates to one or 
more simple range queries on the underlying multidimen-
sional structure that is used to store the fact table data. 
Moreover, since data are physically clustered according to 
the hierarchies and the ranges originate from hierarchical 
restrictions, this will result in a very efficient evaluation 
of the range selection ([MRB99]). 
Step 2 – Computing necessary joins: The tuples result-
ing from the fact table contain the h-surrogates, the meas-
ures and the dimension table primary keys. At this stage, 
there might be a need for joining these tuples with a num-
ber of dimension tables in order to retrieve certain hierar-
chical and/or feature attributes that the user wants to have 
in the final result and might also be needed for the group-
ing operation. We call these joins residual joins.  
Step 3 – Performing grouping and ordering: Finally, 
the resulting tuples may be grouped and aggregated and 
the groups further filtered and ordered for delivering the 
result to the user.  

The abstract processing plan comprising of the above 
phases is illustrated in Figure 3 and can be used to answer 
the single block queries described in section 3.3. This 
plan is abstract in the sense that it does not determine spe-

 



cific algorithms for each processing step: it just defines 
the processing that needs to be done. That is why it is 
expressed in terms of abstract operators (or logical op-
erators), which in turn can be mapped to a number of 
alternative physical operators that correspond to specific 
implementations.  

FT 
 

MD_Range_Access 
 

Order_By 
 

Di 

 

Dj 

 

... 
 

Create_Range 
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Main Execution Phase 
 

h-surrogate processing 

... 
 

Residual_Join 
 

Residual_Join 
 

Group_Select 
 

 
Figure 3: The abstract processing plan 

The plan can be logically divided in two main process-
ing phases: the hierarchical surrogate key processing 
(HSKP) phase which corresponds to Step 1 mentioned 
earlier, and the main execution phase (MEP) correspond-
ing to the other two steps. Next we describe the operators 
appearing in the abstract processing plan of Figure 3. 

Create_Range is responsible for evaluating the local 
predicate (LP in Figure 2) on each dimension table. This 
evaluation will result in an h-surrogate specification (set 
of ranges) for each dimension. All these together define 
one (or more, disjoint) hype-rectangle(s) in the multidi-
mensional space of the fact table. In the next section we 
will present some implementation hints that allow for the 
efficient processing for this operation. 

MD_Range_Access receives as input the h-surrogate 
specifications from the Create_Range operators and per-
forms a set of range queries on the underlying multidi-
mensional structure that holds the fact table data. Apart 
from the selection of data points that fall into the desired 
ranges, this operator can perform further filtering based 
on predicates on the measure values (MP) and projection 
(without duplicate elimination) of fact table attributes. 

Residual_Join is a join on a key-foreign key equality 
condition among a dimension table and the tuples origi-
nating from the MD_Range_Access operator. This way, 
each incoming fact table record is joined with at most one 
dimension table record. The join is performed in order to 

enrich the fact table records with the required dimension 
table attributes. These attributes might be required in the 
SELECT, GROUP BY, HAVING and ORDER BY clauses. 

Group_Select performs grouping and aggregation on 
the resulting tuples and evaluates any restrictions appear-
ing in the HAVING clause. Finally, Order_By simply sorts 
the tuples in the required output order. 

Note that not all operators in the abstract plan may be 
needed for the execution of a particular query. The plan 
represents the most complex abstract plan that might be 
required to answer a supported query. For example, if the 
result records are not required in a specific order then the 
final Order_By operator will not be applied. Also, many 
queries will not restrict all available dimensions nor will 
require feature or hierarchical attributes from all dimen-
sion tables. This means that only a restricted number of 
Create_Range and Residual_Join operators may be used. 
In the simplest possible query (SELECT * FROM ft) 
only the MD_Range_Access operator is needed.  

3.5 Example 

In this section we first describe an example schema of a 
simplified data warehouse. Then we present an abstract 
processing plan for an example query on this data ware-
house.  
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Figure 4: The schema of the data warehouse 

The data warehouse stores sales transactions recorded 
per item, store, customer and date. It contains one fact 
table SALES_FACT, which is defined over the dimen-
sions: PRODUCT, CUSTOMER, DATE and LOCATION 
with the obvious meanings. The single measure of 
SALES_FACT is sales representing the sales value for an 
item bought by a customer at a store at a specific day. The 
schema of the fact table is shown in Figure 4 and the di-
mension hierarchies are depicted in Figure 5. 

The dimension DATE is organized in three levels: 
Day-Month-Year. Hence, it has three hierarchical attrib-
utes (day, month, year). 

The dimension CUSTOMER is organized in only two 
levels: Customer-Profession. For each customer the di-
mension table contains an ID, a name, an address and a 
profession. The dimension has two hierarchical attributes 
(customer_id, profession) and two feature attributes 

 



(name, address). The LOCATION dimension is organized 
into three levels: Store-Area-Region. Stores are grouped 
into geographical areas and the areas are grouped into 
regions. For each area, the population is stored as feature 
attribute. The dimension has three hierarchical attributes 
(store_id, area, region) and one feature attribute (popula-
tion) that is assigned to the Area level. 

Year 
 

Month 
 

Day 
 

DATE 

Category 
 

Class 
 

Item 
 

PRODUCT 

Region 
 

Area 
 

Store 
 

LOCATION 

Profession 
 

Customer 
 

CUSTOMER  
Figure 5: The dimension hierarchies of the example 

Finally, the PRODUCT dimension is organized into 
three levels: Item-Class-Category.  Items are grouped into 
product classes and those classes are grouped into catego-
ries. For example, one category could be “air condition”. 
Also, the attribute brand characterizing each item is a 
feature attribute.  

Let us now define an example query on the above 
schema: We want to see the sum of sales by area and 
month for areas with population more than 1 million, for 
the months of the year 1999 and for products that belong 
to the category “air condition”. The corresponding SQL 
expression of this query is given next, while the abstract 
processing plan for this query is shown in Figure 6. 

 
SELECT L.area, D.month, SUM(F.sales) 
FROM SALES_FACT F, LOCATION L, DATE D, 
PRODUCT P 
WHERE F.day = D.day AND F.store_id = 
L.store_id AND F.product_id = P.item_id AND 
D.year = 1999 AND L.population>1000000 AND 
P.category = “air condition” 
GROUP BY L.area, D.month 
 

Having described the framework for query processing 
of OLAP queries, we move next to discuss various opti-
mization issues that arise. 

4.   Optimization Issues 
In this section we will focus on particular parts of the ab-
stract processing plan presented previously. In particular, 
our interest will be centered on the hierarchical surrogate 
key processing phase and the grouping processing step. 
We propose some processing hints for the former and a 
transformation of the abstract plan for the latter that can 
lead to better processing plans. 

4.1 Optimization of the h-surrogate processing phase 

Hierarchical surrogate keys play a dominating role in the 
processing of star queries over hierarchically clustered 
multidimensional data with hierarchies. We have already 
presented an abstract processing plan for our target que-

ries. In this plan, we have seen that the very first operation 
that needs to be executed is the access to dimension tables 
and the extraction of appropriate h-surrogate ranges (Cre-
ate_Range in Figure 3).  
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Figure 6: The abstract processing plan for the example 

query 

For the vast majority of dimension restrictions, the 
Create_Range operator can be implemented very effi-
ciently. If we consider hierarchical prefix path (HPP) re-
strictions (see section 3.3), then the first matching tuple 
on each dimension suffices in order to retrieve the appro-
priate h-surrogate value that will generate the ranges. For 
example, if we have the restriction PRODUCT.category = 
“air condition” AND PRODUCT.class = “A”, then essen-
tially what we want is all the leaves of the subtree with 
root “air condition”/“A”/ defined in the tree instantiating 
the hierarchy of dimension PRODUCT. Therefore, if we 
retrieve the h-surrogate value corresponding to the first 
tuple that qualifies and truncate the part from the right 
that corresponds to level Item, then this will be the same 
for all matching tuples. Next we can use this truncated h-
surrogate value in order to create a range. 

Moreover, if we have stored more information on the 
correlations between the attributes of a dimension, apart 
from the definition of the hierarchy, then we can benefit 
from the above processing scheme, even for non hierar-
chical prefix path restrictions. Suppose we have a hierar-
chy hm, hm-1,…, h1 on a dimension and we have a restric-
tion of the form: hk = c1 AND hp = c2 AND … hi = ci, 
where hk, hp,…,hi do not form a prefix of (hm,…,h1) and hi 
is the most detailed of the referenced attributes. If we 
know that hi functionally determines hj, for all j > i, then 
we can still apply the above strategy. For example, for the 
restriction DATE.month = “AUG99”, we know that the 
month attribute determines the year attribute and thus 

 



only the first tuple that has this value for month suffices 
for our processing needs. Similar observations hold for 
the restrictions on the feature attributes as well.  

A very simple but also quite drastic optimization strat-
egy for the processing of the Create_Range operator, 
would be the use of a composite (B-tree) index, for each 
dimension table Di, defined over the attributes hm, hm-

1,…,h1, hski.  This index’s purpose would be twofold: (a) 
it could be used to speedup the retrieval of Di tuples, 
when a hierarchical prefix path restriction appears in a 
local predicate for Di and (b) it could also be used as a 
table that stores the mapping between hierarchical prefix 
paths and h-surrogate values. The former use is the classic 
exploitation of an index, while the latter gives us the op-
portunity to use this index solely to evaluate all predicates 
that contain restrictions on hierarchical attributes only 
(and not on feature attributes), without accessing Di, re-
gardless of the existence, or not, of a hierarchical prefix 
match. Even if we do not have a match with the search-
key of the index and we have to fully scan the index, this 
will be obviously more efficient than scanning the dimen-
sion table Di. Naturally, smaller tuples of the index will 
deliver us the required h-surrogate values with much less 
I/O cost than if we had to read the Di tuples. 

Another issue worth mentioning is that in some cases, 
local predicates on dimensions can result in a number of 
distinct h-surrogate values not forming a set of intervals. 
This inevitably will result in a large number of range que-
ries. However, very often this evaluation produces a set of 
h-surrogate values that belong to the same “family” in the 
hierarchy and thus can be merged into a single interval, 
reducing this way the total number of intervals created. 
For example, a local predicate on the LOCATION dimen-
sion with a restriction population > 1000000, could result 
to two areas that can be expressed by two intervals. The 
restriction, however, may qualify a large number of hier-
archy paths with a corresponding number of distinct h-
surrogates. A clever h-surrogate processing phase can 
detect such cases and reduce the number of intervals by 
merging h-surrogates of the same area. This would gener-
ate two intervals instead of a large number. 

4.2 Grouping on Surrogates  

According to the abstract plan, the fact table tuples re-
trieved by the MD_Range_Access operator are joined with 
a number of dimension tables. Then, the Group_Select 
operator groups the joined tuples and computes the re-
quired aggregates. Although the join operations are on 
key - foreign key equalities they can be quite expensive to 
perform. This is due to the large number of involved tu-
ples from both the fact and dimension tables. The large 
number of tuples leads also to an expensive grouping and 
aggregation operation. Our experience from experimental 
tests and from real world OLAP applications indicates 
that a significant part of the query processing time is spent 
in the joining and grouping steps. 

In order to optimize these steps one can perform vari-
ous transformations like the ones described in [YL95, 
CS94, GHQ95, LJ01] and [LMS94]. Among these, the 
transformation that seems to improve the plan in most of 
the cases is the Eager-GroupBy transformation [YL95]. 
This transformation pushes the grouping operator bellow 
one or more join operators. This way the join is per-
formed on a much smaller number of tuples while the 
grouping operation is performed on smaller size tuples. 

The interesting observation in our case is that we can 
exploit the existence of h-surrogates in the fact table tu-
ples and perform a new kind of transformation initially 
described in [Elh01]. This, so called pre-grouping trans-
formation, allows the grouping of fact table tuples before 
all join operations leading to a significant reduction of 
both the join and grouping effort. Furthermore, in particu-
lar cases the transformation can remove completely one or 
more join operations. 

Let us now illustrate our transformation with an ex-
ample query on the schema of section 3.5. Assume we 
want to have a report with the professions of all customers 
and the average sales value for each such profession. In 
our schema each customer has only one profession. The 
original plan would join the fact table with the CUS-
TOMER dimension table and group the result with respect 
to the profession attribute. For each group the query 
would report the profession and the average sales value of 
the group. 

Using the pre-grouping transformation we can modify 
the plan and perform the grouping before the join. In or-
der to do that we use the h-surrogate attribute of the fact 
table that corresponds to the CUSTOMER dimension 
(cust_hsk). In our example the structure of cust_hsk is: 
profession/customer_id. Using only the profession part of 
cust_hsk we can group the fact table tuples before joining 
them. The advantages of this transformation are obvious 
for both the grouping and join operations. Figure 7 illus-
trates the original and the transformed plan of our exam-
ple query. 

One might think that the transformed plan in Figure 
7(b) need not contain at all the join with the CUSTOMER 
table. However, the join is maintained because the h-
surrogates are implemented as an encoding of the path 
they represent. Recall that h-surrogates do not store the 
path value using the actual values of the hierarchical at-
tributes. However, if for some reason the query of our 
example did not require in the output the actual values of 
the attribute profession then the transformed plan would 
skip completely the join with the CUSTOMER dimension 
table. This demonstrates that pre-grouping not only 
speeds-up the evaluation of the grouping and join opera-
tions but can also remove join operations from the plan. 
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Figure 7: The pre-grouping transformation 

We argue that the pre-grouping transformation cannot 
be implemented using only the Eager-GroupBy or other 
similar transformations. As described in detail in [Tso02], 
pre-grouping can be considered to be a complex transfor-
mation that combines a novel transformation, called Sur-
rogate-Join, with the Eager-GroupBy and other basic al-
gebraic transformations.  The Surrogate-Join transforma-
tion is applicable to joins on key-foreign key equality 
when a limited number of attributes are projected after the 
join. The transformation, when applicable, modifies the 
join condition making it an equality predicate on a differ-
ent pair of attributes while adding two grouping opera-
tions, one for each input source of the join.  

In order to perform this transformation it is required 
that attributes in one of the input sources of the join must 
be (known to be) functionally related to attributes in the 
other source. The usage of functional dependencies and 
the modification of the join condition make Surrogate-
Join essentially different from any previously defined 
transformation for grouping operations.  The star schema 
and abstract plan that we adopt are particularly suitable 
for the application of the pre-grouping transformation 
since h-surrogates are functionally related to the hierar-
chical attributes of the dimension tables and all residual 
join operations are performed on key-foreign key equality 
conditions.  In the next section we use the pre-grouping 
transformation as part of the general optimization algo-
rithm applied on the Main Execution Phase. 

4.3 Optimization of the Main Execution Phase 

In this section we give an overview of a heuristic algo-
rithm used to optimize the Main Execution Phase (MEP) 
of an abstract plan. The algorithm uses only the syntactic 
properties of the query and its main contribution is the 
application of the pre-grouping transformation. Although 
a cost-based optimizer could achieve further optimiza-
tions the experimental measurements (see section 5) re-

port significant speed-ups when using the proposed heu-
ristic algorithm.  

The algorithm assumes the existence of an original ab-
stract plan where a Residual_Join operation exists for 
each dimension appearing in the FROM part of the query. It 
then follows 4 steps: 

• In the first step the redundant Residual_Join opera-
tors are identified and removed. 

• In the second step the pre-grouping transformation 
is applied and a new Group_Select operator may be 
added. All affected operators are modified as 
needed. 

• In the third step some Residual_Join operators may 
be pulled up above the original Group_Select op-
erator in order to perform grouping as soon as pos-
sible. 

• Finally, step 4 may eliminate the original 
Group_Select operator if this operator is redundant.   

Details of the algorithm are in the Appendix. 

5.   Performance Evaluation 
The technology introduced in this paper is fully imple-
mented in the commercial relational DBMS TransBase 
HyperCube [TBHC]. This section presents preliminary 
measurement results that evaluate the performance of the 
proposed techniques. 

The measurements are performed on a two processor 
PC Pentium III, 750 MHz, with 256 MB RAM and 30 GB 
IDE hard disk.  

The DW schema consists of a fact table with three di-
mensions CUSTOMER, PRODUCT and DATE and 3 
measures: quantity, value and unit_price. The data used 
come from a large electronic retailer in Hellas. The CUS-
TOMER dimension contains 1,4 million records, PROD-
UCT consists of 27.000 products and the DATE dimen-
sion covers 7 years on day granularity. 15.543.380 re-
cords are stored in the fact table, amounting to 1,5 GB. 

The query workload consisted of 220 ad hoc star que-
ries from a real-world application. We classified the que-
ries into three groups according to their selectivity on the 
fact table (i.e., number of tuples retrieved from the fact 
table): 
• [0.0-0.1]: 0% to 0.1% of fact table, i.e., 0 to about 

15K records 
• [0.1-1.0]: 0.1% to 1% of fact table, i.e., 15K to 160K 

records 
• [1.0-5.0]: 1.0% to 5.0% of fact table, i.e., 160K to 

780K records 
The goal of the performance evaluation was to meas-

ure three alternative execution plans: 
(a) the conventional star join plan (STAR), 
(b) the abstract execution plan as described in section 3 

(called AEP) and 
(c) the enhanced version taking the pre-grouping optimi-

zations of section 4 into account (called OPT). 

 



FT Sel. % [0.0-0.1] [0.1-1.0] [1.0-5.0] 

 STAR AEP OPT STAR AEP OPT STAR AEP OPT 

MIN 0 0 0 65 2 2 274 11 6 

MAX 30 6 3 290 9 6 1219 47 27 

MEDIAN 1 1 1 182 8 5 477 23 13 

STD-DEV 4.9 1.2 0.5 75.6 3.1 1.6 346.0 14.1 7.9 

Table 1: Response time (in sec) for the three techniques for the three query classes 

STAR uses secondary indexes that are created on the 
dimension keys of the fact table. The restrictions on the 
dimension tables are evaluated and the resulting dimen-
sion keys are used for index intersection on the fact table. 
The resulting records are joined with the dimension ta-
bles, in order to perform grouping and get the final result. 
This is the typical processing of star queries in commer-
cial DBMSs (e.g., star transformation in Oracle [Ora01]). 
This processing has two major steps: the index intersec-
tion and the tuple materialization. While the index inter-
section has largely been optimized (e.g., with bitmap in-
dexes [NQ97]) the materialization of results is still the 
bottleneck of non-clustering indexes. Consequently, we 
neglect the index intersection time for STAR and just 
measure the time for fact record materialization, residual 
joins and grouping. For AEP and OPT the complete proc-
essing including index access is measured, therefore fa-
voring STAR.   

Table 1 shows the response time analysis (in seconds) 
for the three alternative processing plans. As the three 
classes contain queries with different result set size and 
thus different response times we use the maximum, 
minimum, median time and the standard deviation to ana-
lyze the performance. 

Our results show that the standard STAR processing is 
outperformed by our approaches. However, for small que-
ries, i.e., the class [0.0-0.1], the speedup is below an order 
of magnitude. In general, for small result sets, the advan-
tage of clustering over non-clustering is not that large. 
The picture changes drastically, when we consider larger 
queries (classes [0.1-1.0] and [1.0-5.0]), which are more 
typical for OLAP applications. The hierarchical clustering 
of AEP leads to an average speedup compared to STAR 
of 24 and with the additional optimization of pre-grouping 
an additional factor of about two is gained.  

Note also that STAR has a very high deviation in the 
response times for queries within one class. This is mainly 
for two reasons: (a) STAR performance deteriorates very 
fast as the fact table selectivity is increased and (b) since 
the fact table is not stored clustered the number of per-
formed I/Os may differ significantly from one query to 
another. On the other hand, the deviation for AEP and 
OPT remains low, showing a much more stable behavior.  

6.  Summary and Conclusions 
In this paper, we have focused on the processing of the 
most common type of query in data warehouse and OLAP 

environments: the star query. For realistic database sizes a 
star query may take from a couple of minutes to a few 
hours to execute, depending on the complexity of the 
query and the number of tuples retrieved from the fact 
table. The need for fast answers to ad hoc star queries is a 
real-world problem for all contemporary business intelli-
gence applications.  

One of the most promising techniques for efficiently 
evaluating such queries is the use of fact table organiza-
tions that store data clustered according to the dimension 
hierarchies.  A special hierarchical encoding is imposed 
on the data and star joins are transformed to multidimen-
sional range queries on the underlying multidimensional 
structures. The conventional star query evaluation plan 
changes radically and new processing steps are required. 
To this end, we have introduced an abstract execution 
plan (AEP) where we describe all the necessary process-
ing steps for the evaluation of star queries over hierarchi-
cally clustered fact tables. Furthermore, we have identi-
fied ways to minimize the processing effort entailed in the 
evaluation of dimension restrictions and the extraction of 
h-surrogate ranges. In addition, we have presented a novel 
early grouping transformation that dramatically reduces 
the overhead of both residual joining and grouping. 

Our experimental evaluation has showed an average 
speed-up of more than 20 compared to a conventional 
plan and more than 40 for the optimized AEP plan, for 
queries that retrieved more than 0.1% of the fact table 
tuples. In summary, the major contribution of this paper is 
that it sets a processing framework for evaluating star 
queries over hierarchically clustered fact table organiza-
tions. The significance of our proposal is amplified by the 
fact that it has already been incorporated in a commercial 
RDBMS and our experimental evaluation results have 
been confirmed in real-life applications.  It is important to 
point out that this processing framework may also apply 
to clustering and query processing of other hierarchically 
structured data, such as XML documents. We plan to fur-
ther investigate this possibility in the future.  In addition, 
our current work includes extensive experimental evalua-
tion of the optimization techniques as well the develop-
ment of further optimizations, such as alternative methods 
for reducing the number of h-surrogate ranges and conse-
quently the number of range queries evaluated over the 
fact table. 
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APPENDIX:  Heuristic Algorithm 
 
In order to present the details of the algorithm, we will 
use the following definitions: 

Hlevel: The Hlevel of a hierarchy attribute hk in a dimen-
sion table is defined to be k. The Hlevel of a feature at-
tribute f of a dimension is k, if f is known to be function-
ally dependent on hk, 1 otherwise. 
Grouping Order: Let g1, …, gk be the set of grouping 
attributes of the GROUP BY clause which belong to di-
mension Di. For dimension Di, the grouping order GO(Di) 
is defined to be the minimum Hlevel(gi) for 1 ≤ i ≤ k. 
Aggregation Order: Let a1, …, ak be the set of aggrega-
tion attributes in the SELECT (Aggr) or HAVING (HP) 
clause that belong to dimension Di. The aggregation or-
der AO(Di) for Di is defined to be the minimum Hlevel(ai) 
for 1 ≤  i ≤ k. 
Dimension Order: The dimension order DO(Di) for Di is 
defined to be the minimum among AO(Di) and GO(Di). If 
AO(Di) and GO(Di) are not defined then DO(Di)=∞. 

 
Given the above definitions we proceed to give the de-

tails of the heuristic optimization algorithm. The algo-
rithm assumes that each hierarchical attribute hk function-
ally determines all higher level hierarchical attributes of 
the dimension: hk+1, hk+2, … 

 

Algorithm HO 
1) Eliminate redundant joins: 

If the attributes of a dimension table Di are used nei-
ther in the SELECT (SGA, Aggr) part of the query nor 
in the HAVING (HP) or ORDER BY (OL) part, and no 
feature attributes of Di appear in the list of grouping 
attributes (GAf) then the Residual_Join operator for Di 
is removed from the plan. 

2) Introduce the new Group_Select operator: 
Compute the total order of the query: 
TO=max(DO(Di)) where Di in D.  If TO>1, add a new 
Group_Select operator (nGS) just above the 
MD_Range_Access operator.  The details of adding 
this new operator are as follows: 
2a) The new operator nGS will group on the prefix 
part of h-surrogates (hski) truncated bellow the DO(Di) 
level. For each aggregation function of the original 
Group_Select operator (oGS) that operates on a meas-
ure attribute Xk=Aggrk(ft.mk), the nGS operator con-
tains the aggregation nXk=Aggrk(ft.mk).  Furthermore, 
if AO(Di) is defined for some dimension, then an addi-
tional aggregation is added to the nGS; the role of this 
aggregation is to count the number of tuples in each 
group: CNT=COUNT(*). Finally, nGS contains an  
aggregation Rdi=MIN(di) for each dimension Di that 
participates in a Residual_Join operator. 

2b) For each aggregation attribute Rdi of nGS we mod-
ify the join condition of the Residual_Join operator for 
the corresponding dimension Di. The condition be-
comes: Rdi=Di.h1.  
2c) Modify the list of grouping attributes of the origi-
nal Group_Select operator in the following way: each 
grouping attribute Di.hk in GAh is replaced by the h-
surrogate attribute hski truncated bellow level k. 
2d) Modify the aggregation terms of oGS so that each 
term oldTerm is replaced by a term newTerm accord-
ing to the following table: 
 

oldTerm newTerm 
Xk=Aggrk(ft.mk) Xk=Aggrk(nXk) 
COUNT(ft.mk) SUM(nXk) 
SUM(Di.ak) SUM(CNT*Di.ak) 
COUNT(*) SUM(CNT) 
COUNT(Di.hk) SUM(CNT) 
COUNT(Di.fk) SUM(CNT⊗Di.fk) 

In the above table the expression function CNT⊗Di.fk 
returns 0 when fk is NULL and CNT otherwise. Also, 
Di.ak is any attribute of Di. 

3) Pull up Residual_Join operators: 
If a dimension Di has GO(Di)>AO(Di) or there is a fea-
ture attribute of Di in the list of grouping attributes 
(GAf) or an attribute of Di is used in the HAVING 
predicate (HP), then the Residual_Join operator for 
this dimension remains bellow the original 
Group_Select (oGS) operator. All other Residual_Join 
operators are pulled up, after oGS. 

4) Eliminate the original Group_Select operator: 
If nGS has been added to the plan and there is no Re-
sidual_Join operator after nGS and before the original 
Group_Select operator (oGS), then oGS is not needed 
and is removed. The selection predicate (HP) of oGS 
is moved into nGS and the terms nXk=Aggrk(ft.mk) are 
renamed to Xk=Aggrk(ft.mk). 
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