
Transbase® SQL Reference Manual

Transbase SQL Reference Manual
Version V8.1

Publication date 2022-11-30
Copyright © 2022 Transaction Software GmbH

ALL RIGHTS RESERVED.

While every precaution has been taken in the preparation of this document, the publisher assumes no responsibility for errors or omissions,
or for damages resulting from the use of the information contained herein.

iii

Table of Contents
Introduction ... xi
1. General Concepts .. 1

1.1. Syntax Notation .. 1
1.2. Separators .. 1
1.3. Keywords .. 1
1.4. Identifiers .. 1

1.4.1. User Schemas .. 2
1.4.2. Names and Identifiers .. 3

1.5. Data Types .. 4
1.5.1. Type Compatibility ... 6
1.5.2. Type Exceptions and Overflow ... 7
1.5.3. CASTing Types from and to CHAR .. 8

1.6. Literals .. 9
1.6.1. Directory/File Literal ... 10
1.6.2. IntegerLiteral .. 10
1.6.3. NumericLiteral ... 11
1.6.4. RealLiteral ... 11
1.6.5. StringLiteral ... 12
1.6.6. BinaryLiteral .. 12
1.6.7. BitsLiteral .. 12
1.6.8. BoolLiteral ... 13
1.6.9. DATETIME Literal ... 13
1.6.10. TIMESPAN Literal .. 13

2. Data Definition Language .. 14
2.1. Dataspaces ... 14

2.1.1. CreateDataspaceStatement .. 14
2.1.2. AlterDataspaceStatement .. 14

2.2. Users ... 15
2.2.1. GrantUserclassStatement .. 15
2.2.2. RevokeUserclassStatement .. 16
2.2.3. AlterPasswordStatement ... 16
2.2.4. GrantPrivilegeStatement ... 17
2.2.5. RevokePrivilegeStatement .. 17

2.3. Domains .. 18
2.3.1. CreateDomainStatement ... 18
2.3.2. AlterDomainStatement ... 19
2.3.3. DropDomainStatement ... 20

2.4. Sequences .. 21
2.4.1. CreateSequenceStatement ... 21
2.4.2. DropSequenceStatement ... 21

2.5. CreateTableStatement ... 22
2.5.1. Defaults ... 24
2.5.2. AUTO_INCREMENT Fields .. 24
2.5.3. TableConstraintDefinition FieldConstraintDefinition ... 25
2.5.4. PrimaryKey .. 25
2.5.5. CheckConstraint .. 26
2.5.6. ForeignKey .. 27

2.6. AlterTableStatement ... 29
2.6.1. AlterTableConstraint .. 29
2.6.2. AlterTableChangeField .. 30
2.6.3. AlterTableRenameField .. 30
2.6.4. AlterTableFields ... 30
2.6.5. AlterTableRename ... 31
2.6.6. AlterTableMove .. 31

2.7. DropTableStatement ... 32

Transbase® SQL Reference Manual

iv

2.8. CreateIndexStatement ... 32
2.8.1. StandardIndexStatement ... 32
2.8.2. HyperCubeIndexStatement .. 34
2.8.3. FulltextIndexStatement ... 35
2.8.4. BitmapIndexStatement ... 35

2.9. DropIndexStatement ... 36
2.10. Triggers ... 36

2.10.1. CreateTriggerStatement .. 36
2.10.2. DropTriggerStatement .. 37

2.11. Views .. 38
2.11.1. CreateViewStatement ... 38
2.11.2. DropViewStatement ... 39

3. Data Manipulation Language ... 40
3.1. FieldReference .. 40
3.2. User .. 40
3.3. Expression .. 41
3.4. Primary, CAST Operator .. 41
3.5. SimplePrimary .. 42

3.5.1. SetFunction .. 43
3.5.2. WindowFunction ... 44
3.5.3. StringFunction .. 45
3.5.4. TocharFunction ... 50
3.5.5. SignFunction .. 50
3.5.6. ResultcountExpression ... 50
3.5.7. SequenceExpression .. 51
3.5.8. ConditionalExpression ... 51
3.5.9. TimeExpression .. 54
3.5.10. SizeExpression .. 55
3.5.11. LobExpression .. 55
3.5.12. ODBC_FunctionCall .. 56
3.5.13. UserDefinedFunctionCall .. 56
3.5.14. LastInsertIdFunc ... 57
3.5.15. LastUpdateFunc .. 57
3.5.16. ReplicationStatusFunc .. 58

3.6. SearchCondition .. 58
3.7. HierarchicalCondition ... 58
3.8. Predicate .. 60

3.8.1. ComparisonPredicate ... 60
3.8.2. ValueCompPredicate ... 61
3.8.3. SetCompPredicate ... 62
3.8.4. InPredicate ... 62
3.8.5. BetweenPredicate .. 63
3.8.6. LikePredicate ... 64
3.8.7. MatchesPredicate, Regular Pattern Matcher ... 65
3.8.8. ExistsPredicate ... 66
3.8.9. QuantifiedPredicate ... 67
3.8.10. NullPredicate .. 67
3.8.11. FulltextPredicate ... 68

3.9. Null Values .. 68
3.10. SelectExpression (QueryBlock) .. 69
3.11. TableExpression, SubTableExpression ... 72
3.12. TableReference, SubTableReference .. 73
3.13. FlatFileReference - direct processing of text files .. 75
3.14. TableFunction ... 76
3.15. JoinedTable (Survey) .. 77

3.15.1. INNER JOIN with ON/USING Clause .. 78
3.15.2. JoinedTable with NATURAL .. 79
3.15.3. JoinedTable with OUTER JOIN ... 79

Transbase® SQL Reference Manual

v

3.16. Scope of TableReferences and CorrelationNames .. 82
3.17. SelectStatement ... 83
3.18. WithClause ... 84
3.19. InsertStatement .. 84

3.19.1. Insertion with Fieldlist and DEFAULT Values ... 85
3.19.2. Insertion on AUTO_INCREMENT Fields .. 85
3.19.3. Insertion on Views .. 85
3.19.4. Handling of Key Collisions ... 86
3.19.5. Insertion with ReturningClause .. 86

3.20. DeleteStatement ... 87
3.21. UpdateStatement .. 88
3.22. UpdateFromStatement ... 89
3.23. MergeStatement ... 90
3.24. General Rule for Updates .. 90
3.25. Rules of Resolution .. 91

3.25.1. Resolution of Fields ... 91
3.25.2. Resolution of SetFunctions ... 91

4. Load and Unload Statements ... 93
5. Alter Session statements .. 94

5.1. Sort Buffer Size .. 94
5.2. Multithreading Mode .. 94
5.3. Integer Division Mode ... 95
5.4. Lock Mode ... 95
5.5. Evaluation Plans .. 95
5.6. Schema Default ... 96
5.7. SQL Dialect ... 96

6. Lock Statements .. 97
6.1. LockStatement .. 97
6.2. UnlockStatement ... 97

7. The Data Types Datetime and Timespan .. 98
7.1. Principles of Datetime .. 98

7.1.1. RangeSpec ... 98
7.1.2. SQL Compatible Subtypes .. 98
7.1.3. DatetimeLiteral ... 99
7.1.4. Valid Datetime Values ... 100
7.1.5. Creating a Table with Datetimes .. 100
7.1.6. The CURRENTDATE/SYSDATE Operator ... 101
7.1.7. Casting Datetimes ... 101
7.1.8. TRUNC Function .. 102
7.1.9. Comparison and Ordering of Datetimes ... 102

7.2. Principles of Timespan and Interval .. 103
7.2.1. Transbase Notation for Type TIMESPAN .. 103
7.2.2. INTERVAL Notation for TIMESPAN .. 104
7.2.3. Ranges of TIMESPAN Components ... 104
7.2.4. TimespanLiteral .. 105
7.2.5. Sign of Timespans ... 105
7.2.6. Creating a Table containing Timespans ... 106
7.2.7. Casting Timespans ... 106
7.2.8. Comparison and Ordering of Timespans .. 107
7.2.9. Scalar Operations on Timespan .. 107
7.2.10. Addition and Substraction of Timespans .. 107

7.3. Mixed Operations .. 108
7.3.1. Datetime + Timespan, Datetime - Timespan ... 108
7.3.2. Datetime - Datetime .. 108

7.4. The DAY Operator .. 109
7.5. The WEEKDAY Operator ... 109
7.6. The WEEK Operator .. 109
7.7. The ISOWEEK Operator ... 110

Transbase® SQL Reference Manual

vi

7.8. The QUARTER Operator .. 110
7.9. Selector Operators on Datetimes and Timespans .. 110
7.10. Constructor Operator for Datetimes and Timespans .. 111

8. The Datatypes BITS(p) and BITS(*) ... 113
8.1. Purpose of Bits Vectors .. 113
8.2. Creation of Tables with type BITS ... 113
8.3. Compatibility of BINCHAR and BITS .. 114
8.4. BITS and BINCHAR Literals .. 114
8.5. Spool Format for BINCHAR and BITS ... 115
8.6. Operations for Type BITS ... 115

8.6.1. Bitcomplement Operator BITNOT .. 115
8.6.2. Binary Operators BITAND , BITOR ... 115
8.6.3. Comparison Operators .. 116
8.6.4. Dynamic Construction of BITS with MAKEBIT ... 116
8.6.5. Counting Bits with COUNTBIT ... 116
8.6.6. Searching Bits with FINDBIT ... 117
8.6.7. Subranges and Single Bits with SUBRANGE ... 117

8.7. Transformation between Bits and Integer Sets ... 117
8.7.1. Compression into Bits with the SUM function .. 118
8.7.2. Expanding BITS into Record Sets with UNGROUP .. 118

9. LOB (Large Object) datatypes .. 120
9.1. The Data Type BLOB (Binary Large Object) ... 120

9.1.1. Inherent Properties of BLOBs ... 120
9.1.2. BLOBs and the Data Definition Language ... 120
9.1.3. BLOBs and the Data Manipulation Language ... 121

9.2. The Data Type CLOB (Character Large Object) .. 122
9.2.1. Inherent Properties of CLOBs ... 122
9.2.2. CLOBs and the Data Definition Language ... 122
9.2.3. CLOBs and the Data Manipulation Language ... 123

10. Fulltext Indexes .. 125
10.1. FulltextIndexStatement .. 125

10.1.1. WORDLIST and STOPWORDS .. 125
10.1.2. CHARMAP .. 126
10.1.3. DELIMITERS ... 126
10.1.4. WITH SOUNDEX ... 127

10.2. Implicit Tables of a Fulltext Index .. 127
10.3. FulltextPredicate .. 128
10.4. Examples and Restrictions ... 130

10.4.1. Examples for Fulltext Predicates .. 131
10.4.2. Restrictions for Fulltext Predicates .. 131
10.4.3. Phonetic Search in Fulltext Indexes .. 132

10.5. Performance Considerations ... 133
10.5.1. Search Performance ... 133
10.5.2. Scratch Area for Index Creation ... 133
10.5.3. Record Deletion .. 133

11. Data Import ... 134
11.1. SpoolStatement .. 134

11.1.1. The DSV Spooler .. 135
11.1.2. The XML Spooler ... 140

11.2. External data sources .. 157
11.2.1. Remote Database Access .. 157
11.2.2. JDBCReader ... 157
11.2.3. OraReader .. 157
11.2.4. FILE Tables .. 158

12. Administration Language ... 159
12.1. Overview of AdministrationStatement .. 159
12.2. Database Parameters ... 159
12.3. CreateDatabaseStatement ... 162

Transbase® SQL Reference Manual

vii

12.4. AlterDatabaseStatement ... 164
12.5. RegisterDatabaseStatement .. 165
12.6. DeregisterDatabaseStatement .. 165
12.7. BootDatabaseStatement ... 166
12.8. ShutdownDatabaseStatement .. 166
12.9. MigrateDatabaseStatement ... 166
12.10. DropDatabaseStatement ... 167
12.11. PublishDatabaseStatement .. 167
12.12. DumpDatabaseStatement .. 168
12.13. CreateGridStatement ... 168
12.14. AlterGridStatement ... 168
12.15. DropGridStatement ... 169

A. The Data Dictionary .. 170
A.1. The sysdatabase(s) Table .. 171
A.2. The syssession Table ... 171
A.3. The sysuser Table ... 171
A.4. The systable Table .. 172
A.5. The syscolumn Table ... 173
A.6. The sysindex Table ... 175
A.7. The sysview Table .. 176
A.8. The sysviewdep Table ... 177
A.9. The sysblob Table ... 177
A.10. The systablepriv Table ... 177
A.11. The syscolumnpriv Table .. 178
A.12. The sysdomain Table ... 179
A.13. The sysconstraint Table .. 179
A.14. The sysrefconstraint Table .. 180
A.15. The sysdataspace Table .. 181
A.16. The sysdatafile Table ... 182
A.17. The loadinfo Table .. 182
A.18. The syskeyword Table ... 183

B. Sample Database ... 184
C. Precedence of Operators ... 186

viii

List of Figures
3.1. Hierarchical data and graph ... 59
11.1. Example of an XML Document and the Document Tree ... 141
11.2. DSV spool File .. 142
11.3. XML Spool File .. 142
11.4. Complex XML spool File .. 143
11.5. Format Information Header .. 144
11.6. XML Spool File Containing Blobs .. 155
11.7. Output DSV Spool File ... 156
11.8. Output XML Spool File .. 156

ix

List of Tables
1.1. Transbase Datatypes and Ranges ... 5
1.2. Arithmetic Data Types ... 7
1.3. Character Data Types .. 7
2.1. User Classes ... 16
3.1. NOT operator ... 69
3.2. OR operator ... 69
3.3. AND operator ... 69
7.1. Ranges of Datetime Components ... 98
7.2. SQL Types for Datetime .. 99
7.3. Variants of Timestamp Literals .. 99
7.4. Variants of Date Literals .. 99
7.5. Variants of Time Literals .. 100
7.6. Ranges of Timespan Components ... 105
7.7. Timespan Literals in Transbase and SQL Notation .. 105
11.1. Special Characters in Spool Files .. 138
11.2. Special Characters .. 141
11.3. Attributes and Their Values ... 149
B.1. Table SUPPLIERS .. 184
B.2. Table INVENTORY .. 184
B.3. Table QUOTATIONS .. 184

x

List of Examples
1.1. Valid Identifiers .. 2
1.2. Invalid Identifiers .. 2
2.1. Granting and Revoking Select Privileges ... 18
8.1. Construction of BITS Vectors .. 113
11.1. Spooling a file from a table with LOBs ... 139
11.2. Spooling a table with LOBs from a file ... 139
A.1. Table Names and Owners of Non-System Tables .. 173
A.2. Create table statement with resulting entries in syscolumn .. 174

xi

Introduction
TB/SQL is the data retrieval, manipulation and definition language for the relational data base system Transbase.
TB/SQL is an SQL implementation compatible to the ISO/DIS standard 9075 with additionally functional exten-
sions which make the SQL language more powerful and easier to use.

This manual is intended for users who already have a basic knowledge of SQL. Heavy use of examples is made in
order to clarify syntactic or semantic questions. All examples refer to a Sample Database outlined in the appendix
of this manual.

1

1. General Concepts

1.1. Syntax Notation

The vertical line | separates alternatives.

Brackets [] are delimiters for an optional part.

Braces { } group several items together, e.g. to form complex alternatives. They are functionally equivalent to
the standard braces () as used in arithmetic expressions.

An ellipsis ... indicates that the preceding item may be repeated arbitrarily often.

All non-terminal symbols start with an uppercase letter followed by lowercase letters.

All terminal symbols are represented by themselves without syntactic markups. All terminal symbols consisting
of uppercase letters only denote keywords. These are supposed to be case-insensitive and thus be used in SQL in
any possible mix of uppercase and lowercase letters.

1.2. Separators

In a TB/SQL-statement, keywords, identifiers and literals must be separated from each other by at least one sep-
arator. As in many programming languages, possible separators in TB/SQL are the space character (blank), the
tab character and the newline character.

In all other places separators are permitted but not needed.

1.3. Keywords

TB/SQL keywords are listed in the catalog table syskeyword of each database. Names that can be interpreted as
keywords need to be denoted as delimited identifiers.

Keywords are case-insensitive.

All keywords shown in the following example are valid.

SELECT from wHerE

1.4. Identifiers

Syntax:
[1] Identifier ::= StandardIdentifier | DelimitedIdentifier

General Concepts

2

[2] StandardIdentifier ::= LetterDigit...
[3] LetterDigit ::= <Letters a-z, A-Z, digits 0-9, underscore>
[4] DelimitedIdentifier ::= "Character..." | [Character...]
[5] Character ::= <each printable character except double quote>

Explanation:

Identifiers serve to embed the references to database objects (users, tables, views etc.) into SQL statements. The
names of these objects may be composed of more than one parts. In this case the identifiers specifying the name
parts are combined with some syntactic glue (see e.g. TableIdentifier).

Each identifier unambiguously denotes a certain name, but the mapping from the identifier to the name may depend
on the case-insensitive setting of the database.

• A StandardIdentifier is a sequence of letters (a-z, A-Z, _) and digits (0-9), where the first character is a letter.

It denotes a name

• as is, if the database is 'case sensitive'. So the mapping simply is the identity transformation.

• mapped to uppercase letters if the database is 'case insensitive'.

• A DelimitedIdentifier is any sequence of printable characters with the restriction that the final delimiter character
needs to occur in pairs inside the DelimitedIdentifier.

The transformation to a name simply removes the delimiting characters and reduces the pairwise occurrences of
the final delimiter to single occurrences. No case transformation is performed regardless of the database settings.

Identifiers that could be interpreted as keywords need to be denoted as DelimitedIdentifiers.

Example 1.1. Valid Identifiers

suppliers
Suppno
xyz_abc
q1
q23p
"5xy"
"select"

Example 1.2. Invalid Identifiers

5xy
select
SeLecT
x:y
?x
"as"df"

1.4.1. User Schemas

A user schema is a container for a set of database objects.

These objects are

• Domains

• Sequences

General Concepts

3

• Tables

• Constraints

• Indices

• Triggers

• Views

• Functions and Procedures

Only user names are valid schema names. These are stored in table sysuser of the data dictionary.

Each database object belongs to exactly one schema and can be identified by the schema name and the objects
name. The object's name needs to be unique only within the schema and the object category it belongs to.

Constraints, indices, and triggers belong to the same schema as the table they belong to.

If no schema is given, the default schema of the database is used (either PUBLIC (default) or USER) with PUBLIC
configured as fallback. The keyword USER represents the name of the current user.

The default schema of the database is set at database creation time and cannot be changed afterwards. By one of
the ALTER SESSION statements, the default schema can be changed temporarily for a connection.

Whether a user is allowed to access a specific object only depends on the privileges of the user on the appropriate
object.

A table can be moved from one schema to another by the ALTER TABLE ... RENAME TO ... statement.
All related indices, triggers and constraints are also moved to the new schema.

The data dictionary belongs to the schema PUBLIC.

1.4.2. Names and Identifiers

Throughout this manual the following definitions are used:

DataspaceName: refers to the dataspace name denoted by the corresponding DataspaceIdentifier.
[6] DataspaceIdentifier ::= Identifier

UserName: refers to the user name denoted by the corresponding UserIdentifier.

SchemaName: refers to the schema name denoted by the corresponding SchemaIdentifier.
[7] UserIdentifier ::= Identifier | PUBLIC | USER
[8] SchemaIdentifier ::= UserIdentifier

DomainName: refers to the domain name denoted by the corresponding DomainIdentifier.
[9] DomainIdentifier ::= [SchemaIdentifier .] Identifier

SequenceName: refers to the sequence name denoted by the corresponding SequenceIdentifier.
[10] SequenceIdentifier ::= [SchemaIdentifier .] Identifier

TableName: refers to the table name denoted by the corresponding TableIdentifier.

General Concepts

4

[11] TableIdentifier ::= [SchemaIdentifier .] Identifier

ViewName: refers to the view name denoted by the corresponding ViewIdentifier.
[12] ViewIdentifier ::= [SchemaIdentifier .] Identifier

IndexName: refers to the index name denoted by the corresponding IndexIdentifier.
[13] IndexIdentifier ::= [SchemaIdentifier .] Identifier

TriggerName: refers to the trigger name denoted by the corresponding TriggerIdentifier.
[14] TriggerIdentifier ::= [SchemaIdentifier .] Identifier

FieldName: refers to the field name denoted by the corresponding FieldIdentifier.
[15] FieldIdentifier ::= Identifier

ConstraintName: refers to the constraint name denoted by the corresponding ConstraintIdentifier.
[16] ConstraintIdentifier ::= Identifier

CorrelationName: refers to the correlation name denoted by the corresponding CorrelationIdentifier.
[17] CorrelationIdentifier ::= Identifier

1.5. Data Types

A DataType specifies the type of a field or the target type for a type conversion.

Syntax:
[18] DataType ::= TINYINT | SMALLINT | INTEGER | BIGINT |

NUMERIC [(Precision [,Scale])] |
DECIMAL [(Precision [,Scale])] |
FLOAT | DOUBLE | REAL |
VARCHAR [(Precision)] | CHAR [(Precision)] |
VARCHAR(*) | CHAR(*) | STRING |
BINCHAR [(Precision)] | BINCHAR (*) |
BITS (Precision) | BITS (*) |
BITS2 (Precision) | BITS2 (*) |
BOOL |
DATETIME Range | DATE | TIME | TIMESTAMP |
TIMESPAN Range |
INTERVAL StartIx2 [TO EndIx2] |
BLOB | CLOB

[19] Precision ::= IntegerLiteral
[20] Scale ::= IntegerLiteral
[21] Range ::= LeftBr RangeIx1 [: RangeIx1] RightBr
[22] LeftBr ::= [
[23] RightBr ::=]
[24] RangeIx1 ::= YY | MO | DD | HH | MI | SS | MS
[25] StartIx2 ::= RangeIx2 [Precision]
[26] EndIx2 ::= RangeIx2 [Precision]
[27] RangeIx2 ::= YEAR | MONTH | DAY | HOUR | MINUTE | SECOND

General Concepts

5

Explanation:

Each field of a table has a data type which is defined at creation time of the table. Constant values (Literals) also
have a data type which is derived by the syntax and the value of the Literal.

• TINYINT, SMALLINT, INTEGER, BIGINT, NUMERIC, DECIMAL, FLOAT, DOUBLE are called the arith-
metic types. DECIMAL is a synonym for NUMERIC.

Precision in NUMERIC is the maximum total number of digits. Scale is the number of digits behind the decimal
point.

If Scale in NUMERIC is omitted, it is equivalent to 0. If Precision in NUMERIC is omitted it is equivalent to 30.

• CHAR, CHAR(p), CHAR(*), VARCHAR(p) and VARCHAR(*) are called the character types.

CHAR is equivalent to CHAR(1). Values of type VARCHAR(p) are variable length character sequences of at
most p characters. Values of type CHAR(p) are fixed sized character sequences of length p bytes. Values of
type [VAR]CHAR(*) are variable length character sequences.

No character can be the binary 0 character. In their internal representation, VARCHAR and CHAR values are
ended with a binary 0 character.

Please note that the total record size may additionally restrict these values in length when they are to be stored
in the database. (see also Constants and Sizes [system.xhtml#system_constants_and_limits] in the Transbase
System Guide [system.xhtml]).

Please note that in the internal representation ASCII characters take exactly one byte, non-ASCII characters
may take up to 6 bytes depending on their internal encoding which is based on the UTF8 format.

• BINCHAR, BINCHAR(p), BINCHAR(*) are called binary types.

BINCHAR is equivalent to BINCHAR(1). Values of type BINCHAR(p) are fixed sized byte sequences of
length p bytes. Values of type BINCHAR(*) are variable length byte sequences. In their internal representation,
BINCHAR values have a length field.

• BITS(p), BITS2(p), BITS(*), BITS2(*) are fixed sized or variable sized bit sequences, resp. The maximum
value of p (number of bits) is 31968 for both variants.

Their internal representation resembles BINCHAR whose length is rounded up to the next multiple of 8 bits.
BITS2 is more space economic than BITS because it uses a 2-byte length field in contrast to 4-byte in BITS.
BITS possibly will allow a higher range in future versions.

See The Datatypes BITS(p) and BITS(*).

• BOOL is called the logical type. Its values are TRUE and FALSE. The ordering of logical values is: FALSE
is less than TRUE.

• DATETIME,DATE,TIME,TIMESTAMP and TIMESPAN,INTERVAL are called the time types. They are
used to describe points in time or time distances, resp. Their semantics is described in detail in a separate chapter
The Data Types Datetime and Timespan.

• BLOB is the type for binary large objects. The type is described in a separate chapter within this manual.

• The CLOB (character large object) datatype is used for character data.

The following table provides a short summary of data types and ranges.

Table 1.1. Transbase Datatypes and Ranges

Datatype Description Range

TINYINT 1-byte integer [-128 : 127]

system.xhtml#system_constants_and_limits
system.xhtml#system_constants_and_limits
system.xhtml
system.xhtml
system.xhtml

General Concepts

6

Datatype Description Range

SMALLINT 2-byte integer [-32768 : 32767]

INTEGER 4-byte integer [-2147483648 : 2147483647]

BIGINT 8-byte integer [-9223372036854775808 :
9223372036854775807]

NUMERIC(p,s) exact numeric precision: 1 <= p <= 30, scale: -128 <= s < 127

FLOAT 4-byte floating point range of IEEE float

DOUBLE 8-byte floating point range of IEEE double

CHAR(p) character sequence of length p bytes in inter-
nal encoding

1 <= p <= MAXSTRINGSIZE

VARCHAR(p) character sequence of maximum length p 1 <= p <= MAXSTRINGSIZE

CHAR(*), VAR-
CHAR(*),
STRING

variable length character sequence

BINCHAR(p) byte sequence of fixed length p 1 <= p <= MAXSTRINGSIZE

BINCHAR(*) variable length byte sequence length between 0 and MAXSTRINGSIZE

BITS(p),
BITS2(p)

bits sequence of fixed length p 1 <= p <= 32736

BITS(*),
BITS2(*)

variable length bits sequence length between 1 and 32736

BOOL truth value TRUE, FALSE

DATETIME[ub:lb]point in time (see sql_datetime) ub,lb in {YY,MO,DD,HH,MI,SS,MS}

DATE DATETIME[YY:DD]

TIME DATETIME[HH:MS]

TIMESTAMP DATETIME[YY:MS]

TIMESPAN[ub:lb]time distance (see sql_timespan) ub,lb in {YY,MO,DD,HH,MI,SS,MS}

INTERVAL time distance see sql_timespan

BLOB binary large object see sql_blob

CLOB character large object see sql_clob

The maximum length of a character sequence as a field inside a record may be restricted by the necessity that
a record must always fit into a storage block. The blocksize is a database specific parameter chosen at creation
time (see System Guide). Whenever character sequences are needed which are longer than these limits permit,
the data type CLOB must be used.

1.5.1. Type Compatibility

Whenever values serve as operands for an operation, their types must be compatible. The compatibility rules are
as follows:

• All arithmetic types are compatible among each other.

• All binary types are compatible among each other.

• All character types are compatible among each other.

• The logical type is compatible with itself.

General Concepts

7

• The compatibilities of time types among each other and with other types is described in The Data Types Datetime
and Timespan.

Arithmetic data types are ordered according to the following type hierarchy:

Table 1.2. Arithmetic Data Types

DOUBLE Highest Arithmetic Type

FLOAT

NUMERIC

BIGINT

INTEGER

SMALLINT

TINYINT Lowest Arithmetic Type

If values of different arithmetic types are involved in an operation, they are implicitly converted to the highest
type among them before the operation is performed. Upward conversion within arithmetic types never causes loss
of significant digits, but note that values converted to FLOAT or DOUBLE are not always exactly representable.

Character data types are ordered according to the following type hierarchy:

Table 1.3. Character Data Types

CHAR Highest Character Type

VARCHAR Lowest Character Type

If two values of type VARCHAR or CHAR with different length are compared, then the shorter string is padded
with the space character ' ' up to the length of the longer string.

If two character types are processed in operations UNION, INTERSECTION and DIFF then the following rules
apply for determinig the result type: One participating CHAR(*) yields CHAR(*). 2 input types of CHAR or
VARCHAR with precisions p1 and p2 yield output precision p = maximum(p1,p2). If at least one of them is
VARCHAR - then VARCHAR(p) is the result type else CHAR(p).

For operations on type BITS see The Datatypes BITS(p) and BITS(*).

1.5.2. Type Exceptions and Overflow

A type exception is the event that a value fails to be in the range of a requested type. The following operations
may cause a type exception:

1. Arithmetic computation on values (addition, subtraction etc.)

2. Insertion or Update of records.

3. Explicit casting of a value to a different type (CAST-operator).

In each of these operations, the requested type is defined as follows.

In case (1) - arithmetic computation - the type of the result value is requested to be the same as that of the input
operands.

The expression

1000000 * 2

General Concepts

8

is legal, because the input type is INTEGER and the result is still in the range of INTEGER.

The expression

1000000 * 1000000

leads to a type exception because the result is no more in the range of INTEGER.

To avoid this, it would be sufficent to cast one (or both) input operands to a higher ranged type e.g. NU-
MERIC(30,0) or BIGING

1000000 CAST BIGINT * 1000000

or to write one operand as a NUMERIC constant

1000000.0 * 1000000

In case (2) - Insertion or Update of records - the requested types are those of the corresponding fields of the target
table.

With a table T with a field f of type TINYINT, the following statement would cause a type exception:

INSERT INTO T (f) VALUES (200)

In case (3) - explicit casting - the requested type is the explicitly specified type in the CAST-operator.

The expressions

100 CAST SMALLINT -- legal
'hello' CAST CHAR(10) -- legal

are legal (the latter example pads the string with 5 blanks at the end).

The expressions

200 CAST TINYINT -- illegal
'hello' CAST CHAR(3) -- illegal
132.64 CAST NUMERIC(4,2) -- illegal

are illegal, since they cannot be converted into the requested types because of overflow.

1.5.3. CASTing Types from and to CHAR

As described in Type Compatibility, there are several groups of types, namely arithmetic, character, logical and
time types and the BLOB type. All types within one group are compatible among each other.

Additionally, with the exception of type BLOB, there is the possibility to convert values of each type to the type
CHAR(*) and (VAR)CHAR(p). This is done by the CAST operator.

1.5.3.1. CASTing to CHAR

The main usage of casting to CHAR is to make string operations (e.g. the LIKE operator or the string concatenation
operator '||') available to other types.

For example, assume that field 'birthday' of type DATETIME(YY:DD) is in table person. The following pattern
search is possible:

SELECT * FROM person

General Concepts

9

WHERE birthday CAST CHAR(*) LIKE '%19%19%19%'

As another example, assume that field 'price' of type NUMERIC(6,2) is in table 'article'. The following query
extracts all articles with prices ending in .99:

SELECT * FROM article
WHERE price CAST CHAR(*) LIKE '%.99'

As a further example, assume that fields 'partno1' and 'partno2' of type INTEGER are in table 'parts'. The following
query constructs a composed partno of type CHAR(*) with a '/' in the middle

SELECT partno1 CAST CHAR(*) + '/' + partno2 CAST CHAR(*)
FROM parts WHERE ...

1.5.3.2. Casting from CHAR

Field values of type CHAR(*) or (VAR)CHAR(p) can be cast to any type (except BLOB) provided that the source
value holds a valid literal representation of a value of the target type.

For example, assume that in a table t a field f with type CHAR(*) or VARCHAR(p) contains values of the shape
xxxx where xxxx is a 4-digit number. After CASTing to INTEGER one can perform arithmetic calculations with
the values.

SELECT f CAST INTEGER + 1 , ...
FROM t WHERE ...

Note that an error occurs if the source value is not a valid literal of the target type.

1.5.3.3. Implicit CASTing of CHAR to Arithmetic Types

Transbase tries to support implicit type conversions wherever it may make sense and be helpful for existing appli-
cations. CHAR literals or CHAR field values combined with arithmetic types trigger an implicit CAST operation
to the specific arithmetic type. This operation succeeds if the character value is a legal literal representation of
an arithmetic value. The following example combines an arithmetic field with a CHAR value which is implicitly
CAST to a number:

SELECT '123' + t.ari, ...
FROM t WHERE ...

1.6. Literals

Literals are denote constant values of a certain type.

Syntax:
[28] Literal ::= IntegerLiteral | NumericLiteral | RealLiteral |

StringLiteral |
BinaryLiteral | BitsLiteral | BoolLiteral |
DatetimeLiteral | TimespanLiteral |
DirectoryLiteral | FileLiteral

Explanation:

General Concepts

10

All Literals are defined in the following paragraphs. The data types DATETIME and TIMESPAN are explained
in detail in Datetime and Timespan .

1.6.1. Directory/File Literal

A FileLiteral denotes a filename and a directory literal denotes a directory name.

It may be a simple name or include a relative or absolute path. The exact syntax of a path may depend on the
platform.

Syntax:
[29] FileLiteral ::= StringLiteral |

<any sequence of alphanumeric characters>

[30] DirectoryLiteral ::= FileLiteral

An IntegerLiteral is a non-empty sequence of digits. Note that, by definition, an IntegerLiteral is a positive number
without a sign. A negative number is obtained by applying the unary minus operator to an IntegerLiteral (see
section on Expressions below). Therefore, a separator is permitted between an unary minus and an IntegerLiteral,
whereas no separators are permitted within the sequence of digits.

Each IntegerLiteral has a data type which is either INTEGER, BIGINT or NUMERIC with scale 0. The data type is
derived by the value of the IntegerLiteral: if the value is inside the range of INTEGER then the type is INTEGER.
If the INTEGER range is not sufficient and the value is inside the range of BIGINT then the type is BIGINT else
the type is NUMERIC(p,0) where p is the number of digits of the literal.

5 -- INTEGER
33000 -- INTEGER
-33000 -- INTEGER
1234567890123 -- BIGINT
12345678901234567890123 -- NUMERIC(23,0)

1.6.2. IntegerLiteral

An IntegerLiteral is the representation of a constant number without fractional part.

Syntax:
[31] IntegerLiteral ::= 0 | {1..9}[{0..9}]...

An IntegerLiteral is a non-empty sequence of digits. Note that, by definition, an IntegerLiteral is a positive number
without a sign. A negative number is obtained by applying the unary minus operator to an IntegerLiteral (see
section on Expressions below). Therefore, a separator is permitted between an unary minus and an IntegerLiteral,
whereas no separators are permitted within the sequence of digits.

Each IntegerLiteral has a data type which is either INTEGER, BIGINT or NUMERIC with scale 0. The data type is
derived by the value of the IntegerLiteral: if the value is inside the range of INTEGER then the type is INTEGER.
If the INTEGER range is not sufficient and the value is inside the range of BIGINT then the type is BIGINT else
the type is NUMERIC(p,0) where p is the number of digits of the literal.

5 -- INTEGER

General Concepts

11

33000 -- INTEGER
-33000 -- INTEGER
1234567890123 -- BIGINT
12345678901234567890123 -- NUMERIC(23,0)

1.6.3. NumericLiteral

A NumericLiteral is the representation of a constant number with fractional part.

Syntax:
[32] NumericLiteral ::= IntegerLiteral . [IntegerLiteral] | . IntegerLiteral

A NumericLiteral either is an IntegerLiteral followed by a decimal point or is an IntegerLiteral followed by a
decimal point and another IntegerLiteral or is an IntegerLiteral preceded by a decimal point. NumericLiteral again
is a positive number, by definition.

The data type of a NumericLiteral is NUMERIC(p,s) where p is the total number of digits (without leading 0's in
the non fractional part) and s is the number of digits behind the decimal point.

13. -- NUMERIC(2,0)
56.013 -- NUMERIC(5,3)
 0.001 -- NUMERIC(3,3)
 .001 -- NUMERIC(3,3)

The last two representations are equivalent.

1.6.4. RealLiteral

A RealLiteral is the representation of a constant number with mantissa and exponent.

Syntax:
[33] RealLiteral ::= {IntegerLiteral|NumericLiteral} {e|E}[+|-]IntegerLiteral

A RealLiteral is an IntegerLiteral or a NumericLiteral, followed by 'e' or 'E', followed by an optional minus or plus
sign followed by another IntegerLiteral. A RealLiteral again is a positive number, by definition.

Each RealLiteral has a data type which is FLOAT or DOUBLE. The data type is derived by the value of the
RealLiteral (see table datatypes).

5.13e10 -- FLOAT
5.13e+10 -- FLOAT
0.31415e1 -- FLOAT
314.15E-2 -- FLOAT
314e-2 -- FLOAT
- 314e-2 -- FLOAT
1.2e52 -- DOUBLE

Note that no separators are allowed within RealLiteral, but are allowed between an eventual unary minus and a
RealLiteral. The next example shows incorrect RealLiterals:

General Concepts

12

3.14 e4 -- illegal
3.98E -4 -- illegal
3.98e- 4 -- illegal

1.6.5. StringLiteral

A StringLiteral is the representation of a constant string.

Syntax:
[34] StringLiteral ::= CharacterLiteral | UnicodeLiteral | USER
[35] CharacterLiteral ::= <sequence of characters enclosed in single quotes>
[36] UnicodeLiteral ::= <0u followed by sequence of hexadecimal characters>

Explanation:

The data type of a StringLiteral is CHAR(p) where p is the size of the UTF-8 coded equivalent.

A CharacterLiteral is a (possibly empty) sequence of characters in single quotes. If a single quote is needed as
character, it must be written twice, as shown in the examples.

A UnicodeLiteral is 0u followed by a number of hexadecimal characters, four per each Unicode character. The
keyword USER denotes the name of the current user.

'xyz' -- CHAR(3)
'string with a single quote '' inside' -- CHAR(35)
'single quote ''' -- CHAR(14)
'' -- CHAR(0)
0u006D00fc006E -- CHAR(4)
0ufeff -- CHAR(3)
0uFC -- illegal
0u00FC -- CHAR(2)

1.6.6. BinaryLiteral

[37] BinaryLiteral ::= 0x[{0..9a..f}{0..9a..f}]...

Explanation: A BinaryLiteral is 0x followed by a (possibly empty) even number of 0, 1..9, a..f, A..F. The data
type of a BinaryLiteral is BINCHAR(p) where p*2 is the number of hexadecimal characters.

0xA0B1C2 -- BINCHAR(3)
0xA0B -- illegal

1.6.7. BitsLiteral

[38] BitsLiteral ::= 0b[0 | 1]...

General Concepts

13

see also The TB/SQL Datatypes BITS(p) and BITS(*)

1.6.8. BoolLiteral

A BoolLiteral is the representation of a constant boolean value.

Syntax:
[39] BoolLiteral ::= FALSE | TRUE

Boolean values are ordered: FALSE is less than TRUE.

1.6.9. DATETIME Literal

A DatetimeLiteral is the representation of a constant DATETIME value.

Syntax:
[40] DatetimeLiteral ::= DATETIME [RangeSpec] (DatetimeValue) | DateLiteral

TimeLiteral TimestampLiteral

[41] RangeSpec ::= LeftBr RangeQual [: RangeQual] RightBr |
[42] DatetimeValue ::= <a value in the format yy-mm-dd hh:mi:ss.ms> as appropriate for

the specified range

[43] DateLiteral ::= DATE StringLiteral
[44] RangeQual ::= YY | MO | DD | HH | MI | SS | MS
[45] TimeLiteral ::= TIME StringLiteral
[46] TimestampLiteral ::= TIMESTAMP StringLiteral

1.6.10. TIMESPAN Literal

A TimespanLiteral is the representation of a constant TIMESPAN value.

Syntax:
[47] TimespanLiteral ::= [-] TIMESPAN [RangeSpec] (DatetimeValue) | IntervalLiteral
[48] IntervalLiteral ::= <a value in the format INTERVAL value range TO range >

14

2. Data Definition Language
The Data Definition Language (DDL) portion of TB/SQL serves to create, delete or modify database objects as e.g.
tables, views and indexes, to grant or revoke user privileges and to install users and passwords. In the following
each DDL statements is explained in its own section.

2.1. Dataspaces

2.1.1. CreateDataspaceStatement

Serves to create a user dataspace in the database.

Syntax:
[49] CreateDataspaceStatement ::= CREATE DATASPACE DataspaceIdentifier

[DATAFILE IN DirectoryLiteral]
[SIZE SizeSpec]
[AUTOEXTEND SizeSpec]
[MAXSIZE SizeSpec]

[50] SizeSpec ::= IntegerLiteral { MB | GB }

Explanation: The CreateDataspaceStatement creates a user defined dataspace with the given name.

Initially the dataspace consists of one file with the specified size which is created in the specified directory which
must exist. If no directory is specified, the file is created in the "disks" directory inside the database home directory.

The creation of each table optionally may be specified with a user dataspace name. All pages of the table as well
as the pages of its BLOB container and of all secondary are allocated in the files belonging to this dataspace.

If a dataspace runs out of space, another file may be added with the ALTER DATASPACE statement. If the
AUTOEXTEND option has been specified, a full dataspace is automatically extended by another file with the
specified size.

With the MAXSIZE specification the size of the dataspace is limited to the specified size, irrespective whether
AUTOEXTEND has been specified or not.

At creation time of a database exactly one dataspace with name dspace0 exists. All system catalogue tables are
stored in dspace0. Furthermore, all tables without explicit DATASPACE clause are also stored there.

Creation of a dataspace is always committed even if the corresponding transaction is aborted.

CREATE DATASPACE dspace1 DATAFILE IN /usr/dbusr/dspace1 SIZE 100 MB
CREATE DATASPACE dspace2 SIZE 100MB AUTOEXTEND 50MB MAXSIZE 800MB

CREATE TABLE T DATASPACE dspace1 (t0 INTEGER, t1 CHAR(*))

2.1.2. AlterDataspaceStatement

Serves to alter a dataspace.

Data Definition Language

15

Syntax:
[51] AlterDataspaceStatement ::= ALTER DATASPACE DataspaceIdentifier

{ AddFileSpec | StateSpec... }

[52] StateSpec ::= OnlineSpec | AutoextendSpec | MaxsizeSpec
[53] AddFileSpec ::= ADD DATAFILE [LOBCONTAINER] [IN DirectoryLiteral]

SIZE SizeSpec

[54] OnlineSpec ::= ONLINE | OFFLINE
[55] AutoextendSpec ::= AUTOEXTEND { SizeSpec | OFF }
[56] MaxsizeSpec ::= MAXSIZE { SizeSpec | OFF }
[50] SizeSpec ::= IntegerLiteral { MB | GB }

Explanation:

The AlterDataspaceStatement is used to alter the properties of a dataspace.

A dataspace may be set offline and reset to online.

A further file may be added to an existing dataspace. If no directory name is specified, the new file is placed into
the same directory as specified in the corresponding CREATE DATASPACE statement. If LOBCONTAINER is
specified then the file is dedicated for BLOBs and CLOBs, i.e. no other data than BLOBs and CLOBS are ever
stored into that datafile.

The AUTOEXTEND property of the dataspace may be included, or changed or dropped.

For a MAXSIZE property of the dataspace, there is the restriction that a new MAXSIZE can only be set if there
was already a MAXSIZE property, and the'new value'must not be smaller than the existing. The OFF specification
drops a currently existing MAXSIZE limit.

Caution

Alter of a dataspace is always committed even if the corresponding transaction is aborted.

ALTER DATASPACE dspace1 ADD DATAFILE SIZE 100MB
ALTER DATASPACE dspace2 ADD DATAFILE IN /dbs/db0/diskfiles SIZE 100MB
ALTER DATASPACE dspace3 OFFLINE
ALTER DATASPACE dspace4 ONLINE AUTOEXTEND 50mb MAXSIZE OFF

2.2. Users

2.2.1. GrantUserclassStatement

Serves to install a new user or to raise the userclass of an installed user.

Syntax:
[57] GrantUserclassStatement ::= GRANT Userclass TO UserIdentifier
[58] Userclass ::= ACCESS | RESOURCE | DBA

Explanation: If the specified user is not yet installed then the statement installs the user and sets its userclass to
the specified one.

If the specified user is already installed then the statement raises its userclass to the specified one. In this case the
specified userclass must be of higher level than the user's current userclass.

Data Definition Language

16

The userclass of a user defines the permission to login to the database and to create objects (tables, views, indexes).
The special userclass DBA serves to grant the privileges of a superuser who has all rights.

Table 2.1. User Classes

Userclass Level Description

DBA 3 All rights

RESOURCE 2 Can create

ACCESS 1 CANNOT create

NO_ACCESS 0 Cannot login

Privileges: The current user must have userclass DBA.

GRANT RESOURCE TO charly
GRANT ACCESS TO jim

2.2.2. RevokeUserclassStatement

Serves to lower the userclass of an installed user or to disable a user from login.

Syntax:
[59] RevokeUserclassStatement ::= REVOKE ACCESS FROM UserIdentifier [CASCADE] |

REVOKE RESOURCE FROM UserIdentifier |
REVOKE DBA FROM UserIdentifier

Explanation: The specified user must be an installed user with a userclass which is not lower than the specified
one. The statement lowers the userclass of the user to the level immediately below the specified userclass.

In particular, when userclass ACCESS is revoked the user cannot login to the database anymore.

• If CASCADE is specified, all tables and domains owned by the user are also deleted (domain information used
by other tables is expanded like in DROP DOMAIN .. CASCADE).

• If CASCADE is not specified, all tables and domains owned by the user remain existent and their ownership is
transferred to tbadmin. All database objects in the user's schema are transferred to the schema public.

2.2.3. AlterPasswordStatement

Serves to install or change a password.

Syntax:
[60] AlterPasswordStatement ::= ALTER PASSWORD FROM Oldpassword TO Newpassword
[61] Oldpassword ::= StringLiteral
[62] Newpassword ::= StringLiteral

Explanation: Oldpassword must match the password of the current user. The password is changed to Newpass-
word.

After installing a user the password is initialized to the empty string.

ALTER PASSWORD FROM '' TO 'xyz'
ALTER PASSWORD FROM 'xyz' TO 'acb'

Data Definition Language

17

2.2.4. GrantPrivilegeStatement

Serves to transfer privileges to other users.

Syntax:
[63] GrantPrivilegeStatement ::= GRANT Privileges ON TableIdentifier TO UserList [WITH

GRANT OPTION]

[64] Privileges ::= ALL [PRIVILEGES] |
Privilege [, Privilege]

[65] Privilege ::= SELECT | INSERT | DELETE |
UPDATE [(FieldList)]

[66] UserList ::= UserIdentifier [, UserIdentifier]
[7] UserIdentifier ::= Identifier | PUBLIC | USER

Explanation: The specified privileges on the table are granted to the specified user.

If the WITH GRANT OPTION is specified, the privileges are grantable, i.e. the users get the right to further grant
the privileges, otherwise not.

The table may be a base table or a view.

The variant ALL is equivalent to a PrivilegeList where all four Privileges are specified and where all FieldNames
of the table are specified in the UPDATE- privilege.

A missing FieldList is equivalent to one with all fields of the table.

If PUBLIC is specified then the privileges are granted to all users (new users also inherit these privileges).

Note

A privilege can be granted both to a specific user and to PUBLIC at the same time. To effectively
remove the privilege from the user, both grantings must be revoked.

Tip

UpdatePrivileges can be granted on field level whereas SELECT-privileges cannot. To achieve that
effect, however, it is sufficient to create an appropriate view and to grant SELECT-privilege on it.

Privileges: The current user must have userclass DBA or must have all specified privileges with the right to grant
them.

GRANT SELECT, UPDATE (price, qonorder)
 ON quotations TO jim,john
GRANT SELECT ON suppliers
 TO mary WITH GRANT OPTION

2.2.5. RevokePrivilegeStatement

Serves to revoke privileges which have been granted to other users.

Syntax:
[67] RevokePrivilegeStatement ::= REVOKE Privileges ON TableIdentifier FROM UserList
[64] Privileges ::= ALL [PRIVILEGES] |

Privilege [, Privilege]

[65] Privilege ::= SELECT | INSERT | DELETE |

Data Definition Language

18

UPDATE [(FieldList)]
[66] UserList ::= UserIdentifier [, UserIdentifier]
[7] UserIdentifier ::= Identifier | PUBLIC | USER

Explanation: If the current user is owner of the table, then the specified privileges are removed from the user such
that none of the privileges are left for the user.

If the current user is not owner of the table, then the privilege instances granted by the current user are removed
from the specified users. If some identical privileges had been additionally granted by other users, they remain
in effect (see Example).

If a SELECT privilege is revoked then all views which depend on the specified table and are not owned by the
current user are dropped. If an INSERT or UPDATE or DELETE privilege is revoked then all views which depend
on the specified table and are not owned by the current user and are updatable are dropped.

Note

It is not an error to REVOKE privileges from a user which had not been granted to the user. This
case is simply treated as an operation with no effect. This enables an error-free REVOKING for the
user without keeping track of the granting history.

Example 2.1. Granting and Revoking Select Privileges

User jim:

CREATE TABLE jimtable ...
GRANT SELECT ON jimtable TO mary, anne WITH GRANT OPTION

User mary:

GRANT SELECT ON jimtable TO john

User anne:

GRANT SELECT ON jimtable TO john

If owner jim then says:

REVOKE SELECT ON jimtable FROM john

then john looses SELECT-privilege on jimtable

If, however, anne or mary (but not both) say:

REVOKE SELECT ON jimtable FROM john

then john still has SELECT-privilege on jimtable.

2.3. Domains

2.3.1. CreateDomainStatement

Serves to create a domain in the database. A domain is a named type, optionally with default value and integrity
constraints.

Data Definition Language

19

Domains can be used in CreateTableStatements (for type specifications of fields) and as target type in CAST
expressions.

Syntax:
[68] CreateDomainStatement ::= CREATE DOMAIN DomainIdentifier [AS] DataType [DE-

FAULT Expression] [DomainConstraint] ...

[69] DomainConstraint ::= [CONSTRAINT ConstraintIdentifier]
CHECK (SearchCondition)

Explanation: The CreateDomainStatement creates a domain with the specified domain name and with the specified
DataType.

If a DEFAULT specification is given then the created domain has the specified value as its default value else the
domain has no default value. See the CreateTableStatement for the default mechanism of fields.

The default expression must not contain any subqueries or field references.

If DomainConstraints are specified then all values of the specified domains are subject to the specified search
conditions, e.g. if a record is inserted or updated in a table and a field of the table is defined on a domain, then the
field value is checked against all domain constraints specified on the domain.

The search condition in DomainConstraint must not contain any subqueries or field references. The keyword
VALUE is used to describe domain values in the search conditions.

For the check to be performed, the formal variable VALUE in the search condition is consistently replaced by
the field value. The integrity condition is violated, if and only if the expression NOT (SearchCondition) evaluates
to TRUE.

Note

The definition of check constraints is such that NULL values pass the check in most simple cases.
For all examples above, a NULL value yields the result "unknown" for the search condition, thus the
negation NOT(..) also yields unknown (and thus the constraint is not violated).

To achieve that a NULL value violates an integrity constraint, the constraint must be formulated like

CHECK (VALUE IS NOT NULL AND ...)

Whenever a domain constraint is violated, Transbase issues an error message which contains the Constraint-
Name. This may be an internally generated name if no ConstraintName was specified for the constraint. It is
therefore recommended to specify explicit constraint names.

Example:

CREATE DOMAIN percentage AS NUMERIC(5,2)
 CONSTRAINT range100 CHECK (VALUE BETWEEN 0 AND 100)

The current user becomes owner of the domain.

Privileges: The user must have userclass DBA or RESOURCE.

Catalog Tables: For each domain, at least one entry into the table sysdomain is made. This entry also contains
a DomainConstraint if specified. For each further specified DomainConstraint, one additional entry is made.

2.3.2. AlterDomainStatement

Serves to alter a domain in the database, i.e. to set or drop a default, to add or remove Check Constraints.

Data Definition Language

20

Syntax:
[70] AlterDomainStatement ::= ALTER DOMAIN DomainIdentifier AlterDomainSpec
[71] AlterDomainSpec ::= SET DEFAULT Expression | DROP DEFAULT |

ADD DomainConstraint |
DROP CONSTRAINT ConstraintIdentifier

Explanation: Note that no field values in the database are changed by any of these statements.

• SET DEFAULT sets the default of the domain to the specified value.

• DROP DEFAULT drops the default value of the domain.

• ADD DomainConstraint adds the specified domain constraint to the domain. All table fields based on
the domain are checked whether they fulfill the new constraint and the statement is rejected if there are any
violations against the new constraint.

• DROP CONSTRAINT ConstraintIdentifier drops the specified domain constraint from the domain.

Privileges: The user must be owner of the domain.

ALTER DOMAIN SupplierID SET DEFAULT -1
ALTER DOMAIN SupplierID DROP DEFAULT
ALTER DOMAIN UnitPrice DROP CONSTRAINT price100
ALTER DOMAIN UnitPrice ADD CONSTRAINT price200
 CHECK (VALUE between 0 AND 200)

2.3.3. DropDomainStatement

Serves to remove a domain from the database.

Syntax:
[72] DropDomainStatement ::= DROP DOMAIN DomainIdentifier DropBehaviour
[73] DropBehaviour ::= RESTRICT | CASCADE

Explanation: The statement removes the specified domain from the database.

If RESTRICT is specified, the statement is rejected if any field of an existing table is based on the domain or if
the domain is used in a CAST expression of any view definition.

If CASCADE is specified, the domain is removed also in the cases where the RESTRICT variant would fail. For
all table fields based on the domain, the domain constraints (if any) are integrated as table constraints into the table
definitions. The domain default (if any) is integrated as field default unless the field has been specified with an
explicit DEFAULT value at table definition time.

Note

The semantics of a DROP … CASCADE is such that the integrity constraints defined via the domain
(if any) effectively are not lost.

Privileges: The user must be owner of the domain.

DROP DOMAIN SupplierID CASCADE

Data Definition Language

21

2.4. Sequences

2.4.1. CreateSequenceStatement

Creates a sequence.

Syntax:
[74] CreateSequenceStatement ::= CREATE SEQUENCE SequenceIdentifier [DataspaceSpec]

[StartSpec] [IncrSpec] [MaxSpec] [CYCLE]

[87] DataspaceSpec ::= DATASPACE DataspaceIdentifier
[75] StartSpec ::= START [WITH] IntegerLiteral]
[76] IncrSpec ::= INCREMENT [BY] IntegerLiteral]
[77] MaxSpec ::= MAXVALUE IntegerLiteral]

Explanation: Creates a sequence with the specified name. A sequence is an object which can be used to generate
increasing numbers of type Bigint. These numbers are unique even if generated by concurrent transactions. Also
no lock conflicts arise due to the use of sequences.

For a sequence S, there are 2 operations available namely S.nextval and S.currval.

The first S.nextval operation delivers the value specified in StartSpec or 1 as default. Each S.nextval increases
the value of S by the value specified in IncrSpec or 1 as default. If a MaxSpec has been given and the nextval
operation would generate a value beyond the maximal value then either an error is generated or (if CYCLE has
been specified) the startvalue again is delivered as next value. S.nextval also is permitted as default specification
for a field of a table.

The S.currval operation is only allowed if there has been a S.nextval operation within the same transaction and
again delivers the last value delivered by S.nextval. S.currval does not increase the current value of S.

Privileges: To create a sequence, the current user must have userclass DBA or RESOURCE.

For nextval the user must have UPDATE privilege on the sequence.

For currval the user must have SELECT privilege on the sequence.

Privileges on sequences are granted and revoked like those on tables.

CREATE SEQUENCE S START 1 INCREMENT 2

2.4.2. DropSequenceStatement

Drops a sequence.

Syntax:
[78] DropSequenceStatement ::= DROP SEQUENCE SequenceIdentifier

Explanation: Drops the sequence with the specified name.

Privileges: The current user must be owner of the sequence.

DROP SEQUENCE S

Data Definition Language

22

2.5. CreateTableStatement

Serves to create a table in the database.

Syntax:
[79] CreateTableStatement ::= StdTableStatement |

FlatTableStatement |
FileTableStatement

[80] StdTableStatement ::= CREATE TABLE [IF NOT EXISTS] TableIdentifier
[IkSpec] [DataspaceSpec]
(TableElem [, TableElem] ...)
[KeySpec]

[81] FlatTableStatement ::= CREATE FLAT [FtSizeSpec]
TABLE [IF NOT EXISTS] TableIdentifier
[IkSpec]
(TableElem [, TableElem]...)

[82] FtSizeSpec ::= (IntegerLiteral [KB | MB])
[83] FileTableStatement ::= CREATE

FILE (FileLiteral [CodePageSpec] [NullSpec] [DelimSpec])
TABLE [IF NOT EXISTS] TableIdentifier
(FieldDefinition [, FieldDefinition]...)

[84] CodePageSpec ::= CODEPAGE [IS] CodePage
[[WITH | WITHOUT] PROLOGUE]]

[85] CodePage ::= UTF8 | UCS | UCS2 | UCS4 |
UCS2LE | UCS2BE | UCS4LE | UCS4BE

[86] IkSpec ::= { WITH | WITHOUT } IKACCESS
[87] DataspaceSpec ::= DATASPACE DataspaceIdentifier
[88] TableElem ::= FieldDefinition | TableConstraintDefinition
[89] FieldDefinition ::= FieldIdentifier DataTypeSpec

[DefaultClause | AUTO_INCREMENT]
[FieldConstraintDefinition]...

[90] DataTypeSpec ::= DataType | DomainIdentifier
[91] DefaultClause ::= DEFAULT Expression
[92] KeySpec ::= StdKeySpec | HCKeySpec
[93] StdKeySpec ::= KEY IS FieldList
[94] HCKeySpec ::= HCKEY [NOT UNIQUE] IS FieldList
[95] PrimaryKeySpec ::= StdPrimaryKeySpec | HCPrimaryKeySpec
[96] StdPrimaryKeySpec ::= PRIMARY KEY (FieldList)
[97] HCPrimaryKeySpec ::= PRIMARY HCKEY [NOT UNIQUE] (FieldList)
[98] FieldList ::= FieldIdentifier [, FieldIdentifier]...

Explanation: The CreateTableStatement creates a table with the given TableName.

The StdTableStatement creates a table as a B-tree. Therefore its data is stored clustered (sorted) along its primary
key specification. This allows efficient lookup of data via the primary key. On the other hand, insertions into sorted
data are complex and therefore costly.

The FlatTableStatement creates a table without primary key and without clustering. In contrast to standard tables,
data is stored in input order. This allow faster data insertion as data is always appended. Via its SizeSpec the table
can be restricted to occupy no more than a certain maximum of space. If this maximum is exceeded, the oldest
data will automatically be replaced. Thus Flat Tables [system.xhtml#FlatTables] are ideally suited for data staging
during bulk load processes, as temporary storage and for logging facilities.

The FileTableStatement allows spool files or other compatible file formats to be integrated into the database
schema as virtual tables. These FILE tables offer read-only access to those files via SQL commands. They can be
used throughout SQL SELECT statements like any other base table. The table definition supplies a mapping of
columns in the external file to column names and Transbase datatypes. No key specifications are allowed on a File

system.xhtml#FlatTables
system.xhtml#FlatTables

Data Definition Language

23

table. The creation of secondary indexes is not possible. For details on the optional parameters CodePageSpec,
NullSpec and DelimSpec please consult the SpoolTableStatement. FILE tables are primary designed as an ad-
vanced instrument for bulk loading data into Transbase and applying arbitrary SQL transformations at the same
time.

An error is returned if a table with the same name already exists unless the IF NOT EXISTS option is specified.
In the latter case no action is performed and no error is returned.

The IkSpec adjusts whether to create a table with or without internal key (IK) access path. IKs are used as row
identifier, e.g. for referencing records in the base table after accessing secondary indexes. This IK access path
requires additional space of 6 to 8 bytes per record. Alternatively Transbase can use the primary key access path.
In this case the base table's primary key is stored in all index records for referencing the base table. Depending on
how extensive the primary key is, Transbase will automatically decide at table creation time whether to create a
table WITH or WITHOUT IKACCESS. This guarantees optimal space efficiency. If the primary key occupies no
more that the IK, then the table is created WITHOUT IKACCESS. Else an IK access path is added by default.

Secondary indexes can also be created on Flat Tables [system.xhtml#FlatTables]. As these tables do not have a
primary key, secondary indexes are only possible on Flat Tables [system.xhtml#FlatTables] WITH IKACCESS.
Typically such secondary indexes are added once the load process is complete, so load performance is not com-
promised by secondary index maintenance.

It is always possible to override this default mechanism of IkSpec by adding WITH or WITHOUT IKACCESS to
the create table statement.

Each FieldDefinition specifies a field of the table. The ordering of fields is relevant for the *-notation in SELECT
* FROM

TableConstraintDefinition and FieldConstraintDefinition are explained in the subsequent chapters.

The CreateTableStatement creates a table with the given TableName.

If the key specification is omitted, the combination of all fields implicitly is the key. No column of type BLOB
or CLOB is allowed to be part of the key.

Unless a NOT UNIQUE specification is given, insert and update operations which produce records with the same
values on all key fields are rejected.

The "KEY IS .." specification creates a table with a compound B-tree index.

The "HCKEY IS .." specification creates a table with a HyperCube index. Key fields of a HyperCube table are
restricted to exact arithmetic types (BIGINT, INTEGER, SMALLINT, TINYINT, NUMERIC). If NOT UNIQUE
is specified, then also duplicates on the key combination are allowed. NOT UNIQUE, however, is restricted to
HyperCube tables. On each HyperCube key field a NOT NULL constraint and a CheckConstraint must exist.

Note

If there exists one field (or one or more field combinations) which is known to be unique in the
table, it is strongly recommended to explicitly specify it as key of the table. One advantage is that
uniqueness is guaranteed; another advantage is much better performance in update operations (which
normally do not change key values).

The current user becomes owner of the table and gets SELECT-privilege, INSERT-privilege, DELETE-privilege
on the table and UPDATE-privilege on all fields of the table. All privileges are grantable.

Privileges: The user must have userclass DBA or RESOURCE.

CREATE TABLE quotations
(suppno INTEGER DEFAULT -1 NOT NULL,
 partno INTEGER DEFAULT -1 NOT NULL,
 price NUMERIC (6,2) DEFAULT 0 NOT NULL,
 delivery_time INTEGER,
 qonorder NUMERIC (4)
)
KEY IS suppno, partno

system.xhtml#FlatTables
system.xhtml#FlatTables
system.xhtml#FlatTables
system.xhtml#FlatTables

Data Definition Language

24

CREATE TABLE geopoints
(info INTEGER NOT NULL,
 longitude NUMERIC(10,7) NOT NULL
 CHECK(longitude BETWEEN -180 AND 180),
 latitude NUMERIC(9,7) NOT NULL
 CHECK(latitude BETWEEN -90 AND 90)
)
HCKEY IS longitude, latitude

2.5.1. Defaults

Each field has a (explicitly specified or implicit) default value which is taken as input value if a field value is not
explicitly specified in an INSERT statement (or by an INSERT via a view). If a DEFAULT clause is specified with
an expression evaluating to d, then d is the (explicitly specified) default value for that field, otherwise, if the field
is based on a domain with explicit default value d, then d is the default value, otherwise NULL is the default value.

In the DEFAULT Expression, neither field references nor subqueries are allowed.

2.5.2. AUTO_INCREMENT Fields

An AUTO_INCREMENT field serves to generate unique key values. At most one AUTO_INCREMENT field is
allowed in a table. Its data type must be one of TINYINT, SMALLINT, INTEGER, BIGINT.

An AUTO_INCREMENT field always must be specified either as the (single) PRIMARY KEY field or as the
lowest weighted component of a compound primary key.

CREATE TABLE T
(Id BIGINT AUTO_INCREMENT,
 Prop1 VARCHAR(*),
 Prop2 VARCHAR(*),
 PRIMARY KEY (Id)
)

In table T, Id is the only key field. For each INSERT statement which does not assign a value for Id but uses a
fieldlist (Prop1,Prop2), a unique value for the field Id automatically is generated. Value generation starts with the
value 1. See below how the assigned value can be transferred to the application.

An AUTO_INCREMENT field may be explicitly assigned a value, too. For example, if the first INSERT statement
for table T is the following:

INSERT INTO T VALUES(10, 'Foo1', 'Foo2')

then the next generated value would be 11. Automatic value generation always takes the maximum value so far
plus one. At definition time of the table,a start value for the automatic numbering may be specified:

CREATE TABLE person
(FirstName VARCHAR(*) NOT NULL,
 SecondName VARCHAR(*) NOT NULL,
 Id INTEGER AUTO_INCREMENT=10,
 Birthday Date,

 PRIMARY KEY (FirstName, SecondName, Id)
)

Here, Id is used to generate unique key combinations among identical pairs of FirstName, SecondName. In contrast
to the usage of as SEQUENCE, the AUTO_INCREMENT fields starts numbering each set of identical pairs
beginning with the specified number (default is number 1). Whenever a record is inserted with a pair of names
which already exists, the numbering is done with 1 + maximum of numbers for that pair.

Data Definition Language

25

As in the example above, an explicit numbering again is allowed as long as no key collision is produced.

Note that an AUTO_INCREMENT field may overflow which results in an error. So the data type should be chosen
appropriately.

2.5.2.1. Processing implicitly assigned AUTO_INCREMENT values

There are 2 ways for the application to get the implicitly assigned value of an AUTO_INCREMENT field. The
RETURNING clause is useful in these cases to see the value which has been assigned.

INSERT INTO T (Prop1,Prop2) VALUES('Foo1', 'Foo2') RETURNING(Id)

An alternative is the function LAST_INSERT_ID(). Used as an expression in the SELECT list of a query, it
delivers the most recently implicitly assigned value to an AUTO_INCREMENT field.

2.5.3. TableConstraintDefinition FieldConstraintDefini-
tion

Overview syntax for specification of integrity constraints in a CreateTableStatement.

Syntax:
[99] TableConstraintDefinition ::= [CONSTRAINT ConstraintIdentifier] TableConstraint
[100] FieldConstraintDefinition ::= [CONSTRAINT ConstraintIdentifier] FieldConstraint
[101] TableConstraint ::= PrimaryKeySpec | CheckConstraint | ForeignKey
[102] CheckConstraint ::= CHECK (SearchCondition)
[103] ForeignKey ::= FOREIGN KEY (FieldList) ReferencesDef
[104] ReferencesDef ::= REFERENCES TableIdentifier [(FieldList)] [ON DELETE Ac-

tion] [ON UPDATE Action]

[105] Action ::= NO ACTION | CASCADE | SET DEFAULT | SET NULL
[106] FieldConstraint ::= NOT NULL | PRIMARY KEY | CheckConstraint | ReferencesDef

Explanation: Explanations are given in the subsequent sections.

The construct FieldConstraint is subsumed by the more general TableConstraint. In certain special cases, the
syntactic variant FieldConstraint allows a more compact notation for a TableConstraint. There are no performance
differences with the 2 notations.

Note

All constraints are effectively checked after execution of each SQL query.

2.5.4. PrimaryKey

Specify the main key for a table.

Syntax:
[106] FieldConstraint ::= NOT NULL | PRIMARY KEY | CheckConstraint | ReferencesDef
[101] TableConstraint ::= PrimaryKeySpec | CheckConstraint | ForeignKey

Data Definition Language

26

[95] PrimaryKeySpec ::= StdPrimaryKeySpec | HCPrimaryKeySpec
[96] StdPrimaryKeySpec ::= PRIMARY KEY (FieldList)
[97] HCPrimaryKeySpec ::= PRIMARY HCKEY [NOT UNIQUE] (FieldList)
[92] KeySpec ::= StdKeySpec | HCKeySpec
[93] StdKeySpec ::= KEY IS FieldList
[94] HCKeySpec ::= HCKEY [NOT UNIQUE] IS FieldList

Explanation: Only one PrimaryKey specification is allowed per table definition.

If no PrimaryKey is specified, all fields except BLOB or CLOB fields form the primary key in the order of
specification.

The SQL-2 formulation PRIMARY KEY (f1, f2, ..,fn) is equivalent to the alternative (Transbase proprietary) formu-
lation KEY IS f1,f2,..,fn (see below for an example). The SQL-2 formulation PRIMARY HCKEY [NOT UNIQUE]
(f1, f2, ..,fn) is equivalent to the alternative (Transbase proprietary) formulation HCKEY [NOT UNIQUE] IS
f1,f2,..,fn

For the semantics of the key specification see CreateTableStatement . See also the Performance Guide for more
details.

The following two examples are equivalent. The first is the official SQL-2 notation supported by Transbase, the
second is an alternative notation also supported by Transbase (note that the formulations exclude each other):

CREATE TABLE quotations
(suppno INTEGER,
 partno INTEGER,
 price NUMERIC(9,2),
 delivery_time INTEGER,
 PRIMARY KEY (suppno, partno)
)

CREATE TABLE quotations
(suppno INTEGER,
 partno INTEGER,
 price NUMERIC(9,2),
 delivery_time INTEGER
) KEY IS suppno, partno

The following two examples show alternative formulations of primary key via a TableConstraint and a FieldCon-
straint - this is possible if and only if one single field constitutes the primary key:

CREATE TABLE suppliers
(suppno INTEGER,
 name CHAR(*),
 address CHAR(*),
 PRIMARY KEY(suppno)
)

CREATE TABLE suppliers
(suppno INTEGER PRIMARY KEY,
 name CHAR(*),
 address CHAR(*)
)

2.5.5. CheckConstraint

Specify a CheckConstraint for a table.

Syntax:
[102] CheckConstraint ::= CHECK (SearchCondition)

Explanation: The SearchCondition specifies an integrity condition which must be fulfilled for all records of the
table.

Data Definition Language

27

In detail, for all records of the table which are inserted or updated an error is reported if the condition NOT
(SearchCondition) evaluates to TRUE.

If the CheckConstraint is specified with an explicit ConstraintName, an integrity violation message concern-
ing this CheckConstraint reports this name, otherwise an implicitly generated name is reported. For the sake of
easy error analysis, it is thus recommended to specify explicit and self-explanatory constraint names.

CREATE TABLE quotations
(suppno INTEGER,
 partno INTEGER,
 price NUMERIC(9,2),
 delivery_time INTEGER,
 CONSTRAINT price100 CHECK (price < 100)
)

CREATE TABLE quotations
(suppno INTEGER,
 partno INTEGER,
 price NUMERIC(9,2),
 delivery_time INTEGER,
 CONSTRAINT price_deliv
 CHECK (price < 20 OR delivery_time < 3)
)

In the first example, only one field is involved. Therefore it can also be formulated using the syntactic variation
FieldConstraint:

CREATE TABLE quotations
(suppno INTEGER,
 partno INTEGER,
 price NUMERIC(9,2)
 CONSTRAINT price100 CHECK (price < 100),
 delivery_time INTEGER
)

Note that in a FieldConstraint, there is no comma between the field definition and the constraint definition.

Catalog Tables: One entry into the table sysconstraint is made for each check constraint.

Null values: The definition of integrity violation is such that NULL values pass the test in most cases.
In the example above, the constraint "price100" is not violated by a record with a NULL
value on price, because the SearchCondition evaluates to unknown (thus the negation
NOT(..) also evaluates to unknown but not to TRUE).

To make NULL values fail the test, one must explicitly formulate the CheckConstraint
like: CHECK (price IS NOT NULL AND ...).

To specify that the value must not be null the shorthand notation NOT NULL can be used
in the field definition, but then it is not part of the specified constraint:

CREATE TABLE quotations
(suppno INTEGER,
 partno INTEGER,
 price NUMERIC(9,2) NOT NULL
 CONSTRAINT price100 CHECK (price < 100),
 delivery_time INTEGER
)

2.5.6. ForeignKey

Specify a Referential Constraint between 2 tables.

Syntax:

Data Definition Language

28

[103] ForeignKey ::= FOREIGN KEY (FieldList) ReferencesDef
[104] ReferencesDef ::= REFERENCES TableIdentifier [(FieldList)] [ON DELETE Ac-

tion] [ON UPDATE Action]

[105] Action ::= NO ACTION | CASCADE | SET DEFAULT | SET NULL

Explanation: A referential constraint between 2 tables is specified.

With respect to the constraint, the table containing the fields of the foreign key is called the referencing table,
the table which is mentioned after REFERENCES is called the referenced table. Analogously, the fields in the
FOREIGN KEY clause and the (explicit or implicit) fields in the REFERENCES clause are called referencing
fields and referenced fields, resp. The referencing and referenced fields must have same number and identical
types.

If no field name list is specified in the REFERENCES clause, then the primary key combination of the referenced
table constitutes the referenced fields. The referenced fields either must constitute the primary key or must have
a UNIQUE INDEX.

The referential constraint is as follows:

For each record in the referencing table whose referencing fields do not have any NULL value, there must be one
record in the referenced table with identical field values on the corresponding referenced fields.

Let RG and RD the referencing table and the referenced table, resp., i.e. RG references RD.

The following statements potentially violate a referential constraint:

1. INSERT, SPOOL, UPDATE, in RG

2. DELETE, UPDATE in RD.

A referential constraint can be specified to trigger compensating actions.

Specification of NO ACTION effectively is the absence of a triggered action.

If CASCADE is specified:

A deletion of record t in RD triggers the deletion of all matching records in the RG (thus maintaining the referential
constraint). An update of a referenced field in RD triggers the corresponding update of all referencing fields in
RG to the same value (thus maintaining the referential constraint).

If SET NULL or SET DEFAULT is specified:

A deletion of record t in RD triggers the update of the referencing fields of all matching records in RG to NULL
or their DEFAULT value. The first case always maintains the referential constraint, the second case only if there
is a matching DEFAULT value record in RD. An update is handled analogously.

CREATE TABLE quotations
(suppno INTEGER,
 partno INTEGER,
 price NUMERIC(9,2),
 delivery_time INTEGER,
 CONSTRAINT quotrefsupp
 FOREIGN KEY (suppno) REFERENCES suppliers(suppno)
 ON DELETE SET NULL,
 CONSTRAINT quotrefpart
 FOREIGN KEY (partno) REFERENCES inventory(partno)
 ON DELETE CASCADE,
)

In this (single field reference) example, also the syntactic shorthand variant of FieldConstraint can be used as
shown below:

Data Definition Language

29

CREATE TABLE quotations
(suppno INTEGER
 CONSTRAINT quotrefsupp
 REFERENCES suppliers(suppno)
 ON DELETE SET NULL,
 partno INTEGER
 CONSTRAINT quotrefpart
 REFERENCES inventory(partno)
 ON DELETE CASCADE,
 price NUMERIC(9,2),
 delivery_time INTEGER
)

Catalog Tables: For a referential constraint with a n-ary field combination, n records are inserted into
sysrefconstraint.

Performance: DELETE and UPDATE operations on referenced tables which require the referential
check on the referencing table are slow if the referencing table does not have a secondary
index (or the primary key) on the referencing fields.

INSERTs and UPDATEs on referencing fields requiring the referential check on the ref-
erenced table are fast because by definition there is a index on the referenced fields.

Note

Like all constraints, referential constraints are effectively checked after execution of each SQL query.
In general, it is therefore not possible to insert records into tables in arbitrary order if there exists a
referential constraint between them.

2.6. AlterTableStatement

Serves to alter fields of a table and to add or remove table constraints.

Syntax:
[107] AlterTableStatement ::= AlterTableConstraint |

AlterTableChangeField | AlterTableRenameField | AlterTable-
Fields |
AlterTableRename | AlterTableMove

Privileges: The user must be owner of the table.

2.6.1. AlterTableConstraint

Serves to add or remove a table constraint.

Syntax:
[108] AlterTableConstraint ::= ALTER TABLE TableIdentifier ConstraintAction
[109] ConstraintAction ::= ADD TableConstraintDefinition | DROP CONSTRAINT Con-

straintIdentifier

Explanation:

Data Definition Language

30

In the TableConstraintDefinition all except the redefinition of PRIMARY KEY is allowed on this position.

The ADDition of a table constraint is rejected if the values in the database do not fulfill the constraint.

ALTER TABLE quotations DROP CONSTRAINT quotrefpart

ALTER TABLE inventory ADD CONSTRAINT qonh
 CHECK (quonhand/10*10 = quonhand)

ALTER TABLE quotations ADD CONSTRAINT quotrefpart
 FOREIGN KEY (partno) REFERENCES parts2
 ON DELETE CASCADE

2.6.2. AlterTableChangeField

Serves to alter a the default specifiation of a field in a table.

Syntax:
[110] AlterTableChangeField ::= ALTER TABLE TableIdentifier ALTER [COLUMN] FieldIdenti-

fier DefaultAction

[111] DefaultAction ::= SET DEFAULT Expression | DROP DEFAULT

Explanation:

SET DEFAULT specifies a default value for the field.

DROP DEFAULT removes the default value from the field. If the datatype of the field is defined by a domain,
the domain's default specification becomes effective. In this case SET DEFAULT NULL and DROP DEFAULT
are not equivalent.

Both statements do not change field values in the database.

ALTER TABLE quotations ALTER price SET DEFAULT 100.0
ALTER TABLE quotations ALTER delivery_time DROP DEFAULT

2.6.3. AlterTableRenameField

Serves to rename a field of a table.

Syntax:
[112] AlterTableRenameField ::= ALTER TABLE TableIdentifier

RENAME COLUMN FieldIdentifier TO FieldIdentifier

changes the name of a field of a table. The RENAME operation fails in case of a name conflict.

ALTER TABLE quotations RENAME COLUMN price TO prize

2.6.4. AlterTableFields

Serves to add, modify or drop one or more fields.

Data Definition Language

31

Syntax:
[113] AlterTableFields ::= ALTER TABLE TableIdentifier

AlterTableElem [, AlterTableElem] ...

[114] AlterTableElem ::= ADD FieldDefinition [PositionClause] |
MODIFY FieldDefinition [PositionClause] |
DROP FieldIdentifier

[115] PositionClause ::= [FIRST | AFTER FieldIdentifier]
[89] FieldDefinition ::= FieldIdentifier DataTypeSpec

[DefaultClause | AUTO_INCREMENT]
[FieldConstraintDefinition]...

Explanation:

Each AlterTableElem specifies a modification on the given table.

• ADD FieldDefinition PositionClause adds a new field and initializes it with the explicitly specified
or implicit default value. When no PositionClause is given the field is placed as the last field of the table.
Otherwise the field will be inserted at the specified position.

• MODIFY FieldDefinition PositionClause changes the data type of the field to the specified type.
Already existing data will be converted due to this modification. Note that not all data types are compatible
among each other. This operation also changes the position of the field within a table.

• DROP FieldIdentifier deletes a field of the table. A field cannot be dropped, if one of the following
holds:

• The field is part of the primary key.

• The field is part of a secondary index.

• The field is used within a constraint.

ALTER TABLE quotations
 ADD comment CHAR(*) DEFAULT '' FIRST,
 MODIFY delivery_time DOUBLE AFTER comment,
 DROP qonorder

2.6.5. AlterTableRename

Serves to rename a table.

Syntax:
[116] AlterTableRename ::= ALTER TABLE TableIdentifier

RENAME TableIdentifier

changes the name of a table. The RENAME operation is fails in case of a name conflict.

ALTER TABLE geopoints RENAME TO coordinates

2.6.6. AlterTableMove

Serves to reorganize a table.

Data Definition Language

32

Syntax:
[117] AlterTableMove ::= ALTER TABLE TableIdentifier MOVE [TO] MoveTarget
[118] MoveTarget ::= BLOCK BlockNo | DATASPACE DataspaceIdentifier
[119] BlockNo ::= IntegerLiteral
[6] DataspaceIdentifier ::= Identifier

Explanation: The logical page ordering of segments (tables, indices or lobcontainers) can be reorganized by this
statement. The lower bound and upper bound address of the reorganized segment are specified either by BlockNo
and the maximal database size or by the size of the target dataspace.

All indices of the table, the lobcontainer (if the table contains one or more lob fields) and the table itself are moved.

This statement is only allowed on Transbase Standard Databases.

ALTER TABLE quotations MOVE TO DATASPACE dspace2;

ALTER TABLE quotations MOVE BLOCK 50000;

2.7. DropTableStatement

Serves to drop a table in the database.

Syntax:
[120] DropTableStatement ::= DROP TABLE [IF EXISTS] TableIdentifier

Explanation: The specified table, all indexes and all triggers defined on that table are dropped. All views which
are directly or transitively based on the specified table are also dropped. Error is returned if the table does not exis
unless the IF EXISTS option is specified.

Privileges: The current user must have userclass DBA or must be owner of the table.

DROP TABLE quotations

2.8. CreateIndexStatement

Serves to create an index, fulltext index or a bitmap index on a table.

Syntax:
[121] CreateIndexStatement ::= StandardIndexStatement |

HyperCubeIndexStatement |
FulltextIndexStatement |
BitmapIndexStatement

2.8.1. StandardIndexStatement

Serves to create a standard index on a table.

Data Definition Language

33

Syntax:
[122] StandardIndexStatement ::= CREATE [UNIQUE] INDEX IndexIdentifier

ON TableIdentifier (IndexElemList)
[KEY IS KeyList]

[123] IndexElemList ::= Expression [, Expression]...
[124] KeyList ::= FieldList

Explanation: An index with the specified name is created on the specified fields or expressions resp. of the spec-
ified table.

In most cases, indexes are built on one or several basic fields of a table. This means that the Expressions are
simple field names.

It is possible to specify an Expression instead of a field name. All Expressions must be resolvable against the
specified base table. Such an index can be efficiently used for query processing if all or a prefix of the Expressions
appear in the search condition of a query.

If "CREATE UNIQUE .." is specified then then all records are required to be unique in the index. Insert and update
operations which would result in at least two records with the same values on the specified element combination
are rejected. See also the special section on UNIQUE and KEY IS

Indexes have no effect on query results except for possibly different performance (depending on the query type)
and possibly different sort orders of query results (if no ORDER BY-clause is specified in the query).

Indexes on views are not allowed.

BLOB and CLOB fields can only be indexed by fulltext indexes .

Note

It is unwise to create a standard B-tree index on the highest weighted key fields because in Transbase
an unnamed (multi field) index exists on the key fields anyway.

Privileges: The current user must have userclass DBA or must have userclass RESOURCE and be owner of the
table.

CREATE INDEX quot_pa_pr
ON quotations (partno,price)

Example for efficient usage:

SELECT partno, price from quotations WHERE partno = 221

CREATE INDEX suppliers_phonetic
ON suppliers (soundex(name), suppno)

Example for efficient usage:

SELECT * from suppliers where soundex(name) = soundex('Stewart')

2.8.1.1. UNIQUE and KEY IS specification of an Index

Assume a base table T(k,t1,t2,t3) where field k is key field.

Data Definition Language

34

Assume an index Tx on T on fields (t1,t2).

Although the (t1,t2) combination is not declared to be key in T, you might want to specify a constraint that the
value pairs are unique.

There are 2 different ways to achieve this. One way is to specify the UNIQUE clause for Tx at creation time. The
alternative is to use the KEY IS clause.

CREATE UNIQUE INDEX Tx on T(t1,t2)
... or by using the KEY IS clause:
CREATE INDEX Tx on T(t1,t2) KEY IS t1,t2

The KEY IS clause is useful if one more field (t3) should be part of the index but the uniqueness property should
remain as sharp as before and not be weakened to the triple.

CREATE INDEX Tx on T(t1,t2,t3) KEY IS t1,t2

This construction is also useful for example for efficiently supporting the following kind of query:

SELECT t3 FROM T WHERE t1 = <const> and t2 = <const>

The index key on (t1,t2) supports the efficient processing of the search condition, and the integration of field t3
into the index directly supports the delivery of t3 without accessing the base table T.

2.8.2. HyperCubeIndexStatement

Serves to create a Hypercube index on a table.

Syntax:
[125] HyperCubeIndexStatement ::= CREATE INDEX IndexIdentifier

ON TableIdentifier (FieldList)
HCKeySpec

[98] FieldList ::= FieldIdentifier [, FieldIdentifier]...
[94] HCKeySpec ::= HCKEY [NOT UNIQUE] IS FieldList
[124] KeyList ::= FieldList

Explanation: An index with the specified name is created on the specified fields of the specified table. There must
not be an index with the same name on any table in the database.

A HyperCube tree is specified instead of a standard compound B-tree. A HyperCube tree should have no fields as
part of key which typically are not searched for - therefore fields and keys can be specified separately. The specified
keys are UNIQUE by default unless the "NOT UNIQUE" clause is specified. All fields used as HyperCube key
fields must be NOT NULL and must have a range check constraint.

As far as the processing of search predicates is concerned, HyperCube index behaves like a HyperCube base table.
See the Performance Guide [perform.xhtml] for details.

Privileges: The current user must have userclass DBA or must have userclass RESOURCE and be owner of the
table.

perform.xhtml
perform.xhtml

Data Definition Language

35

CREATE INDEX quot_pa_pr
ON quotations (partno,price) HCKEY IS partno, price

Example for efficient usage:

SELECT partno, price from quotations
WHERE partno between 1000 and 2000 and
 price between 200 and 300

The index supports the evaluation of the interval restriction on both fields which are not efficiently supported by
a standard B-Tree index.

2.8.3. FulltextIndexStatement

Serves to create a fulltext index on a VARCHAR, CHAR, BLOB or CLOB field of a table.

Syntax:
[126] FulltextIndexStatement ::= CREATE [POSITIONAL] FULLTEXT INDEX IndexIdentifier

[FulltextSpec] ON TableIdentifier (FieldIdentifier)
[ScratchArea]

[127] FulltextSpec ::= [WITH SOUNDEX] [{ Wordlist) | Stopwords }]
[Charmap] [Delimiters]

[128] Wordlist ::= WORDLIST FROM TableIdentifier
[129] Stopwords ::= STOPWORDS FROM TableIdentifier
[130] Charmap ::= CHARMAP FROM TableIdentifier
[131] Delimiters ::= DELIMITERS FROM TableIdentifier |

DELIMITERS NONALPHANUM

[132] ScratchArea ::= SCRATCH IntegerLiteral MB

Explanation: All explanations are given in the separate chapter on Fulltext Indexes .

2.8.4. BitmapIndexStatement

Serves to create a bitmap index on a BOOL, TINYINT, SMALLINT or INTEGER field of a table.

Syntax:
[133] BitmapIndexStatement ::= CREATE BITMAP INDEX IndexIdentifier

ON TableIdentifier (FieldIdentifier)

Explanation: A bitmap index with the specified name is created on the specified field of the specified table.

Bitmap indexes are preferably used for non-selective columns having few different values (e.g. classifications).
Bitmap indexes are innately very space efficient. With their additional compression in average they occupy less
than one bit per index row. A bitmap index can be created on any base table (B-Tree or Flat) having a single
INTEGER field as primary key or an IKACCESS path.

Bitmap processing allows inexpensive calculation of logical combinations (AND/ OR/ NOT) of restrictions on
multiple non-selective fields using bitmap intersection and unification.

There must not be an index with the same name on any table in the database. There must not be an index on the
same field of the table.

Data Definition Language

36

2.9. DropIndexStatement

Serves to drop an index.

Syntax:
[134] DropIndexStatement ::= DROP INDEX [IF EXISTS] IndexIdentifier

Explanation: The specified index is dropped. Error is returned if the index does not exis unless the IF EXISTS
option is specified.

Privileges: The current user must have userclass DBA or must be owner of the table on which the index has been
created.

DROP INDEX quot_pa_pr

2.10. Triggers

2.10.1. CreateTriggerStatement

Serves to create a trigger on a table.

Syntax:
[135] CreateTriggerStatement ::= CREATE TRIGGER TriggerIdentifier

TriggerActionTime TriggerEvent
ON TableIdentifier
[REFERENCING OldNewAliasList] TriggeredAction

[136] TriggerActionTime ::= BEFORE | AFTER
[137] TriggerEvent ::= INSERT | DELETE | UPDATE [OF FieldList]
[98] FieldList ::= FieldIdentifier [, FieldIdentifier]...
[138] OldNewAliasList ::= OldNewAlias [OldNewAlias]
[139] OldNewAlias ::= OLD [ROW] [AS] CorrelationIdentifier |

NEW [ROW] [AS] CorrelationIdentifier

[140] TriggeredAction ::= [FOR EACH { ROW | STATEMENT }]
[WHEN (SearchCondition)]
TriggerSQLStatement

[141] TriggerSQLStatement ::= DMLorCallStatement |
BEGIN ATOMIC DMLorCallStatement
[; DMLorCallStatement]... END

[142] DMLorCallStatement ::= InsertStatement |
UpdateStatement |
DeleteStatement |
CallStatement

Explanation:

A trigger is a user defined sequence of SQL modification statements or CallStatements which is automatically
executed when a INSERT, UPDATE or DELETE statement is executed. The specification of a trigger contains
a triggername, a triggerevent on a table (e.g. INSERT ON quotations) which specifies when the trigger is to be
fired, a detailed trigger action time (BEFORE or AFTER) which specifies whether the trigger has to fired before

Data Definition Language

37

or after the insert action. Furthermore, a trigger has to specified to be either a row trigger (FOR EACH ROW, i.e.
to be fired once for each processed record) or a statement trigger (FOR EACH STATEMENT, i.e. to be fired only
once for the complete modification statement). The default is FOR EACH STATEMENT.

For a row trigger, the specified actions may refer to the actually processed record values. The syntax
NEW.fieldname is the value of fieldname of the inserted record or the (possibly changed) value of fieldname for
an record being updated. The syntax OLD.fieldname is the value of fieldname of a deleted record or the original
field value for an record being updated.

The firing of a row trigger may be restricted along a condition (SearchCondition) which also may refer to the
NEW or OLD field values of the record currently processed.

The keywords NEW and OLD may be overridden by a OldNewAliasList.

When a trigger is fired it runs under the privileges of the creator of the trigger.

If more than one trigger qualifies at the same TriggerActionTime, the order of execution is defined by ascending
creation date.

UPDATEs and DELETEs on a table T which has triggers and also is the target of a referential constraint require
special consideration. Referential actions (called reference triggers here) may occur if the reference constraint is
specified with CASCADE, SET NULL or SET DEFAULT.

Triggers are performed in the following order:

 (1) Before-StatementTriggers
 (2) Before-Row Triggers
 (3) Reference Triggers
 (4) After-Row Triggers
 (5) After-Statement Triggers

Note that the firing of a trigger may cause the firing of subsequent triggers. It is recommended to use triggers
moderately to keep the complexity of nested actions small. In particular, it is strongly discouraged to construct a
set of triggers which lead to the effect that a modification of a table T fires a trigger which transitively fires another
trigger which also tries to modify table T. This may cause endless loops or nonpredictable effects.

Privileges: The current user must have userclass DBA or RESOURCE and becomes the owner of the trigger.
Additionally, the current user must have SELECT privilege on the table on which the trigger is created.

CREATE TRIGGER quotations_upd
BEFORE UPDATE OF price ON quotations
FOR EACH ROW
WHEN (NEW.price > OLD.price)
 INSERT INTO logquotationsprice
 VALUES (NEW.suppno,NEW.partno,NEW.price-OLD.price)

CREATE TRIGGER quotations_ins
BEFORE INSERT ON quotations
FOR EACH ROW
 CALL JavaFuncQuot(NEW.suppno,NEW.partno,NEW.price)

2.10.2. DropTriggerStatement

Serves to drop a trigger.

Syntax:
[143] DropTriggerStatement ::= DROP TRIGGER TriggerIdentifier

Explanation: The specified trigger is dropped. Note that the trigger also is dropped if the table is dropped on which
the trigger is defined.

Data Definition Language

38

Privileges: The current user must have userclass DBA or must be owner of the trigger.

DROP TRIGGER quotations_upd

2.11. Views

2.11.1. CreateViewStatement

Serves to create a view in the database.

Syntax:
[144] CreateViewStatement ::= CREATE [OR REPLACE] VIEW ViewIdentifier

[(FieldList)]
AS SelectStatement [WITH CHECK OPTION]

[98] FieldList ::= FieldIdentifier [, FieldIdentifier]...

Explanation: The CreateViewStatement creates a view with the specified ViewName and FieldName(s). An error
is returned if a view with the same name exists unless the REPLACE option is specified. In the latter case the
existing view is silently dropped before the new view is created.

An n-ary view must be defined by a SelectStatement which delivers n-ary records.

If no fieldlist is specified then the derived names of the SelectStatment implicitly form the field list. If an element
of the SELECT list has no derived name (expression) then an error is returned. Note that by use of the AS clause,
each SELECT element can explicitly be given a name.

The rows in a view are not stored in the database, but only the view definition. Queries on views are simply
evaluated as if the view definition were incorporated into the query.

The created view is updatable if the SelectStatement is updatable. If the WITH CHECK OPTION is specified,
the view must be updatable.

Insert, Update, Delete are only allowed on updatable views.

If the WITH CHECK OPTION is specified for a view v, then Insert and Update operations are rejected whenever
any inserted or updated record does not fulfill the SearchCondition of the defining SelectStatement of v or any
other view on which v is transitively based.

A view can be used in any SelectStatement like a table. Especially, existing views can be used for the definition
of a view.

Indexes on views are not allowed.

The current user becomes owner of the view. If the view is not updatable, the user only gets a non-grantable
SELECT-privilege on the view, otherwise the user gets the same view privileges on the view as those on the (one
and only) table or view which occurs in the defining SelectStatement.

A view may also contain one ore more RemoteTableNames. When evaluating remote views, the privileges of the
view owner apply for accessing remote tables. However, the current user must have at least ACCESS privilege
for the remote database. If an updatable remote view is is specified as the target of an UPDATE or DELETE
operation, all subqueries (if any) must specify tables residing on the same database. However, if the target table
is local, any tables (remote or local) may be specified in subqueries.

Data Definition Language

39

Privileges: The current user must have userclass DBA or RESOURCE and must have the privileges for the defining
SelectStatement.

A non-updatable view:

CREATE VIEW totalprice (supplier, part, total)
AS
SELECT name, description, price * qonorder
FROM suppliers, quotations, inventory
WHERE suppliers.suppno = quotations.suppno
 AND inventory.partno = quotations.partno
 AND qonorder > 0

2.11.2. DropViewStatement

Serves to drop a view in the database.

Syntax:
[145] DropViewStatement ::= DROP VIEW [IF EXISTS] ViewIdentifier

Explanation: The specified view is dropped.

All views which are directly or transitively based on the specified view are also dropped. Error is returned if the
view does not exist unless the IF EXISTS option is specified.

Privileges: The current user must have userclass DBA or must be owner of the view.

DROP VIEW totalprice

40

3. Data Manipulation Language
The Data Modification Language (DML) portion of TB/SQL serves to extract data records from tables or views
(SelectStatement), to delete records (DeleteStatement), to insert records (InsertStatement) and to update records
(UpdateStatement). The following paragraphs describe the syntax of the DML botton up, i.e. the language de-
scription starts with basic units from which more complex units can be built finally leading to the four kinds of
statements mentioned above.

3.1. FieldReference

The construct FieldReference is used to refer to a specific field of a specific table.

Syntax:
[146] FieldReference ::= [FieldQualifier .] FieldIdentifier
[147] FieldQualifier ::= TableIdentifier | ViewIdentifier | CorrelationIdentifier
[11] TableIdentifier ::= [SchemaIdentifier .] Identifier
[12] ViewIdentifier ::= [SchemaIdentifier .] Identifier
[17] CorrelationIdentifier ::= Identifier
[15] FieldIdentifier ::= Identifier

Explanation:

The FieldIdentifier denotes the name of a field of a table. The CorrelationName is a shorthand notation for a
table introduced in the FROM-clause of a SelectStatement. See SelectExpression and Rules of Resolution for more
details.

The following examples show the usage of Field in a SelectStatement. The last example explains the use of Cor-
relationName in QualifiedField.

SELECT suppno FROM suppliers

SELECT suppliers.suppno FROM suppliers

SELECT s.suppno FROM suppliers s

3.2. User

The keyword USER serves to refer to the name of the current user.

It can be used as a SchemaIdentifier and as a StringLiteral. Its value in a statement is the login name of the user
who runs the statement. The type of the value is STRING.

SELECT suppno FROM suppliers
WHERE name = USER

SELECT tname FROM systable, sysuser
WHERE schema = userid
AND username = USER

Data Manipulation Language

41

3.3. Expression

An Expression is the most general construct to calculate non-boolean values.

Syntax:
[148] Expression ::= [Unary] Primary [Binary [Unary] Primary]...
[149] Unary ::= + | - | BITNOT
[150] Binary ::= + | - | * | / | BITAND | BITOR | StrConcat
[151] StrConcat ::= ||

Explanation: For Primaries of arithmetic types all operators are legal and have the usual arithmetic meaning.
Additionally, the binary '+' is also defined for character types and then has the meaning of text concatenation.

Some of these operators are also defined for The Data Types Datetime and Timespan.

The operator precedences for arithmetic types are as usual: Unary operators bind strongest. BITAND / BITOR
bind stronger than '*' and '/' which in turn bind stronger than binary '+' and '-'.

The operator || denotes concatenation of string values and is an alternative for + for strings, see example below.

Associativity is from left to right, as usual. See Precedence of Operators for a complete list of precedences.

Note

Computation of an Expression may lead to a type exception if the result value exceeds the range
of the corresponding type. See Type Exceptions and Overflow [sql_type_exceptions]. See also Null
Values .

- 5.0
-5.0
 price * -1.02
'TB/SQL' + ' ' + 'Language'
'Dear' + title + name
'Dear' || title || name
+ 1.1 * (5 + 6 * 7)

In all but the last example, the constituting Primaries are Fields or Literals. In the last example, the second Primary
is itself an Expression in parentheses.

For the operands BITOR and BITAND see The TB/SQL Datatypes BITS(p) and BITS(*).

3.4. Primary, CAST Operator

A Primary is the building unit for Expressions.

Syntax:
[152] Primary ::= SimplePrimary | CastPrimary
[153] CastPrimary ::= SimplePrimary CAST DataTypeSpec |

CAST (SimplePrimary AS DataTypeSpec)

Explanation: The functional notation CAST(…) is the official SQL standard syntax, the postfix notation is the
traditional Transbase syntax.

sql_type_exceptions
sql_type_exceptions

Data Manipulation Language

42

A CAST operator serves to adapt the result of a SimplePrimary to a desired data type. The specified data type
must be compatible with the result type of the SimplePrimary (but see also CASTING to/from CHAR).

If the CAST operator is used on NUMERIC, FLOAT or DOUBLE values to map them into BIGINT, INTEGER,
SMALLINT or TINYINT values, truncation occurs. See the example below how to round values instead.

The function TO_CHAR(<expr>) is equivalent to CAST(<expr> as CHAR(*)).

Caution

CASTing produces a type exception when the value exceeds the range of the target type.

name CAST CHAR(30)
price CAST INTEGER -- truncation
(price + 0.5) CAST INTEGER -- rounding

3.5. SimplePrimary

A SimplePrimary is the building unit for CastPrimaries or Expressions.

Syntax:
[154] SimplePrimary ::= Literal | User |

FieldReference |
Parameter |
(Expression) |
(SubTableExpression) |
SetFunction |
ConditionalExpression |
TimeExpression |
SizeExpression |
LobExpression |
StringFunction |
SignFunction |
ResultcountExpression |
SequenceExpression |
ODBC_FunctionCall |
FunctionCall |
LastInsertIdFunc |
LastUpdateFunc |
ReplicationStatusFunc

[155] Parameter ::= # IntegerLiteral (DataType) |
Colon StandardIdentifier |
Questionmark

[156] Colon ::= :
[157] Questionmark ::= ?

Explanation:

Parameter is the means to specify a parameter for a stored query in an application program. The notations without
data type specification can be used wherever the type of the parameter can be deduced from its context (e.g. Field
= ?). This can be enforced by a CAST operation on the parameter.

A SimplePrimary can be a parenthesized Expression which simply models that an Expression in parentheses is
evaluated first.

Data Manipulation Language

43

If a SubTableExpression is used as a SimplePrimary, its result must not exceed one value (i.e. a single record with
a single field), otherwise an error occurs at runtime. If its result is empty, it is treated as a null value.

price
0.5
(price + 0.5)
(SELECT suppno FROM suppliers WHERE name = 'TAS')

3.5.1. SetFunction

A SetFunction computes one value from a set of input values or input records.

Syntax:
[158] SetFunction ::= COUNT (*) | DistinctFunction | AllFunction
[159] DistinctFunction ::= { AVG | COUNT | MAX | MIN | SUM } (DISTINCT Expression)
[160] AllFunction ::= { AVG | MAX | MIN | SUM } ([ALL] Expression)

Explanation:

SetFunctions are typically used in the SELECT-clause or HAVING-clause of a SelectExpression.

COUNT (*) delivers the cardinality of the set of input records.

For all other forms of a SetFunction, the input is the set of values which results from application of the Expression
to the input records. If a DistinctFunction is specified, all duplicate values are removed before the SetFunction
is applied. The functions compute the cardinality, the sum, the average, the minimum and the maximum value
of the input value set, resp.

Functions COUNT, MIN and MAX are applicable to all data types.

Functions AVG and SUM are applicable to arithmetic types and to TIMESPAN.

The result type of COUNT is BIGINT. The result type of AVG on arithmetic types is DOUBLE. For all other
cases the result type is the same as the type of the input values. Of course, the CAST operator can be used to
force explicit type adaptation.

SetFunctions except COUNT ignore null values in their input. If the input set is empty, COUNT delivers 0, all
others deliver the null value.

Note

Function SUM and AVG may lead to a type exception if the sum of the input values exceeds the
range of the result type. See Type Exceptions and Overflow [sql_type_exceptions].

Examples:

• How many distinct parts are ordered?

SELECT COUNT (DISTINCT partno)
FROM quotations WHERE qonorder > 0

• How many parts are delivered by those suppliers who deliver more than 2 parts?

SELECT suppno, COUNT (*) FROM quotations
 GROUP BY suppno HAVING COUNT (*) > 2

• What is the average order for each part?

SELECT partno, AVG(qonorder)
 FROM quotations GROUP BY partno

sql_type_exceptions
sql_type_exceptions

Data Manipulation Language

44

3.5.2. WindowFunction

While SetFunctions aggregate a set of input rows into one result row, a WindowFunction calculates one result row
for every input row. Here the aggregates are calculated over a set of rows in the vicinity of the current input row.

Syntax:
[161] WindowFunction ::= WindowAggregate (ExpressionList)

OVER ([PartitionClause] [OrderByClause] [WindowClause])

[162] WindowAggregate ::= { AVG | COUNT | DENSE_RANK | MAX | MIN | RANK | SUM }
[163] PartitionClause ::= PARTITION BY { (ExpressionList) | ExpressionList }
[164] OrderByClause ::= ORDER BY { (ExpressionList) | ExpressionList }
[165] WindowClause ::= { ROWS | RANGE }

{ PrecedingClause |
BETWEEN LowerboundClause AND UpperboundClause }

[166] PrecedingClause ::= UNBOUNDED PRECEDING |
ValueExpression PRECEDING |
CURRENT ROW

[167] LowerboundClause ::= UNBOUNDED PRECEDING |
ValueExpression { PRECEDING | FOLLOWING } |
CURRENT ROW

[168] UpperboundClause ::= UNBOUNDED FOLLOWING |
ValueExpression { PRECEDING | FOLLOWING } |
CURRENT ROW

[169] ValueExpression ::= <a logical or physical offset>

Explanation: WindowFunction are useful for calculating rankings and running totals or moving averages. They
are typically used in the SELECT clause of a SelectExpression. They operate on a query result set, i.e. after
FROM, WHERE, GROUP BY and HAVING clauses are evaluated. First this result is partitioned according to
the PartitionClause. Then each partition is processed row by row, so every row will become the current row once.
The aggregate for the current row is calculated OVER a set of rows (window) in this partition, as defined by the
WindowClause.

OVER() distinguishes a WindowFunction from a SetFunction.

ROWS specifies that the windows is defined between absolute boundary offsets. If ROWS is specified, there are
no restrictions to the following OrderByClause and it is completely optional. Windows boundaries refer to row
positions relative to the current row.

If the limits of a ROWS window are BETWEEN CURRENT ROW AND 5 FOLLOWING, then the current row
and the five following rows are within the window. Therefore this ROWS window contains at most 6 rows.

RANGE specifies that the window is defined between relative boundary offsets. If RANGE is specified with a
ValueExpression boundary, the OrderByClause is mandatory and must contain exactly one expression. These
ValueExpression windows boundaries refer to the one field used in the OrderByClause.

If the limits of a RANGE window are BETWEEN CURRENT ROW AND 5 FOLLOWING, then the window
contains all rows whose sort field is

(1) equal or larger than the sort expression of the current row and

(2) equal or smaller than the sort expression of the current row + 5.

Therefore this RANGE window can contain any number of rows.

ValueExpression is a logical or physical offset. For a ROWS window it must be a positive INTEGER constant or
an expression that evaluates to a positive INTEGER value. For a RANGE window it must be a positive constant or
expression of arithmetic type or of type TIMESPAN/INTERVAL. If ValueExpression FOLLOWING is the start
point, then the end point must be ValueExpression FOLLOWING. If ValueExpression PRECEDING is the end
point, then the start point must be ValueExpression PRECEDING.

Data Manipulation Language

45

Defaults:

If the PartitionClause is missing, the defaults is PARTITION BY NULL, i.e. no partitioning is applied.

If the OrderByClause is missing the WindowClause defaults to RANGE BETWEEN UNBOUNDED PRE-
CEDING AND UNBOUNDED FOLLOWING.

If the OrderByClause is present the WindowClause defaults to RANGE BETWEEN UNBOUNDED PRE-
CEDING AND CURRENT ROW. For RANK and DENSE_RANK the OrderByClause is mandatory.

OVER() is equivalent to OVER(PARTITION BY NULL RANGE BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING). This is also equivalent to a standard SetFunction without GROUP BY.

3.5.3. StringFunction

StringFunctions accept character expressions (strings) as input and compute integers or strings. NULL is returned
when one of the operands is NULL.

Syntax:
[170] StringFunction ::= PositionFunction |

InstrFunction |
LengthFunction |
UpperFunction |
LowerFunction |
TrimFunction |
SubstringFunction |
ReplaceFunction |
ReplicateFunction |
TocharFunction

The concatenation of strings is denoted using the infix operators '+' or '||' (see Expression).

3.5.3.1. PositionFunction

The POSITION function searches a string inside another string and computes the position of its first occurrence
if any.

Syntax:
[171] PositionFunction ::= POSITION (Search IN SourceExpr)
[172] Search ::= Expression
[173] SourceExpr ::= Expression

Explanation: Source may be of type CLOB, VARCHAR, CHAR. Search must be CHAR or VARCHAR. Result-
type is INTEGER.

If Search is the empty string, the function returns 1.

In general, the function checks whether Search occurs as substring in Source: if not it returns 0 else the position
of the first occurrence (positions start with 1).

Data Manipulation Language

46

The search is made case sensitive. No wildcard mechanism is supported.

POSITION ('ssi' IN 'Mississippi') --> 3
POSITION ('mis' IN 'Mississippi') --> 0

3.5.3.2. InstrFunction

The INSTR function searches a string inside another string. It provides a superset of the functionality of
POSITION.

Syntax:
[174] InstrFunction ::= INSTR (Source, Search [, Startpos, Occurrence])
[172] Search ::= Expression
[325] Source ::= VALUES (ValueList) |

TABLE ((ValueList) [, (ValueList)]...) |
TableExpression |
DEFAULT VALUES

[227] Startpos ::= Expression
[175] Occurrence ::= Expression

Explanation: Source may be of type CLOB, VARCHAR, CHAR. Search must be CHAR, VARCHAR or BIN-
CHAR. Startpos and Occur must be arithmetic expressions of type INTEGER. Resulttype is INTEGER.

Default values for Startpos and Occurrence are 1.

Let s be the value of Startpos and o be the value of Occurrence.

In general, the function searches the string "Search" in "Source" starting the search on the s-th character of
"Source" (for s >= 1). If o > 1 then the o-th occurrence of "Search" is searched.

If s <= -1 then the search is made backwards starting with the |s|-th character counted relative to the end of
"Source".

The search is made case sensitive. No wildcard mechanism is supported. The function returns 0 if the search is
unsuccessful else the position of the detected substring.

INSTR ('Mississippi','ssi) --> 3
INSTR ('Mississippi','ssi, 4) --> 6
INSTR ('Mississippi','ssi, -1) --> 6
INSTR ('Mississippi','ssi, -1, 2) --> 3

3.5.3.3. LengthFunction

The CHARACTER_LENGTH function computes the length of a CHAR, VARCHAR or CLOB value in charac-
ters.

Syntax:
[176] LengthFunction ::= CHARACTER_LENGTH (Source)
[325] Source ::= VALUES (ValueList) |

TABLE ((ValueList) [, (ValueList)]...) |
TableExpression |
DEFAULT VALUES

Data Manipulation Language

47

Explanation: Note that the function delivers number of characters, not number of bytes. For counting bytes use
the operator SIZE.

3.5.3.4. UpperFunction, LowerFunction

The UPPER and LOWER function maps uppercase letters to lowercase letters and vice versa. Syntax:

Syntax:
[177] LowerFunction ::= LOWER (Source)
[178] UpperFunction ::= UPPER (Source)
[325] Source ::= VALUES (ValueList) |

TABLE ((ValueList) [, (ValueList)]...) |
TableExpression |
DEFAULT VALUES

Explanation: Source may be of type CLOB, VARCHAR, CHAR. Resulttype is same as Sourcetype.

The function UPPER (LOWER) replaces all lowercase (uppercase) letters by corresponding uppercase (lowercase)
letters and leaves all other characters unchanged.

Which characters are mapped to their lowercase (uppercase) equivalent, is determined by the Locale setting of the
database. All ASCII characters (a..z and A..Z) are always mapped. When e.g. the Locale setting of the database
is a German one, German Umlaut characters are mapped.

UPPER ('Line:24') --> 'LINE:24'

3.5.3.5. TrimFunction

The TRIM function eliminates in a string leading and/or trailing characters belonging to a specifiable character set.

Syntax:
[179] TrimFunction ::= TRIM ([[Trimspec] [Trimset] FROM] Source) |

LTRIM (Source [, Trimset]) |
RTRIM (Source [, Trimset])

[180] Trimspec ::= LEADING | TRAILING | BOTH
[181] Trimset ::= Expression
[325] Source ::= VALUES (ValueList) |

TABLE ((ValueList) [, (ValueList)]...) |
TableExpression |
DEFAULT VALUES

Explanation: Source must be CLOB, CHAR or VARCHAR. Trimset must be CHAR or BINCHAR. Resulttype
is same as Sourcetype.

FROM must be specified if and only if at least one of Trimset or Trimspec is specified.

If Trimspec is not specified, BOTH is implicit.

If Trimset is not specified, a string consisting of one ' ' (blank) is implicit.

Data Manipulation Language

48

Depending on whether LEADING, TRAILING, BOTH is specified, the TRIM function delivers a string which is
made from Source by eliminating all leading characters (trailing characters, leading and trailing characters, resp.)
which are in Trimspec.

Error occurs if Trimset is the empty string.

LTRIM(Source,Trimset) equals TRIM(LEADING Trimset FROM Source).

RTRIM(Source,Trimset) equals TRIM(TRAILING Trimset FROM Source).

TRIM (' Smith ') --> 'Smith'
TRIM (' ' FROM ' Smith ') --> 'Smith'
TRIM (BOTH ' ' FROM ' Smith ') --> 'Smith'
TRIM (LEADING ' ' FROM ' Smith ') --> 'Smith '
TRIM ('ijon' FROM 'joinexpression') --> 'express'

3.5.3.6. SubstringFunction

The SUBSTRING function extracts a substring from a string value.

Syntax:
[182] SubstringFunction ::= SUBSTRING (Source FROM Startpos [FOR Length]) |

SUBSTR (Source, Startpos [, Length])

[325] Source ::= VALUES (ValueList) |
TABLE ((ValueList) [, (ValueList)]...) |
TableExpression |
DEFAULT VALUES

[227] Startpos ::= Expression
[228] Length ::= Expression

Explanation: Source must be CHAR, VARCHAR or CLOB. Startpos and Length must be arithmetic. Resulttype
is same as Sourcetype.

The function constructs a string which results from Source by extracting Length letters beginning with the one on
position Startpos. If Length is not specified or is larger than the length of the substring starting at Startpos, the
complete substring starting at Startpos constitutes the result.

If Startpos is less equal zero then Length (if specified) is set to Length + Startpos and Startpos is set to 1 .

Error occurs if Length is specified and less than zero.

If Startpos is larger than the length of Source, the result is the empty string.

SUBSTR(Source,Startpos,Length) is equivalent to SUBSTRING(Source FROM Startpos FOR
Length)

SUBSTRING ('joinexpression' FROM 5) --> 'expression'
SUBSTRING ('joinexpression' FROM 5 FOR 7) --> 'express'
SUBSTRING ('joinexpression' FROM 5 FOR 50) --> 'expression'
SUBSTRING ('joinexpression' FROM -2 FOR 6) --> 'join'

3.5.3.7. ReplaceFunction

The REPLACE function replaces substrings or characters in a string.

Data Manipulation Language

49

Syntax:
[183] ReplaceFunction ::= REPLACE (Subs1 BY Subs2 IN Source [, Subsspec])
[184] Subsspec ::= WORDS | CHARS
[185] Subs1 ::= Expression
[186] Subs2 ::= Expression
[325] Source ::= VALUES (ValueList) |

TABLE ((ValueList) [, (ValueList)]...) |
TableExpression |
DEFAULT VALUES

Explanation: Source must be CLOB, CHAR or VARCHAR. Subs1, Subs2 must be CHAR or BINCHAR. Result-
type is same as Sourcetype.

The function constructs from Source a result string by substituting certain substrings in Source.

If Subsspec is not defined or defined as WORDS, then all occurrences of Subs1 are replaced by Subs2 (after
substitution, the inserted string Subs2 is not further checked for substitution).

If Subsspec is defined as CHARS, then Subs1 and Subs2 must have same length and each character in Source
which is equal to the i-th character in Subs1 for some i is replaced by the i-th character of Subs2.

Subs1 must have length greater equal to 1.

REPLACE ('iss' BY '' IN 'Mississippi') --> 'Mippi'
REPLACE ('act' BY 'it' IN 'transaction') --> 'transition'
REPLACE ('TA' BY 'ta' IN 'TransAction' , CHARS) --> 'transaction'

3.5.3.8. ReplicateFunction

The REPLICATE function replicates a string a specified number of times.

Syntax:
[187] ReplicateFunction ::= REPLICATE (Source , Times)
[325] Source ::= VALUES (ValueList) |

TABLE ((ValueList) [, (ValueList)]...) |
TableExpression |
DEFAULT VALUES

[188] Times ::= Expression

Explanation: Source must be CLOB,CHAR or VARCHAR. Times must be arithmetic. Resulttype is same as
Sourcetype.

The function constructs a result string by concatenating Source t times where t is the value of Times. Error occurs
if t is less than zero.

REPLICATE ('a' , 3) --> 'aaa'

3.5.3.9. SoundexFunction

The SoundexFunction generates a phonetic representation of its input string. 2 strings that sound similar should
be mapped to the same representation by this function.

Data Manipulation Language

50

The output type of Soundex is not VARCHAR(4) as in several implementations but grows with the length of the
input, thus is VARCHAR(*).

Syntax:
[189] SoundexFunction ::= SOUNDEX (Expression)

Note that it is possible to build a phonetic secondary index onto a field of a table (see CREATE INDEX statement).

SOUNDEX('Stewart') = SOUNDEX('Stuart') evaluates to TRUE

3.5.4. TocharFunction

The Tocharfunction is a shorthand notation for a CAST operator to STRING.

Syntax:
[190] TocharFunction ::= TO_CHAR (Expression)

Explanation: TO_CHAR(expr) is equivalent to CAST (expr AS STRING).

3.5.5. SignFunction

Computes the sign of a numerical expression.

Syntax:
[191] SignFunction ::= SIGN (Expression)

Explanation: Expression must be of numerical type. The function returns -1, 0, 1 depending on whether the value
of the expression is negative, 0 or positive.

SIGN(13) yields 1.
SIGN(0) yields 0.
SIGN(-13) yields -1.

3.5.6. ResultcountExpression

Numbers result records of a select query.

Syntax:
[192] ResultcountExpression ::= RESULTCOUNT

The keyword RESULTCOUNT is an expression which successively evaluates to 1, 2, 3 and so on. If it is used in
the SELECT list of the outermost SELECT block, it will perform a numbering of the result records of the query.

The usage of RESULTCOUNT is also allowed in more than one block (for example in a UNION of blocks) and
also in nested blocks, but the effect then is not deterministic.

Data Manipulation Language

51

If a query contains several parallel blocks combined with UNION or similar set operators, then a numbering of
the result records is achieved by surrounding it with: SELECT RESULTCOUNT, * FROM (<original
query>).

SELECT RESULTCOUNT, suppno, partno FROM quotations

3.5.7. SequenceExpression

Performs a nextval or currval operation on a sequence.

Syntax:
[193] SequenceExpression ::= SequenceIdentifier . NEXTVAL |

SequenceIdentifier . CURRVAL

Explanation: See CreateSequenceStatement.

INSERT INTO T VALUES(S.NEXTVAL,13,100);

3.5.8. ConditionalExpression

ConditionalExpressions compute one of several values depending on one or several conditions. They are intro-
duced by keywords IF, CASE, DECODE, COALESCE, NVL, NULLIF.

Syntax:
[194] ConditionalExpression ::= IfExpression |

CaseExpression |
DecodeExpression |
CoalesceExpression |
NvlExpression |
NullifExpression

3.5.8.1. IfExpression

The IfExpression is the simplest ConditionalExpression. It computes one of 2 values depending on one condition.

Syntax:
[195] IfExpression ::= IF SearchCondition THEN Expression ELSE Expression FI

Explanation: The result value of the IfExpression is determined by the SearchCondition: if the SearchCondition
evaluates to TRUE then the value of the Expression in the THEN-part is delivered else the value of the Expression
in the ELSE-part.

The data types of the two Expressions must be compatible. If the types differ then the result is adapted to the
higher level type.

SELECT suppno, partno, price *

Data Manipulation Language

52

IF suppno = 54 THEN 1.1 ELSE 1 FI
FROM quotations

SELECT suppno, partno,
price * IF suppno = 54
 THEN 1.1
 ELSE
 IF suppno = 57 THEN 1.2 ELSE 1 FI
 FI
FROM quotations

3.5.8.2. CaseExpression

The CaseExpression is the most general ConditionalExpression. It comes in the variants simple CASE and
searched CASE.

Syntax:
[196] CaseExpression ::= SearchedCaseExpression |

SimpleCaseExpression

[197] SearchedCaseExpression ::= CASE
SearchedWhenClause [SearchedWhenClause]...
[ELSE Expression]
END

[198] SearchedWhenClause ::= WHEN SearchCondition THEN Expression
[199] SimpleCaseExpression ::= CASE CaseOperand

SimpleWhenClause [SimpleWhenClause]...
[ELSE Expression]
END

[200] SimpleWhenClause ::= WHEN WhenOperand THEN Result
[201] CaseOperand ::= Result
[202] Result ::= Expression
[203] WhenOperand ::= Expression

Explanation:

The SearchedCaseExpression successively evaluates the SearchConditions of its SearchedWhenClauses and de-
livers the value of the Expression in the THEN clause of the first SearchedWhenClause whose condition evaluates
to TRUE. If no condition evaluates to TRUE then the value of the Expression in the ELSE clause is delivered
if it exists else NULL.

The SimpleCaseExpression successively compares the CaseOperand to the WhenOperand of its SimpleWhen-
Clauses and delivers the value of the Expression in the THEN clause of the first matching SimpleWhenClause.

It is equivalent to a SearchedCaseExpression with multiple SearchConditions of the form <CaseOperand> =
<WhenOperand> where the WhenOperand of the i-th SearchCondition is taken from the i-th SimpleWhenClause
and the THEN clauses and ELSE clause (if existent) are identical.

For both variants, all Result expressions in the THEN clauses as well as the Result of the ELSE clause (if existent)
must be type compatible. The result type of the CaseExpression is the highest level type of all participating result
expressions.

For the SimpleCaseExpression, the types of the CaseOperand and all WhenOperands must be type compatible.

UPDATE quotations
SET price = price * CASE
 WHEN price > 25 THEN 1.5
 WHEN price > 19.5 THEN 1.4

Data Manipulation Language

53

 WHEN price > 5 THEN 1.3
 WHEN price > 1 THEN 1.2
 ELSE 1.1
 END

SELECT suppno, partno, price * CASE
 WHEN suppno = 54 THEN 1.1
 WHEN suppno = 57 THEN 1.2
 ELSE 1
 END
FROM quotations

SELECT suppno, partno, price * CASE suppno
 WHEN 54 THEN 1.1
 WHEN 57 THEN 1.2
 ELSE 1
 END
FROM quotations

3.5.8.3. DecodeExpression

The DecodeExpression is an alternative way to denote a CaseExpression of variant SimpleCaseExpression.

Syntax:
[204] DecodeExpression ::= DECODE (CompareExpr , MapTerm [, MapTerm]... [, Defaul-

tExpr])

[205] MapTerm ::= WhenExpr , ThenExpr
[206] CompareExpr ::= Expression
[207] WhenExpr ::= Expression
[208] ThenExpr ::= Expression
[209] DefaultExpr ::= Expression

Explanation: The CompareExpr is successively compared with the WhenExprs of the MapTerms. If the compar-
ison matches then the corresponding ThenExpr is delivered as result. If none of the comparisons matches then
DefaultExpr is delivered as result if specified otherwise the Null value. All expressions must be type compatible.
The result type is the highest level type of all participating expressions.

SELECT suppno, partno, price *
 DECODE (suppno, 54, 1.1, 57, 1.2, 1)
FROM quotations

3.5.8.4. CoalesceExpression, NvlExpression, NullifExpression

COALESCE and NVL are shorthand notations for a CASE or IF which maps an Expression from the NULL value
to a defined value. The NULLIF is a shorthand notation for a CASE or IF which maps an expression from a defined
value to the NULL value.

Syntax:
[210] CoalesceExpression ::= COALESCE (ExpressionList)
[211] NvlExpression ::= NVL (Expression , Expression)
[212] NullifExpression ::= NULLIF (Expression , Expression)

Explanation:

Data Manipulation Language

54

All involved expressions must be of compatible types. The result type is the highest level type of the result ex-
pressions.

COALESCE delivers the first expression which does not evaluate to NULL if there exists such an expression
otherwise NULL. Thus it is equivalent to an expression of the form:

CASE
 WHEN x1 IS NOT NULL THEN x1
 WHEN x2 IS NOT NULL THEN x2
 ...
ELSE NULL
END

Note that with COALESCE, each involved expression is denoted only once in contrast to an equivalent CASE or
IF construction. Therefore, in general, the COALESCE runs faster.

NVL is equivalent to COALESCE but restricted to 2 arguments.

NULLIF delivers NULL if the comparisons of both Expressions evaluates to TRUE else it delivers the value of
the first Expression. Thus it is equivalent to an expression of the form:

IF x1 = x2 THEN NULL ELSE x1 FI

NULLIF in general runs faster than an equivalent CASE or IF construction because the first expression is evaluated
only once. It is most often used to map an explicitly maintained non-NULL default value of a field back to its
NULL semantics when used for computation.

3.5.9. TimeExpression

A TimeExpression is an expression which is based on value of type DATETIME or TIMESPAN

Syntax:
[213] TimeExpression ::= [Selector OF] { Constructor | TimePrimary }
[214] Selector ::= DAY | WEEKDAY | WEEK | ISOWEEK | QUARTER | YY | MO

| DD | HH | MI | SS | MS

[215] Constructor ::= CONSTRUCT Timetype (ConstituentList)
[216] Timetype ::= { DATETIME | TIMESPAN } [RangeSpec]
[217] ConstituentList ::= Constituent [, Constituent]...
[218] Constituent ::= Expression | SubTableExpression
[219] TimePrimary ::= DatetimeLiteral |

TimespanLiteral |
FieldReference |
Parameter |
CURRENTDATE | SYSDATE |
(Expression) |
(SubTableExpression) |
SetFunction |
TruncFunction |
ConditionalExpression

[220] TruncFunction ::= TRUNC (Expression)

Explanation: For all semantics see The Data Types Datetime and Timespan.

Note that a selector as well as a constructor binds more strongly than a CAST operator (see also Precedence of
Operators).

DATETIME[YY:MS](1989-6-8 12:30:21.032)

Data Manipulation Language

55

CURRENTDATE
HH OF CURRENTDATE
WEEKDAY OF CURRENTDATE
CONSTRUCT TIMESPAN(:year,:month,:day)

3.5.10. SizeExpression

The SIZE [OF] Operator computes the size (length) of a CHAR, CLOB, BINCHAR or BLOB Expression in bytes.

For the number of characters use the CHARACTER_LENGTH function.

Syntax:
[221] SizeExpression ::= SIZE [OF] Literal |

SIZE [OF] FieldReference |
SIZE [OF] Parameter |
SIZE [OF] (Expression) |
SIZE [OF] (SubTableExpression) |
SIZE [OF] SetFunction |
SIZE [OF] ConditionalExpression |
SIZE [OF] LobExpression

Explanation: The resulting type of the argument of the SIZE operator must be CHAR(*), (VAR)CHAR(p), BIN-
CHAR(*), BINCHAR(p), BITS(*), BITS(p), BLOB or CLOB. The resulting type of the operator is INTEGER.

If the argument of the operator is the NULL value, then the operator delivers NULL. Otherwise the operator
delivers a value that denotes the size (in bytes, for BITS in bits) of its argument. If the argument is CHAR(*) or
(VAR)CHAR(p) then the trailing \0 is not counted. If the argument is BINCHAR(*) or BINCHAR(p) then the
length field is not counted. If the argument is BLOB then the number of bytes that the BLOB object occupies
is delivered. If the argument is CLOB then the number of bytes (not characters) that the CLOB object occupies
is delivered.

Note also the strong binding of the SIZE operator (see Precedence of Operators).

SIZE OF 'abc' --> 3
SIZE OF 0x0a0b0c --> 3
SIZE OF bl --> length of the BLOB column bl
SIZE OF bl SUBRANGE (1,10) --> 10 if bl is at least 10 long.

3.5.11. LobExpression

A LobExpression delivers a LOB value or a part of a LOB value.

Syntax:
[222] LobExpression ::= BlobExpression | ClobExpression
[223] BlobExpression ::= FieldReference [SUBRANGE (Lwb , Upb)]
[224] ClobExpression ::= FieldReference [SUBRANGE (Lwb , Upb)] |

SUBSTRING (FieldReference FROM Startpos [FOR Length]) |
SUBSTR (FieldReference , Startpos [, Length]) |

[225] Lwb ::= Expression
[226] Upb ::= Expression
[227] Startpos ::= Expression
[228] Length ::= Expression

Data Manipulation Language

56

3.5.11.1. BlobExpression

A BlobExpression delivers a BLOB value or a subrange of a BLOB value.

The field must be of type BLOB, Lwb and Upb must be of type TINYINT, SMALLINT, INTEGER or BIGINT.
The resulting value of Lwb and Upb must not be less or equal 0.

If SUBRANGE is not specified, then the resulting value is the BLOB object of the denoted FieldReference. If one
of FieldReference, Lwb or Upb is the NULL value then the resulting value is also the NULL value. Otherwise the
BLOB object restricted to the indicated range is delivered.

The smallest valid Lwb is 1. If Upb is greater than (SIZE OF Field) then it is equivalent to (SIZE OF Field).

If the value of Upb is less than the value of Lwb then a BLOB object of length 0 is delivered.

Let bl a BLOB object of length 100:

bl SUBRANGE (1,1) --> first byte of bl as BLOB
bl SUBRANGE (1,SIZE bl) --> bl as it is
bl SUBRANGE (50,40) --> empty BLOB object

3.5.11.2. ClobExpression

The field must be of type CLOB, Lwb, Upb,Startpos and Length must be of type TINYINT, SMALLINT, INTE-
GER or BIGINT.

If SUBRANGE, SUBSTRING or SUBSTR is not specified, then the resulting value is the CLOB object of the
denoted FieldReference.

The SUBSTRING or SUBSTR function extracts Length characters beginning with the one on position Startpos
and the SUBRANGE function extracts (Upb-Lwb) bytes beginning at position Lwb. The smallest valid Lwb and
Startpos is 1. If the value of Upb is less than the value of Lwb then a CLOB object of length 0 is delivered.

3.5.12. ODBC_FunctionCall

Syntax:
[229] ODBC_FunctionCall ::= LCBr FN FunctionIdentifier (Expression) RCBr
[230] FunctionIdentifier ::= Identifier
[231] LCBr ::= {
[232] RCBr ::= }

Explanation: By the ODBC function call syntax, an embedding of the ODBC functions is provided to the Transbase
SQL syntax.

3.5.13. UserDefinedFunctionCall

Syntax:
[233] FunctionCall ::= FunctionIdentifier (ExpressionList)

Data Manipulation Language

57

[230] FunctionIdentifier ::= Identifier
[251] ExpressionList ::= Expression [, Expression)]...

Explanation: A UserDefinedFunction (written as function returning one value) can be called at any place in the
SQL statement where one value is accepted as result. Parameters of the function may be Expressions delivering
one value (including dynamic parameters '?' supplied by the application at runtime).

SELECT sqrt(field)
FROM T
WHERE field > 0

3.5.14. LastInsertIdFunc

Syntax:
[234] LastInsertIdFunc ::= LAST_INSERT_ID()

Explanation: LAST_INSERT_ID() delivers the value of a table's AUTO_INCREMENT field which has been most
recently assigned a value via an INSERT statement which did not explicitly assign a value to it.

SELECT LAST_INSERT_ID() , ...
FROM T
WHERE ...

Refer to the section AUTO_INCREMENT Fields [AUTO_INCREMENT_Fields] for a more elaborated example.

3.5.15. LastUpdateFunc

The LastUpdFunc delivers date and time of the most recently committed update operation performed on the current
database. This point in time may be delivered in local time (default) or in UTC.

Syntax:
[235] LastUpdateFunc ::= LAST_UPDATE([LastUpdOptions [SECOND]])

[@ ConnectionIdentifier]

[236] LastUpdOptions ::= UTC | LOCALTIME
[306] ConnectionIdentifier ::= Identifier < containing a ConnectionString >
[309] ConnectionString ::= [ssl:]//[Host]/<Dbname>[?OptionList] |

file://DirectoryLiteral[?OptionList] |
<Dbname>[@Host]

Explanation:

Without any parameter or with the option LOCALTIME, the time of the last update is delivered as a value of type
DATETIME[YY:MS] inside the local timezone.

The option UTC transforms the result to a UTC time.

For each of the 2 variants, the optional parameter SECOND delivers the time value as Epoch value in type Bigint
(seconds elapsed since (1970-1-1 00:00:00) UTC). This format discards the millisecond value.

With the optional ConnectionIdentifier the function addresses a remote database.

LAST_UPDATE() --> DATETIME[YY:MS]: most recent update in local timezone
LAST_UPDATE(UTC) --> DATETIME[YY:MS]: most recent update as UTC time
LAST_UPDATE(UTC SECOND) --> Bigint: most recent update in Epoch

AUTO_INCREMENT_Fields
AUTO_INCREMENT_Fields

Data Manipulation Language

58

3.5.16. ReplicationStatusFunc

The ReplicationStatusFunc delivers the current status of a replication update process.

Syntax:
[237] ReplicationStatusFunc ::= REPLICATION_STATUS ()

Explanation:

The function returns either ACTIVE or INACTIVE.

ACTIVE means that the slave is currently connected to the master.

INACTIVE means that there is no active connection between the slave and the master.

SELECT REPLICATION_STATUS()

3.6. SearchCondition

SearchConditions form the WHERE-clause and the HAVING-clause of a SelectExpression and return a boolean
value for each record and group, resp. They also appear in ConditionalExpressions to choose one of two Expres-
sions.

Syntax:
[238] SearchCondition ::= [NOT] Predicate [Boolop [NOT] Predicate]...]
[239] Boolop ::= AND | OR

Explanation: The precedence of operators is: 'NOT' before 'AND' before 'OR' (see Precedence of Operators).
Additional parentheses may be used as usually to override precedence rules (see Predicate).

(suppno = 54 OR suppno = 57) AND qonorder > 0

NOT ((suppno <> 54 AND suppno <> 57) OR qonorder <= 0)

If no null values are involved, these two SearchConditions are equivalent.

3.7. HierarchicalCondition

In addition to the SearchCondition in the WHERE clause hierarchical data can be queried using HierarchicalCon-
ditions.

Syntax:
[240] HierarchicalCondition ::= [START WITH SearchCondition]

CONNECT BY [NOCYCLE] ConnectByCondition

[241] ConnectByCondition ::= <Predicate using HierarchicalExpression>
[242] HierarchicalExpression ::= LEVEL |

CONNECT_BY_ISCYCLE |
CONNECT_BY_ISLEAF |
PRIOR Expression |
CONNECT_BY_ROOT Expression |

Data Manipulation Language

59

SYS_CONNECT_BY_PATH (Expression, StringLiteral)

Explanation:

START WITH defines the set of root rows for a hierarchical query. It is formulated as an SearchCondition with-
out HierarchicalExpressions. If this optional clause is omitted every row the set defined by the FROM clause is
considered as root row.

CONNECT BY defines the relationship between the rows of a hierarchy. References to a prior or root rows or
other hierarchical relations can be phrased using HierarchicalExpressions. NOCYCLE controls the behaviour if a
cycle in the hierarchical data is encountered. Usually, if a cycle in hierarchical data is found, then this will result
in an error, since otherwise the query would produce an infinite loop of records. If NOCYCLE is specified cycles
are ignored, i.e. the algorithm will not follow a path that leads to a record that has already been printed.

HierarchicalExpressions can be used like FieldReferences throughout the current and outer query blocks, except
in the START WITH clause.

LEVEL stands for the hierarchy level of the current row, i.e. a root node is on LEVEL 1, its successors are on
LEVEL 2 and so on.

CONNECT_BY_ISCYCLE and CONNECT_BY_ISLEAF return integer values. Here a value of 1 indicates that
the current row is the beginning of a cycle in a hierarchy or a leaf in the hierarchy, resp.

PRIOR and CONNECT_BY_ROOT are unary operators that indicate that Expression refers to FieldReferences
from the prior or root row.

SYS_CONNECT_BY_PATH is a built-in function that calculates the path from the root row to the current row
by concatenating the results of Expression for every visited predecessor, separating each with StringLiteral.

Please consider the following hierarchical data sample and queries.

Figure 3.1. Hierarchical data and graph

id parent_id

1 2

2 1

3 2

4 2

5 6

6 5

7 7

SELECT id, parent_id, LEVEL "level",
CONNECT_BY_ISLEAF isleaf, CONNECT_BY_ISCYCLE iscyle,
SYS_CONNECT_BY_PATH(id,'/') path
FROM hierarchy
WHERE level < 4
START WITH id = 1
CONNECT BY NOCYCLE parent_id = PRIOR id

id parent_id level isleaf iscylce path

1 2 1 0 0 /1

2 1 2 0 1 /1/2

3 2 3 1 0 /1/2/3

Data Manipulation Language

60

id parent_id level isleaf iscylce path

4 2 3 1 0 /1/2/4

At each point in time of the depth-first search, there exists a "current row". At the beginning, one of the root rows
satisfying the START WITH condition is chosen as "current row". In this example it is the row with id 1. To find
the next row, the ConnectByCondition is evaluated whereby the PRIOR expressions are those which refer to the
current row (thus representing defined and constant value for the actual search) and the remaining expressions
are treated like in a standard search. In the example, given the row id 1 as the current row, the search condition
"parent_id = PRIOR id" effectively is "parent_id = 1" as PRIOR id evaluates to 1 in the current row. The first
result record of this search then becomes the new "current row" and the algorithm proceeds depth-first down the
hierarchy until no more successors are found. If a search on one level delivers more than one result record, the
remaining records successively become the "current row" after the recursive searches have finished.

The result indicates that a cycle begins in row 2 since it leads back to the root row. This is also why the NOCYCLE
option is required. Rows 3 and 4 are leaf rows.

SELECT id, parent_id, level "level",
SYS_CONNECT_BY_PATH(id,'/') path
FROM hierarchy
START WITH id > 4
CONNECT BY NOCYCLE parent_id = PRIOR id

id parent_id level path

5 6 1 /5

6 5 2 /5/6

6 5 1 /6

5 6 2 /6/5

7 7 1 /7

Here query rows 5, 6, and 7 satisfy the START WITH condition. The query result is equivalent to a union of three
queries with each of these rows successively acting as root rows.

3.8. Predicate

Predicates are the building units for SearchConditions.

Syntax:
[243] Predicate ::= (SearchCondition) | ComparisonPredicate | BetweenPredicate |

LikePredicate | MatchesPredicate | ExistsPredicate | Quantified-
Predicate | NullPredicate | FulltextPredicate

3.8.1. ComparisonPredicate

A ComparisonPredicate compares two values or two sets of records or checks one value/record to be in a set of
values/records.

Data Manipulation Language

61

Syntax:
[244] ComparisonPredicate ::= ValueCompPredicate | SetCompPredicate | InPredicate

3.8.2. ValueCompPredicate

A ValueCompPredicate compares two values.

Syntax:
[245] ValueCompPredicate ::= Expression ValCompOp Expression
[246] ValCompOp ::= < | <= | = | <> | > | >=

Explanation: The meaning of the operators are:

< less than

<= less than or equal to

= equal

<> not equal

> greater than

>= greater than or equal to

The data types of the Expressions must be compatible. If TableExpressions are used, they must deliver a single
value.

The comparison operators are defined for all data types.

If two character sequences (strings) with different length are compared, then the shorter string is padded with the
space character ' ' up to the length of the longer string.

For the following examples of correct ValueCompPredicates, assume that q is a correlation name for the table
quotations.

suppno < 54

price * qonorder < 100.50

q.price >
(SELECT AVG (price)
FROM quotations
WHERE partno = q.partno)

(SELECT MAX(price) - MIN(price)
FROM quotations
WHERE partno = q.partno)
>
(SELECT AVG (price)
FROM quotations
WHERE partno = q.partno) * 0.5

Data Manipulation Language

62

The last example would be a suitable SearchCondition to find out partnos from records q in quotation with a big
variance in price offerings.

3.8.3. SetCompPredicate

A SetCompPredicate compares two sets of records.

Syntax:
[247] SetCompPredicate ::= (SubTableExpression) SetCompOp (SubTableExpression)
[248] SetCompOp ::= [NOT] SUBSET [OF] | = | <>

Explanation: Let q1 and q2 be the two SubTableExpressions and s1 and s2 their result sets of records, resp. q1
and q2 must be compatible, i.e. their result sets must have the same arity n (n > 0) and each pair of types of the
corresponding fields must be type compatible (see Data Types). Two n-ary records t1 and t2 match if they have
the same values on corresponding fields. q1 SUBSET q2 yields TRUE if for each record t1 from Result of q1 there
is a matching record t2 in Result set of q2.

The following notations are equivalent:

q1 NOT SUBSET q2
NOT (q1 SUBSET q2)

Parentheses can be omitted, see Precedence of Operators q1 = q2 yields TRUE if s1 and s2 are identical, i.e. for
each record t1 in s1 there is a matching record t2 in s2 and vice versa.

The following notations are equivalent:

q1 <> q2
NOT q1=q2

Note

Duplicate records in any of s1 or s2 do not contribute to the result, i.e. sets are treated in the mathe-
matical sense in all set comparison operators.

List all supplier numbers who deliver (at least) the same parts and price offerings as supplier 54

SELECT DISTINCT suppno
FROM quotations q
WHERE
 (SELECT partno, price
 FROM quotations
 WHERE suppno = 54)
 SUBSET
 (SELECT partno, price
 FROM quotations
 WHERE suppno = q.suppno)

3.8.4. InPredicate

The InPredicate checks if an explicitly specified record is in a set of records or checks if a value is in a set of values.

Syntax:

Data Manipulation Language

63

[249] InPredicate ::= ValueInPredicate | RecordInPredicate
[250] ValueInPredicate ::= Expression [NOT] IN { (ExpressionList) | (SubTableExpression) }
[251] ExpressionList ::= Expression [, Expression)]...
[252] RecordInPredicate ::= Record [NOT] IN (SubTableExpression)
[253] Record ::= (ExpressionList)

Explanation: A ValueInPredicate checks a value against a set of values. If an ExpressionList is specified, the
predicate yields TRUE if the value of the left hand Expression is equal to one of the values of the ExpressionList.
If a SubTableExpression is specified it must deliver unary records which then are interpreted as a set of values
like above.

A RecordInPredicate checks a record against a set of records. It yields TRUE if the left hand record matches one of
the result records of the SubTableExpression. Compatibility rules for Record and TableExpression are analogous
to those of SetCompPredicate.

Note

The notation x NOT IN y is equivalent to NOT x IN y

SELECT *
FROM suppliers
WHERE suppno IN (54,61,64)

SELECT * FROM suppliers
WHERE suppno IN
 (SELECT suppno
 FROM quotations)

List suppliers who deliver at least one part for the same price as supplier 57

SELECT DISTINCT suppno FROM quotations
WHERE (partno, price) IN
 (SELECT partno, price
 FROM quotations
 WHERE suppno = 57)

3.8.5. BetweenPredicate

The BetweenPredicate tests a value against an interval of two values. Each of the two interval boundaries can be
specified as inclusive or exclusive.

Syntax:
[254] BetweenPredicate ::= Expression [NOT]

BETWEEN Expression [BetweenQualifier]
AND Expression [BetweenQualifier]

[255] BetweenQualifier ::= INCLUSIVE | EXCLUSIVE

Explanation: If a BetweenQualifier is omitted it is equivalent to INCLUSIVE. The notation e1 BETWEEN e2
AND e3 therefore is equivalent to e1>=e2 AND e1 <=e3. The notation e1 BETWEEN e2 EXCLUSIVE AND
e3 is equivalent to e1>e2 AND e1<=e3. The notation e1 NOT BETWEEN e2 AND e3 is equivalent to NOT (e1
BETWEEN e2 AND e3)

price BETWEEN 0.10 AND 0.30

Data Manipulation Language

64

q.price NOT BETWEEN
 (SELECT MAX (price) FROM quotations
 WHERE partno = q.partno) * 0.8 EXCLUSIVE
AND
 (SELECT MIN (price) FROM quotations
 WHERE partno = q.partno) * 1.2 EXCLUSIVE

3.8.6. LikePredicate

The LikePredicate tests a string value against a pattern.

Syntax:
[256] LikePredicate ::= Expression [NOT] LIKE Sensspec

Pattern [ESCAPE EscapeChar]

[257] Sensspec ::= SENSITIVE | INSENSITIVE
[258] Pattern ::= Expression
[259] EscapeChar ::= Expression

Explanation: All specified Expressions must be of character type. The type of EscapeChar must be CHAR (1),
i.e. a character string of byte length 1. EscapeChar is restricted to be a single character with Unicode value less
than 128 (whose byte length is 1).

Note that all Expressions including the Pattern need not be constants but may also be calculated at runtime.

The result of Pattern is interpreted as a search pattern for strings where two special characters have the meaning
of wild cards:

• The percent sign % matches any string of zero or more characters

• The underscore sign _ matches any single character

If EscapeChar is specified (let its value be c) then all occurrences of wild card characters in Pattern which are
preceeded by a c are not interpreted as wild card characters but as characters in their original meaning and the
EscapeChar c is not interpreted as part of the pattern in these occurences.

If Sensspec is not specified or is specified with SENSITIVE then the search pattern is interpreted case sensitive,
otherwise the search is performed case insensitive.

The insensitive character comparison depends on the Locale setting of the database.

The notations are equivalent:

s NOT LIKE p ESCAPE c
NOT (s LIKE p ESCAPE c)

description LIKE 'B%'
description LIKE INSENSITIVE '%_r'
description LIKE '%#%' ESCAPE '#'

The first example yields TRUE for values in description which begin with 'B', the second analogously for all
values which end with 'r' or 'R' and have at least 2 characters. The third example yields TRUE for all values which
end with the percent sign.

Note

If no wildcard is used in the pattern, e.g. description LIKE 'xyz' then this expression is not equivalent
to description = 'xyz' because the string comparison ignores trailing blanks whereas the LIKE oper-
ator is sensitive with respect to trailing blanks.

Data Manipulation Language

65

3.8.7. MatchesPredicate, Regular Pattern Matcher

The MatchesPredicate tests a string value against a pattern denoted as a regular expression.

Syntax:
[260] MatchesPredicate ::= Expression [NOT] MATCHES Sensspec

RegPattern [ESCAPE EscapeChar]

[257] Sensspec ::= SENSITIVE | INSENSITIVE
[261] RegPattern ::= Expression
[259] EscapeChar ::= Expression

Explanation: All specified Expressions must be of character type. The type of EscapeChar must be CHAR (1),
i.e. a string of byte length 1.

EscapeChar is restricted to be a single character with Unicode value less than 128 (whose byte length is 1).

The result of RegPattern is interpreted as a regular expression. Regular expressions are composed of characters and
metacharacters. Metacharacters serve as operands for constructing regular expressions. The following characters
are metacharacters: () { } [] * . , ? + - |

In all following examples, the patterns and values are written in StringLiteral notation (i.e. with surrounding single
quotes).

Characters and Character Classes:

Patterns may be composed of characters and character classes. A character in a pattern matches itself. For example,
the pattern 'xyz' is matched by the value 'xyz' and nothing else (in case sensitive mode). A character class is either
a dot sign ('.') or a construct in square brackets []. The dot sign is matched by any character. For example, the
pattern 'x.z' is matched by values 'xaz', 'xbz', etc. A character class in [] is matched by any character listed in [].
The list is either a sequence of single characters like in [agx], or it is a character range like [a-z] as a shorthand
notation for all characters between a and z (in machine code), or it is a combination of both. For example, [ad-
gmn] is matched by any of the characters a, d, e, f, g, m, n. Note that blanks would be interpreted as matchable
characters, so don't write [a b] or [ab] if you mean [ab]. It is an error to specify character ranges like [c-a] where
the machine code of the upperbound character is less than that of the first character.

Alternatives:

The | sign separates alternatives in a pattern. For example, the pattern abc|yz is matched by abc as well as by yz. The
implicit character concatenation binds stronger than the alternative sign, so to match either abcz or abyz one has
to specify the pattern ab(c|y)z (of course also abcz|abyz would work). Note also that character classes are nothing
else but a shorthand notation for otherwise possibly lengthy alternatives, so ab[cy]z is equivalent to ab(c|y)z, too.

Repetition factors:

When an asterisk * occurs in a pattern, then zero or arbitray many occurrences of the preceding pattern element
must occur in the value to match. For example, the pattern abc* is matched by ab, abc, abcc etc. All repetition

Data Manipulation Language

66

factor operands bind most strongly, so the pattern (abc)* must be specified to match abc, abcabc, etc. The '+' sign
means one or more occurrences of the preceding pattern element, so x+ is identical to xx*. The '?' sign means zero
or one occurrences. At least n but maximal m occurrences of a pattern element x can be specified by the notation
x{n,m} where n and m must be integer constants. For example ag{1,3}z is matched by agz, aggz, agggz.

Precedence of operands:

Three levels of precedence are given, namely the repetition factors which bind stronger than concatenation which
binds stronger than the alternative. To overrule the precedence of operators, round precedence brackets can be
used as shown in the above examples.

Escaping the metacharacters:

Whenever a metacharacter is to stand for itself (i.e. is not wanted in its meta meaning) it must be escaped. If
EscapeChar is specified (let its value be c) then all occurrences of metacharacters in the pattern which are preceeded
by the specified character are not interpreted as metacharacters but as characters in their original meaning and the
escape character is not interpreted as part of the pattern in these occurences. For example, in the expression value
MATCHES '\|\?' ESCAPE '\' the value |? matches and any other value does not.

If the escape character is needed as normal character, it must be written twice (normally one can avoid this situation
by choosing another escape character).

If Sensspec is not specified or is specified with SENSITIVE then the search pattern is interpreted case sensitive,
otherwise the search is performed case insensitive. For example, the expression s MATCHES INSENSITIVE 'ab.*z'
is equivalent to s MATCHES SENSITIVE '(a|A)(b|B).*(z|Z)'

Note that in case of INSENSITIVE, the ranges in character classes are somewhat restricted, i.e. if one of the
characters is a lowercase (uppercase) character then the other must also be a lowercase (uppercase) character. For
example, the ranges [b-G] or [B-g] are erroneous.

The notations are equivalent:

s NOT MATCHES p ESCAPE c
NOT (s MATCHES p ESCAPE c)

Note

The MatchesPredicate is more powerful than the LikePredicate which, however, is supported for
compatibility. A pattern in a LikePredicate can be transformed to a regular patterns by substituting
each non-escaped % by .* and each non-escaped _ by ..

3.8.8. ExistsPredicate

The ExistsPredicate tests the result of a SubTableExpression on emptyness.

Syntax:
[262] ExistsPredicate ::= EXISTS (SubTableExpression)

Data Manipulation Language

67

Explanation: The predicate evaluates to TRUE if the result of the SubTableExpression is not empty.

Which suppliers supply at least 1 part:

SELECT suppno, name FROM suppliers s
WHERE EXISTS
 (SELECT *
 FROM quotations
 WHERE suppno = s.suppno)

3.8.9. QuantifiedPredicate

A QuantifiedPredicate compares one value against a set of values.

Syntax:
[263] QuantifiedPredicate ::= Expression ValCompOp Quantifier (SubTableExpression)
[246] ValCompOp ::= < | <= | = | <> | > | >=
[264] Quantifier ::= ALL | ANY | SOME

Explanation: The SubTableExpression must deliver unary records (i.e. a set of values) whose type is compatible
with that of Expression.

If ALL is specified, the predicate is TRUE if the specified comparison is true for all values delivered by the
SubTableExpression or if the SubTableExpression delivers no value.

If ANY or SOME is specified, the predicate is TRUE if the TableExpression delivers at least one value for which
the specified comparison is TRUE. Note that ANY and SOME have precisely the same meaning.

List suppliers and parts for which there is no cheaper offering

SELECT suppno, partno FROM quotations q
WHERE price <= ALL
 (SELECT price
 FROM quotations
 WHERE partno = q.partno)

List all other suppliers

SELECT suppno, partno FROM quotations q
WHERE price > ANY
 (SELECT price
 FROM quotations
 WHERE partno = q.partno)

3.8.10. NullPredicate

A Null-Predicate checks the result of an Expression against the null value.

Syntax:
[265] NullPredicate ::= Expression IS [NOT] NULL |

Expression = NULL |
Expression <> NULL

The following notations are equivalent:

Data Manipulation Language

68

Expression IS NULL
Expression = NULL

The following notations are equivalent, too:

Expression IS NOT NULL
NOT (Expression IS NULL)
Expression <> NULL

For the semantics of the NullPredicate see Null Values.

3.8.11. FulltextPredicate

On fulltext-indexed fields search expressions of type FulltextPredicate can be issued.

Syntax:
[266] FulltextPredicate ::= FieldIdentifier CONTAINS [SOUNDEX] (FulltextTerm)
[267] FulltextTerm ::= FulltextFactor [OR FulltextFactor]
[268] FulltextFactor ::= FulltextPhrase [Andnot FulltextPhrase]
[269] Andnot ::= AND | NOT
[270] FulltextPhrase ::= (FulltextTerm) |

Atom [[DistSpec] Atom]...

[271] Atom ::= SingleValueAtom | MultiValueAtom
[272] SingleValueAtom ::= StringLiteral | Parameter | FtExpression
[273] MultiValueAtom ::= ANY (TableExpression)
[274] DistSpec ::= Leftbracket [MinBetween ,] MaxBetween Rightbracket
[275] MinBetween ::= <Expression of type Integer>
[276] MaxBetween ::= <Expression of type Integer>
[277] FtExpression ::= <Expression without FieldReference to same block>
[278] Leftbracket ::= [
[279] Rightbracket ::=]
[155] Parameter ::= # IntegerLiteral (DataType) |

Colon StandardIdentifier |
Questionmark

[34] StringLiteral ::= CharacterLiteral | UnicodeLiteral | USER

Explanation: All explanations are given in FulltextIndexes .

3.9. Null Values

A record may have undefined values (null values) as field-values (if the corresponding CreateTableStatement of
the table allows it).

A special constant NULL is provided to test a result of Expressions against the null value inside a SearchCondition.

price = NULL
price <> NULL

The first expression delivers TRUE if the field price is null-valued, it delivers FALSE if the field price has a
known value.

If a null-valued field participates in an arithmetic operation (+, -, *, /), the result is again null-valued.

Data Manipulation Language

69

If a null-valued Expression participates in a ValueCompPredicate, the result of the ValueCompPredicate is UN-
KNOWN.

The evaluation rules for boolean operators are given in tables not , or , and .

Table 3.1. NOT operator

NOT TRUE FALSE UNKNOWN

FALSE TRUE UNKNOWN

Table 3.2. OR operator

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

Table 3.3. AND operator

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

If the result of a SearchCondition is UNKNOWN, it is equivalent to FALSE.

Assume that a field named price is null-valued for a specific record, the following SearchConditions effectively
evaluate as follows:

price < 10.0 -- FALSE
price >= 10.0 -- FALSE
price = null -- TRUE

Further rules for Null-values:

• SetFunctions ignore null-values in their input.

• As far as grouping and duplicate elimination (DISTINCT) is concerned all null-valued fields form one group
and are considered equal, resp.

• In the ORDER BY clause, all NULL values are sorted before any other value.

3.10. SelectExpression (QueryBlock)

A SelectExpression derives records from tables in the database. QueryBlock is a synonym for SelectExpression.

Syntax:
[280] SelectExpression ::= SelectClause

[FromClause
[WhereClause]
[UngroupClause]
[GroupClause]

/
* 6 *//
* 1 *//
* 2 *//
* 3 *//

Data Manipulation Language

70

[HavingClause]
[FirstClause]]

* 4 *//
* 5 */

[281] SelectClause ::= SELECT [ALL | DISTINCT] SelectList
[282] FromClause ::= FROM TableReference [, TableReference]...
[283] WhereClause ::= [WHERE SearchCondition]

[HierarchicalCondition]

[284] UngroupClause ::= UNGROUP BY FieldReference
[285] GroupClause ::= [GROUP BY Expression [, Expression]...]
[286] HavingClause ::= [HAVING SearchCondition]
[287] SelectList ::= SelectElem [, SelectElem]...
[288] SelectElem ::= Expression [AS FieldIdentifier] |

[CorrelationIdentifier .] *

[289] FirstClause ::= FIRST (CountSpec [SortSpec])
[290] CountSpec ::= [StartNum TO] EndNum
[291] StartNum ::= IntegerLiteral
[292] EndNum ::= IntegerLiteral
[319] SortSpec ::= ORDER BY ALL |

ORDER BY SortElem [, SortElem]...

Explanation: Each TableReference must identify an existing table or view in the database.

Each specified CorrelationName must be unique within all TableNames and CorrelationNames of that
FROM clause.

All specified Expressions in the GROUP-BY-clause must have a resolution in the given QueryBlock (see Rules
of Resolution).

Each TableReference exports a set of field names (see TableReference). These names can be used in the defining
QueryBlock to reference fields of the result records of the FROM clause.

The QueryBlock also exports a set of field names: the i-th field of the block exports name ''f'' if it is a field reference
with fieldname ''f'' or ''q.f'' or if it is specified with an ''AS f'' clause, otherwise the i-th field is ''unnnamed''.

The result of a QueryBlock is defined by conceptually performing the following steps:

1. The Cartesian product of the results from the TableReferences in the FROM-clause is constructed.

2. a. All joins defined by the SearchCondition of the WHERE-clause are performed.

b. The HierarchicalCondition is processed. A depth-first search is carried out starting with one of the root
rows that satisfies the START WITH predicate. For this root row the first child rows satisfying the
CONNECT BY condition is selected. Then the hierarchical search will proceed down through the gen-
erations of child rows until no more matching rows are found.

c. The SearchCondition of the WHERE-clause is applied to all records resulting from the previous steps.
The result of (2) is the set of records which satisfy the SearchCondition and HierarchicalCondition. In
addition then the result is sorted in depth-first order with respect to the HierarchicalCondition, if any.

3. The GROUP-BY-clause partitions the result of (2) into groups of records. All records with the same values
on the specified Expressions form one group. Thus, the number of groups is equal to the number of different
value combinations on the specified Fields. If a GROUP-BY-clause is specified the following conditions must
hold: Asterisk (*) is not permitted in the SELECT-clause. Each Expression in the SELECT-clause and in the
HAVING-clause which refers to the given QueryBlock (i.e. whose resolution block is the given QueryBlock,
see Rules of Resolution) either must be an identical grouping Expression or must be inside a SetFunction
whose resolution block is the given QueryBlock.

4. The SearchCondition of the HAVING-clause is applied to each group. The result of (4) is the set of groups
which satisfy the SearchCondition. If no GROUP-BY-clause is specified, the whole set of records from the
previously executed step forms one group.

Data Manipulation Language

71

5. Result records according to the SELECT-clause are constructed. If neither GROUP-by nor HAVING is spec-
ified, each record from the previously executed step contributes to one result record and each SetFunction
which has a local resolution refers to all input records of (5). If GROUP-BY and/or HAVING is specified,
each group contributes to one result record and each local SetFunction is computed separately for each group.

6. If DISTINCT is specified, duplicate records are removed from the result of (5). By default or if ALL is
specified, duplicate records are not removed.

7. If a FirstClause is specified, only a subset of the result records is delivered. These are the records with ordinal
numbers from "StartNum" to "EndNum". If StartNum is not specified it defaults to 1. A SortSpec is mandatory
if the FirstClause is not in the outermost query block.

The asterisk notations in the SelectList are shorthand notations for a list of field names. The pure * stands for a
list of all field names exported by all TableReferences of the FROM-clause in their original order. The notation
Identifier.* stands for a list of all field names of the TableReference with CorrelationName or TableName
Identifier. The asterisk notations can be freely mixed among each other and other Expressions.

Updatability:

A SelectExpression is updatable if all following conditions hold:

• No GROUP BY-clause and no HAVING-clause is specified.

• No DISTINCT is specified in the SELECT-clause.

• The SELECT-clause consists of * or each Expression in the ExpressionList only consists of a FieldReference
(i.e. no operators, no SetFunction) and each FieldName only occurs once.

• The WHERE-clause does not contain a subquery.

• The FROM-clause only contains one single TableReference and this TableReference is updatable.

Note

The UngroupClause is a very special operator only used in conjunction with the type BITS(*). It is
explained in The Datatypes BITS(p) and BITS(*).

Which parts are delivered by more than 1 supplier?

SELECT partno, COUNT (*)
FROM quotations
GROUP BY partno
HAVING COUNT (*) > 1

What is the average number of suppliers for a part?

SELECT AVG(cnt) FROM
 (SELECT COUNT (*) AS cnt
 FROM quotations
 GROUP BY partno)

To introduce a field name cnt for the unnnamed field COUNT(*) this is specified as a FieldIdentifier.

Which suppliers deliver part 221 (all suppliers and part information delivered):

SELECT * FROM quotations q, suppliers s

Data Manipulation Language

72

WHERE q.suppno = s.suppno AND q.partno = 221

Which suppliers deliver part 221 (Only suppliers information delivered)

SELECT DISTINCT s.* FROM quotations q, suppliers s
WHERE q.suppno = s.suppno AND q.partno = 221

3.11. TableExpression, SubTableExpression

A TableExpression and SubTableExpression construct UNIONs, INTERSECTions and set DIFFerences from the
result sets of TableReferences.

SubTableExpression is a slightly restricted form of TableExpression (is made up of SubTableReferences instead
of TableReferences).

Syntax:
[293] TableExpression ::= TableTerm [UnidiffSpec TableTerm]
[294] SubTableExpression ::= SubTableTerm [UnidiffSpec SubTableTerm]
[295] TableTerm ::= TableReference [IntersectSpec TableReference]
[296] SubTableTerm ::= SubTableReference [IntersectSpec SubTableReference]
[297] UnidiffSpec ::= UnidiffOp [CorrespondingSpec]
[298] UnidiffOp ::= UNION [ALL] | DIFF | EXCEPT
[299] IntersectSpec ::= INTERSECT [CorrespondingSpec]
[300] CorrespondingSpec ::= CORRESPONDING [BY (FieldList)]

Explanation: UNION computes the set theoretical union of both input sets. If ALL is specified then duplicate
records are retained otherwise they are removed. DIFF and INTERSECT compute the set theoretical difference
and intersection, resp. Duplicate records are removed.

EXCEPT is a synonym for DIFF.

Note that according to the grammar rules, INTERSECT binds stronger than UNION and DIFF. Associativity is
from left to right (see also Precedence of Operators).

• The expression

A setop CORRESPONDING BY (C1, …, Cn) B

where setop is one of the set operators is equivalent to

(SELECT C1, …, Cn FROM A) setop (SELECT C1, …, Cn FROM B)

• The expression

A setop CORRESPONDING B

is equivalent to

A setop CORRESPONDING BY (C1,..,Cn) B

where C1, …, Cn are the fields with common names in A and B in the order of A. If A and B have no fields
in common, an error is returned.

The result types of DIFF are those of the left operand. With UNION and INTERSECT, the type adaption rules
(see Data Types and Type Compatibility) are applied to determine the result types.

DIFF preserves the naming of its left operand, i.e. if the i-th field of the left operand of DIFF is named 'xyz' (or is
unnamed), then the i-th field of the result of DIFF is also named 'xyz' (is unnamed, resp.).

Data Manipulation Language

73

The i-th result field of a UNION or INTERSECT with operands A and B is unnamed if the i-th field of either A
or B is unnamed or if their names differ, otherwise it is named and has the common input name as name.

Updatability:

A TableExpression is updatable if no UNION, INTERSECT, DIFF is specified and if the underlying TableRef-
erence is updatable.

CorrelationNames:

A TableExpression exports no CorrelationName if one of the set operators UNION, INTERSECT, DIFF is
specified, otherwise it exports the CorrelationName of the constituting TableReference.

SELECT * FROM quotations
UNION CORRESPONDING BY (suppno)
SELECT * FROM suppliers

3.12. TableReference, SubTableReference

A TableReference or SubTableReference is the constituent of the FROM clause and of UNION / INTERSEC-
TION / DIFF expressions (TableExpressions).

Syntax:
[301] TableReference ::= [TABLE] TableSpec [[AS] Alias] |

FUNCTION TableFunction |
SelectExpression |
(TableExpression) [[AS] Alias] |
JoinedTable |
FULLTEXT <SpecialFulltextTable> |
FlatFileReference

[302] SubTableReference ::= SelectExpression | (SubTableExpression)
[303] TableSpec ::= LocalTableSpec | RemoteTableSpec
[304] LocalTableSpec ::= TableIdentifier
[305] RemoteTableSpec ::= TableIdentifier @ ConnectionIdentifier]
[306] ConnectionIdentifier ::= Identifier < containing a ConnectionString >
[307] Alias ::= [CorrelationIdentifier] [(FieldList)]
[98] FieldList ::= FieldIdentifier [, FieldIdentifier]...
[308] TableFunction ::= FunctionIdentifier (ExpressionList)
[251] ExpressionList ::= Expression [, Expression)]...

[309] ConnectionString ::= [ssl:]//[Host]/<Dbname>[?OptionList] |
file://DirectoryLiteral[?OptionList] |
<Dbname>[@Host]

[310] Host ::= <Hostname>[:<Portnumber>]
[311] OptionList ::= Option[&Option]...

Data Manipulation Language

74

[312] Option ::= <Key>=<Value>

Explanation:

TableReference and SubTableReference are the building blocks for TableExpression and SubTableExpression.

Note

TableExpression constitutes the top query block and subqueries in FROM clause, SubTableExpres-
sion constitutes subqueries in SELECT, WHERE, HAVING clause.

Tip

If a TableExpression TE is needed on a place where only a SubTableExpression is allowed, then the
equivalent expression (SELECT * FROM (TE)) can be used. As can be seen from the grammar, this
is a SubTableReference and thus also a SubTableExpression.

If Alias is specified with a FieldList, the exported field names are defined by the specified FieldIdentifiers. The
number of FieldNames specified must be equal to the arity of TableName or TableExpression, resp.

If no FieldList is specified, the exported field names are derived from the underlying syntactic construct (e.g.
TableSpec exports the field names of the fields of the specified table).

Updatability:

A TableReference is updatable if one of the following holds:

• A TableSpec T is specified and T is a basetable or an updatable view.

• An updatable SelectExpression is specified.

• An updatable (TableExpression) is specified.

CorrelationNames:

see TableReferences, CorrelationNames and Scopes .

RemoteTableName:

Host names are always treated case insensitive.

Database names are always treated case sensitive.

Important

The identifiers in the remote TableIdentifiers, ViewIdentifiers or Identifiers of other user-defined
database objects are mapped to names according to the local case-sensitivity settings.

Data Manipulation Language

75

When a field SomeThing in a table Table is referenced from a case insensitive database, then the field and
table must be identified in the SQL statement like this:

SELECT "SomeThing" FROM "Table"@db@host

When a field SOMETHING in a table TABLE is referenced from a case sensitive database, then the field and table
must be identified in the SQL statement like this:

SELECT SOMETHING FROM "TABLE"@db@host

Important

The current user requires the necessary access privileges on the remote database using the same
credentials on the remote database as for the local database.

Examples:

In the following example, an alias is used for each of the TableReferences, the first consisting of a Correla-
tionName only, the second with a field list.

SELECT q.partno, supp.sno, supp.addr, supp.name
FROM quotations q, suppliers supp (sno, name,addr)
WHERE q.suppno = supp.sno

The following example needs an Alias for its subquery to reference its result field - it works with or without a
CorrelationName. Both solutions are shown:

SELECT AVG (q.cnt) FROM
 (SELECT COUNT (*)
 FROM quotations
 GROUP BY partno) q (cnt)

SELECT AVG(cnt) FROM
 (SELECT COUNT (*)
 FROM quotations
 GROUP BY partno) (cnt)

The following example is a distributed join using a remote database otherdb@server5.

SELECT q.partno, supp.sno
FROM quotations q, suppliers@otherdb@server5 supp
WHERE q.suppno = supp.sno

3.13. FlatFileReference - direct processing of
text files

A FlatFileReference enables to use a flat text file as a base table in a SELECT statement. The text file must be in
standard SPOOL format, i.e. the field values must be separated by tabs.

Data Manipulation Language

76

Syntax:
[313] FlatFileReference ::= (FileLiteral) [CorrelationIdentifier]

(Fieldspec [, Fieldspec]...)

[314] Fieldspec ::= FieldIdentifier DataType

Explanation:

Note that the name of the file holding the data must be enclosed in single quotes.

Each data field in the file must be specified by an arbitrary name and by its datatype. The syntax of the data values
in the file must correspond to that of the SPOOL statement. The tabulator character is used to separate data values.

Example:

Given a file Persons in directory /usr/x/data which stores some lines each consisting of two character
strings and a number, the file may be processed like this:

SELECT * FROM
 ('/usr/x/data/Persons') (firstname CHAR(*), secondname CHAR(*), info NUMBER)
 WHERE info > 100
 ORDER BY secondname

3.14. TableFunction

A TableFunction may appear in the FROM clause of a SELECT statement. It is a built-in or user-defined procedure
and acts like a basetable or view in the surrounding SQL statement. The fields of the result records may be treated
any like other basetable fields in the WHERE, GROUP BY, SELECT and ORDER BY clause.

For details on adding further user-defined Table Functions see Stored Procedures and User-Defined Functions
Guide [stoproc.xhtml#Introduction] .

Currently there are two built-in table functions available. First, the Java based JDBCReader offers read-only ac-
cess to any reachable JDBC data source. The built-in JDBCReader requires a Java runtime environment to be
configured for this database. The Transbase JDBCReader is called with:

SELECT * FROM FUNCTION JDBCReader(
 'jdbc:transbase://hostname:2024/dbname',
 'user','passwd','select * from sometable')

The following steps show the necessary configuration for using third-party JDBC drivers to be used by the JD-
BCReader.

1. Add the third-party driver to the JRE's CLASSPATH. Make sure that the file is accessible for the Transbase
service. Note that the CLASSPATH points to the JAR file, not only to the directory:

ALTER EXTERNAL OPTION CLASSPATH "/usr/lib/java/acmesql.jar"

2. Make sure the driver registers with the system's JDBC driver manager by providing the driver's fully qualified
class name

ALTER EXTERNAL OPTION JAVA "-Djdbc.drivers=com.acme.jdbc.Driver"

3. Allow the driver to access network resources. Possibly other permissions are also required:

stoproc.xhtml#Introduction
stoproc.xhtml#Introduction
stoproc.xhtml#Introduction

Data Manipulation Language

77

ALTER EXTERNAL OPTION JAVAPERMISSIONS "java.net.NetPermission"

Now the third-party database may be accessed by calling the JDBCReader using the appropriate connection URL.

The native OraReader offers a high performance read-only access to Oracle databases.

SELECT * FROM FUNCTION OraReader(
 '//host:[port][/service name]',
 'user','passwd','select * from oraTable')

The OraReader requires an OCI client software installation on the machine where the Transbase engine is running.
Because of its ease of handling, the Oracle Instant client is recommenced over the standard Oracle client installation
for this purpose. This software is freely available from Oracle. Please follow the installation instructions and
make sure that PATH (Windows) or LD_LIBRARY_PATH (Unix platforms) environment variables are set to
include the Instant Client, before the Transbase service is started. Please consult the Oracle documentation on the
environment variables ORACLE_HOME, TNS_ADMIN et cetera, if you are planning to use the standard Oracle
client and connect via Oracle TNS services. Note that these environment variables also must be set before the
Transbase service is started.

These built-in table functions are provided as powerful data import facilities. Their input parameters consist of a
connection string, username and password for opening a connection to the data source. Note that all parameters are
normal StringLiterals and the escape syntax conventions apply. These are followed by arbitrary SQL statements to
be processed by the database engine of the data source. The result is automatically mapped to Transbase data types
where possible. If a datatype (e.g. Oracle's LONG and LONG RAW) cannot be mapped, try to cast it to a mappable
type on the remote system. In the next step the data is processed according to an arbitrary Transbase SQL that
encloses the table function. In particular, this Transbase SQL statement may be an INSERT or SPOOL statement.

3.15. JoinedTable (Survey)

A JoinedTable combines tables with an explicit join operator.

Syntax:
[315] JoinedTable ::= TableReference CROSS JOIN TableReference |

TableReference UNION JOIN TableReference |
TableReference NATURAL [Jointype] JOIN TableReference |
TableReference [Jointype] JOIN TableReference [Joinpred] |
(JoinedTable)

[316] Jointype ::= INNER |
{ LEFT | RIGHT | FULL } [OUTER]

/
* de-
fault
join
type *//
* OUT-
ER
has
no
ef-
fect */

[317] Joinpred ::= ON SearchCondition |
USING (FieldList)

Explanation: CROSS JOIN is a syntactic variant for Cartesian product, i.e. the following expressions are seman-
tically equivalent:

Data Manipulation Language

78

A CROSS JOIN B
SELECT * FROM A,B

The expression A UNION JOIN B (where A has a fields and B has b fields) is semantically equivalent to :

SELECT A.*, NULL, NULL, ... -- b NULLs
 FROM A
UNION
SELECT NULL, NULL, ..., B.* -- a NULLs
 FROM B

The result table has a+b fields and each record either has the first a or the last b fields all NULL.

The other join variants are described in the following chapters.

CorrelationNames:

A JoinedTable exports the CorrelationNames of both participating TableReferences - i.e. none, one or both
CorrelationNames.

SELECT A.*, B.*
FROM A UNION JOIN B.

3.15.1. INNER JOIN with ON/USING Clause

Explanation:

• Case (1), ON Clause specified: Let searchcond be the search condition. The expression

A [INNER] JOIN B ON searchcond

semantically is equivalent to

SELECT * FROM A, B WHERE searchcond

• Case (2), USING Clause specified: If the USING Clause is specified then let C1,~…,~Cn denote the FieldList.
All Ci's must be fields of both A and B. The expression

A [INNER] JOIN B USING (C1, ... ,Cn)

semantically is equivalent to

SELECT A.C1, A.C2, ... , A.Cn,
 <other A fields>, <other B fields>
FROM A, B
WHERE A.C1=B.C1 AND ... AND A.Cn=B.Cn

Each of the result fields Ci appears only once in the result table (i.e. the number of result fields isa+b-n).
The result fields C1, ..., Cn have no CorrelationNames (even if the constituting TableReferences A and B
export CorrelationNames, say ''a'' and ''b''). Thus, in the surrounding SelectExpression, C1, …, Cn can only be

Data Manipulation Language

79

referenced by their unqualified name. The remaining fields of A and B have CorrelationNames ''a'' and ''b'' of A
and B (if they exist). Note that also a.* and b.* refer to the remaining fields in their original order without any Ci.

3.15.2. JoinedTable with NATURAL

Explanation: The expression

A NATURAL [INNER] JOIN B

is equivalent to

A [INNER] JOIN B USING (C1,..Cn)

where C1, …, Cn are the fields (in the order of A) which are common to A and B.

If no fields are common, the expression degenerates to A UNION JOIN B.

The following statements all deliver the same result:

1.
SELECT q.partno, q.suppno, q.price, q.delivery_time,
 q.qonorder, i.description, i.qonhand
FROM quotations q, inventory i
WHERE q.partno= i.partno

2.
SELECT q.partno, q.suppno, q.price, q.delivery_time,
 q.qonorder, i.description, i.qonhand
FROM quotations q JOIN inventory i
ON q.partno= i.partno

3.
SELECT partno, q.*, i.*
FROM quotations q JOIN inventory i USING (partno)

4.
SELECT partno, q.*, i.*
FROM quotations q NATURAL JOIN inventory i

Note the meaning of q.* and i.* in the context of USING and NATURAL. Note also that suppno and partno are
opposite to their original order in quotations.

3.15.3. JoinedTable with OUTER JOIN

Explanation:

We discuss the join variants

• Case (1), ON Clause specified: Assume the expressions LJ, RJ, FJ, IJ as:

LJ A LEFT JOIN B ON searchcond

Data Manipulation Language

80

RJ A RIGHT JOIN B ON searchcond

FJ A FULL JOIN B ON searchcond

IJ A INNER JOIN B ON searchcond

Let innerjoin denote the result of IJ. Then the result sets of LJ, RJ, FJ are defined as:

Result LJ innerjoin UNION ALL leftouter

Result RJ innerjoin UNION ALL rightouter

Result FJ innerjoin UNION ALL fullouter

where leftouter , rightouter, fullouter are defined as follows:

• leftouter the set of all records a from A which do not participate in innerjoin, extended to the right with NULL
values up to the arity of innerjoin.

• rightouter set of all records b from B which do not participate in the set innerjoin, extended to the left with
NULL values up to the arity of innerjoin.

• fullouter leftouter UNION ALL rightouter.

• Case (2), USING Clause specified:

Let JU denote the join expression

A lrf JOIN B USING (C1, ... ,Cn)

where lrf is one of LEFT, RIGHT, FULL.

Let searchcond be the following search condition:

A.C1=B.C1 AND ... AND A.Cn=B.Cn

Then the result of JU is defined to be equivalent to:

SELECT COALESCE(A.C1,B.C1), ..., COALESCE(A.Cn,B.Cn),
 <other fields of A> , <other fields of B>
FROM A lrf JOIN B ON searchcond

The USING variant works like the ON variant except that the specified common fields appear only once in the
result (always the not-NULL part of the field if any appears). Note that the COALESCEd fields do not have a
CorrelationName and that the CorrelationNames exported by A and B do not include the COALESCEd
fields.

• Case (3), NATURAL specified: Let NJ denote the expression:

A NATURAL lrf JOIN B

where lrf is one of LEFT, RIGHT, FULL.

NJ is equivalent to

A lrf JOIN B ON (C1, ..., Cn)

where C1, …, Cn are all fields with identical names in A and B (in the order as they appear in A).

For all following examples, we assume excerpts S and Q from suppliers and quotations as shown in tables S and
Q below.

Example Data:

• Excerpt from Table S

Data Manipulation Language

81

suppno name

51 DEFECTO PARTS

52 VESUVIUS,INC

53 ATLANTIS CO.

• Excerpt from Table Q

suppno partno

50 221

51 221

53 222

53 232

Examples:

• SELECT * FROM S LEFT JOIN Q ON S.suppno = Q.suppno

S.suppno S.name Q.suppno Q.partno

51 DEFECTO PARTS 51 221

52 VESUVIUS INC NULL NULL

53 ATLANTIS CO 53 222

53 ATLANTIS CO 53 232

• SELECT * FROM S RIGHT JOIN Q ON S.suppno = Q.suppno

S.suppno S.name Q.suppno Q.partno

NULL NULL 50 221

51 DEFECTO PARTS 51 221

53 ATLANTIS CO 53 222

53 ATLANTIS CO 53 232

• SELECT * FROM S FULL JOIN Q ON S.suppno = Q.suppno

S.suppno S.name Q.suppno Q.partno

NULL NULL 50 221

51 DEFECTO PARTS 51 221

52 VESUVIUS INC NULL NULL

53 ATLANTIS CO 53 222

53 ATLANTIS CO 53 232

• SELECT * FROM S LEFT JOIN Q USING (suppno)

suppno S.name Q.partno

51 DEFECTO PARTS 221

52 VESUVIUS INC NULL

Data Manipulation Language

82

suppno S.name Q.partno

53 ATLANTIS CO 222

53 ATLANTIS CO 232

Note that the first result field can only be referenced by the unqualified name suppno.

• SELECT * FROM S NATURAL FULL JOIN Q

suppno S.name Q.partno

50 NULL 221

51 DEFECTO PARTS 221

52 VESUVIUS INC NULL

53 ATLANTIS CO 222

53 ATLANTIS CO 232

Note that the first result field can only be referenced by the unqualified name suppno.

3.16. Scope of TableReferences and Correla-
tionNames

CorrelationNames may be used in qualified field references - they are of the form q.field where q is a Correla-
tionName.

A TableReference which constitutes a FROM clause operand exports a CorrelationName in the following cases:

• If the TableReference specifies an Alias, then the CorrelationName specified in the Alias is exported.

• If the TableReference is a TableName without a specified Alias, then a CorrelationName which is iden-
tical to the TableName implicitly is exported.

• If the TableReference is a JoinedTable then the CorrelationName(s) exported by JoinedTable are exported (see
JoinedTable).

The Scope of the CorrelationName is the SelectExpression that immediately contains the TableReference.
However, excluded are SelectExpressions which are nested in the containing one and define a Correlation-
Name with the same name.

In the following example, TableReferences ''quotations'' and ''suppliers s'' export CorrelationNames ''quotations''
and ''s'', resp.:

SELECT quotations.*, s.name
FROM quotations, suppliers s
WHERE quotations.suppno = s.suppno

In the following example, the JoinedTable exports CorrelationNames ''q'' and ''s'':

SELECT s.name, q.price
FROM quotations q JOIN suppliers s ON q.suppno = s.suppno

Data Manipulation Language

83

In the following example, the JoinedTable also exports CorrelationNames ''q'' and ''s'', but the common result field
''suppno'' has no CorrelationName and q.* and s.* do not include the field ''suppno'':

SELECT suppno, s.*, q.*
FROM quotations q NATURAL JOIN suppliers s

3.17. SelectStatement

The SelectStatement is the top level construct of TB/SQL to retrieve records.

Syntax:
[318] SelectStatement ::= [WithClause] TableExpression

[{ SortSpec | FOR UPDATE }]

[319] SortSpec ::= ORDER BY ALL |
ORDER BY SortElem [, SortElem]...

[320] SortElem ::= { FieldIdentifier | IntegerLiteral } [ASC | DESC]

Explanation: The WithClause is explained in the next section.

The ORDER-BY-clause sorts the result records of the TableExpression. If more than one SortElem is specified,
a multi-field sort is performed with the first SortElem being the highest sort weight etc.

If a SortElem is given via an IntegerLiteral i, it refers to the i-th result field of the TableExpression. Field numbering
starts at 1. Otherwise there must be an identically named result field of the TableExpression and the SortElem
refers to that field. The next example below shows two equivalent sort specifications.

By default the sort order is ascending unless explicitly descending order is required ('DESC').

Note

A SelectStatement is updatable if no ORDER BY-clause is specified and if the TableExpression
itself is updatable (see TableExpression).

Caution

There is no predictable ordering of result records, if no order-by-clause is specified.

A SelectStatement is called a SELECT FOR UPDATE query if the FOR UPDATE is specified. It is necessary if
and only if a subsequent UPDPOS or DELPOS statement (Update- or Delete-Positioned) is intended against the
query. In case of a FOR UPDATE, the SelectStatement must be updatable.

Privileges: The current user must have SELECT privilege on each table (base table or view) specified in any
FROM-clause of any QueryBlock which occurs in the SelectStatement.

Locks: All tables and views referenced in the SelectStatement are automatically read locked.

If the FOR UPDATE is given, the (single) table in the outermost QueryBlock is update locked.

SELECT partno, price FROM quotations ORDER BY partno

SELECT partno, price FROM quotations ORDER BY 1

SELECT * FROM quotations FOR UPDATE

Data Manipulation Language

84

3.18. WithClause

The WithClause defines temporary tables being used by the subsequent SelectExpression.

Syntax:
[318] SelectStatement ::= [WithClause] TableExpression

[{ SortSpec | FOR UPDATE }]

[321] WithClause ::= WITH WithElement [, WithElement]...
[322] WithElement ::= TableIdentifier [(FieldList)] AS (TableExpression)
[98] FieldList ::= FieldIdentifier [, FieldIdentifier]...

Explanation:

Each WithElement creates a (temporary) table with the specified table name. The main TableExpression in the
SelectStatment can refer to all tables defined by the WithElements, and each WithElement may refer inside the
defining TableExpressions to the preceding WithElements. The field names of the temporary tables are exported
either by an explicit FieldList or by the field names of the SELECT lists or (in case of expressions) via Aliases
introduced via the keyword AS.

WithElements are processed and stored in the order of writing. After the evaluation of the main TableExpression
of the SelectStatement the temporary tables are deleted.

The WithClause is useful if a subexpression is used more than once in a complex query.

WITH
WE1 as (SELECT r1+r2 AS we1_1, r0 FROM R WHERE r0 > 0),
WE2 as (SELECT s1+s2 AS we2_1, s0 FROM S WHERE s0 > 0)
SELECT MAX(we1_1) FROM WE1
UNION ALL
SELECT we2_1 FROM WE1 ,WE2 WHERE r0 = s0

In this example, the definition of WE1 is useful, but the
definition of WE2 is not.

WITH
WE1 (w1,w2) as (SELECT r1+r2 , r0 FROM R WHERE r0 > 0)
SELECT MAX(w1) FROM WE1
UNION ALL
SELECT w2 FROM WE1

In this example, the field names of WE1 are exported via an explicit
FieldList in WE1.

3.19. InsertStatement

The InsertStatement inserts one or several constant records or a computed set of records into a table or updatable
view. Optionally, for each inserted record a result record is returned.

Syntax:
[323] InsertStatement ::= INSERT [OrClause] INTO TableSpec [(FieldList)] Source [

ReturningClause]

[324] OrClause ::= OR { IGNORE | REPLACE | UPDATE }
[303] TableSpec ::= LocalTableSpec | RemoteTableSpec
[98] FieldList ::= FieldIdentifier [, FieldIdentifier]...

Data Manipulation Language

85

[325] Source ::= VALUES (ValueList) |
TABLE ((ValueList) [, (ValueList)]...) |
TableExpression |
DEFAULT VALUES

[326] ValueList ::= Expression [, Expression]...)
[327] ReturningClause ::= RETURNING (ExpressionList)

Explanation: The table specified by TableSpec must be updatable (i.e. a base table or an updatable view.

All fields in the specified FieldList must be unique and must be fields of the specified table.

If no FieldList is specified then there is an implicitly specified FieldList with all fields of the specified table in the
order of the corresponding CreateTableStatement or CreateViewStatement, resp.

The number of Expressions in a ValueList or the number of fields of the result of the TableExpression must match
the number of fields in the FieldList and the corresponding types must be compatible.

Each ValueList or each result record of the TableExpression, resp., represents a record which is inserted into the
table.

If DEFAULT VALUES is specified, then a record consisting of the default value of each field is inserted.

3.19.1. Insertion with Fieldlist and DEFAULT Values

For each record t to be inserted, the i-th FieldName in the FieldList specifies to which table field the i-th field
of t is assigned. For all fields of the table which are not specified in the FieldList and are not specified with
AUTO_INCREMENT, the DEFAULT value of the field is inserted. If the field has no specified DEFAULT value
but is defined on a domain with a DEFAULT value, then that DEFAULT value is used, otherwise the null value
is inserted as a general fallback.

3.19.2. Insertion on AUTO_INCREMENT Fields

AUTO_INCREMENT fields can be considered as fields with a special DEFAULT mechanism. Unless they are
explicitly specified, an automatic value generation is done such that the resulting key is unique. Details are de-
scribed in section AUTO_INCREMENT_Fields .

3.19.3. Insertion on Views

If the specified table is a view, then insertion is effectively made into the underlying base table and all fields of
the base table which are not in the view are filled up with their DEFAULT values.

For a view v where the WITH CHECK OPTION is specified the insertion of a record t fails if t does not fulfill the
SearchCondition of the view definition of v or any other view on which v is based.

The InsertStatement returns an error if a type exception occurs (see Type Exceptions and Overflow
[sql_type_exceptions]) or if a NULL constraint is violated. The InsertStatement fails if a key constraint or a
UNIQUE constraint (defined by a CREATE UNIQUE INDEX ...) would be violated.

sql_type_exceptions
sql_type_exceptions

Data Manipulation Language

86

3.19.4. Handling of Key Collisions

A key collision is the event that one or several records of the Source have key values that already are present in
the target table.

The 4 variants of the InsertStatement behave differently w.r.t. key collisions: The InsertIntoStatement returns an
error on a key collision and no record is inserted.

The other 3 variants never return error. All records which do not conflict on the key are inserted and conflicting
records are handled as follows:

The InsertIgnoreStatement ignores conflicting source records.

The InsertReplaceStatement replaces the record in the target by the conflicting record of the Source (one might
think that the record in the target is deleted before the source record is inserted).

The InsertUpdateStatement replaces those fields of the target record which are specified in the FieldList with the
corresponding values of the source records. Other field values of the target record remain unchanged.

Note that InsertReplaceStatement and InsertUpdateStatement work identically if no FieldList is specified.

In case of a FieldList, InsertReplaceStatement fills non specified fields with their default value, whereas Inser-
tUpdateStatement leaves non specified fields unchanged.

3.19.5. Insertion with ReturningClause

If a ReturningClause is specified then the InsertStatement behaves like a scroll cursor on a SELECT statement.
For each inserted record, a result record is delivered which is constructed according to the expressions in the
clause. The expressions may refer to the field names of the target table, even if some of them do not appear in
the FieldList of the INSERT statement. The arity of the ReturningClause is independent from the arity of the
target table. Typically, the ReturningClause serves to catch field values of those fields whose values are assigned
automatically via a default mechanism (sequence or auto_increment specification).

The RETURNING clause might also contain subqueries, but in case of a distributed INSERT, the table references
of the RETURNING clause must be against the same database as the target table reference.

The current user must have INSERT privilege on the specified table.

If a TableExpression is specified, the user must additionally have the corresponding SELECT-privileges as if the
TableExpression were run as a SelectStatement (see SelectStatement).

Locks: The table referenced by TableSpec is update locked automatically.

INSERT INTO suppliers VALUES (80, 'TAS', 'Munich')

INSERT INTO suppliers (name,suppno) VALUES
 ('Smith & Co', (SELECT MAX (suppno)+1 FROM suppliers))

INSERT INTO suppliers TABLE
((81,'xy','ab'),
 (82,'yz','bc')
)

INSERT INTO suppliers@otherdb@server5 (name,suppno)
VALUES ('Smith & Co',
 (SELECT MAX (suppno)+1 FROM
 suppliers@otherdb@server5))

INSERT INTO suppliers SELECT * FROM suppliers2

Data Manipulation Language

87

Assume a table T with an INTEGER field "key" which should get its values from a sequence S (i.e. "key" has
been specified with a DEFAULT S.nextval):

INSERT INTO T(t0,t1) VALUES (123 ,'asd') RETURNING(key)

The RETURNING clause makes the value assigned to the key field available for further processing.

Assume that table suppliers contains the record (80, 'TAS', 'Munich'):

INSERT INTO suppliers VALUES (80, 'TAS2', 'Berlin');
 -- returns error;

INSERT OR IGNORE INTO suppliers VALUES (80, 'TAS2', 'Berlin');
 -- returns no error but has no effect;

INSERT OR REPLACE INTO suppliers (suppno,address) VALUES (80,'Berlin');
 -- replaces record (80,'TAS','Munich') by (80,NULL,'Berlin');

INSERT OR UPDATE INTO suppliers (suppno,address) VALUES (80, 'Berlin');
 -- replaces record (80,'TAS','Munich') by (80, 'TAS', 'Berlin');

3.20. DeleteStatement

The DeleteStatement deletes records from a table or an updatable view.

Syntax:
[328] DeleteStatement ::= DELETE FROM TableSpec [CorrelationIdentifier] [WHERE

SearchCondition]

[303] TableSpec ::= LocalTableSpec | RemoteTableSpec

Explanation: The table specified by TableName must be updatable (i.e. a base table or an updatable view).

All records from the specified table which satisfy the SearchCondition are deleted.

If the SearchCondition is omitted, all records from the specified table are deleted.

If records are deleted from an updatable view, the deletion is made on the underlying base table.

Note

It is allowed to refer to the table to be modified in a subquery of the DeleteStatement (in the Search-
Condition). See the examples below and also General Rule for Update .

Deletion of many records may be slow if secondary indexes exist. However, deletion of all records in a table
(WHERE clause is omitted) is very fast.

Privileges: The current user must have DELETE-privilege on the specified table.

If TableExpressions occur in the SearchCondition, the user must additionally have the corresponding SELECT-
privileges as if the TableExpressions were run as SelectStatements (see SelectStatement).

Locks: The table referenced by TableName is update locked automatically.

If a remote table is specified as the target of the DELETE operation, all subqueries (if any) must specify tables
residing on the same database. However, if the target table is local, any tables (remote or local) may be specified
in subqueries.

DELETE FROM quotations

Data Manipulation Language

88

DELETE FROM suppliers
WHERE suppno = 70

DELETE FROM suppliers
WHERE suppno =
 (SELECT MAX (suppno)
 FROM suppliers@otherdb@server5)

DELETE FROM suppliers@otherdb@server5 s
WHERE NOT EXISTS
 (SELECT *
 FROM quotations@otherdb@server5
 WHERE suppno = s.suppno)

See also General Rule for Updates .

3.21. UpdateStatement

The UpdateStatement updates a set of records in a table or an updatable view.

Syntax:
[329] UpdateStatement ::= UPDATE TableSpec [CorrelationIdentifier]

SET AssignList
[WHERE { SearchCondition | CURRENT }]

[303] TableSpec ::= LocalTableSpec | RemoteTableSpec
[330] AssignList ::= Assignment [, Assignment]...
[331] Assignment ::= FieldIdentifier = Expression

Explanation:

The effect of the UpdateStatement is that all records of the specified table which fulfill the SearchCondition are
updated. If no SearchCondition is specified then all records of the table are updated.

For each record to be updated the fields on the left hand sides of the Assignments are updated to the value of the
corresponding Expression on the right hand side. Unspecified fields remain unchanged.

If the specified table is a view then the update is effectively made on the underlying base table and all fields of
the base table which are not in the view remain unchanged.

For a view v where the WITH CHECK OPTION is specified the update of a record t fails if the updated record
would not fulfill the SearchCondition of the view definition of v or any other view on which v is based.

The UpdateStatement fails if a NULL-Constraint or a key constraint or a UNIQUE constraint (defined by a CRE-
ATE UNIQUE INDEX …) would be violated or if a type exception occurs (see Type Exceptions and Overflow
[sql_type_exceptions]).

The specification of CURRENT is only allowed at the programming interface level for an UPDPOS call.

Note

It is allowed to update primary key fields, but this runs considerably slower than update of non-key
fields only.

Note

It is allowed to refer to the table to be updated in a subquery of the UpdateStatement (in the AssignList
or SearchCondition). See the example and also General Rule for Update .

sql_type_exceptions
sql_type_exceptions

Data Manipulation Language

89

Privileges:

The current user must have UPDATE-privilege on all fields specified on the left hand sides of the Assignments.

If there are TableExpressions on the right hand side of the Assignments or in the SearchCondition, the user addi-
tionally must have corresponding SELECT-privileges as if the TableExpressions were run as SelectStatements
(see SelectStatement).

Locks:

The table referenced by TableName is update locked automatically.

If a remote table is specified as the target of the UPDATE operation, all subqueries (if any) must specify tables
residing on the same database. However, if the target table is local, any tables (remote or local) may be specified
in subqueries.

UPDATE quotations
SET price = price * 1.1, delivery_time = 10
WHERE suppno = 53 AND partno = 222

UPDATE quotations@otherdb@server5 q
SET price = price * 1.1
WHERE price =
 (SELECT MIN (price)
 FROM quotations@otherdb@server5
 WHERE suppno = q.suppno)

3.22. UpdateFromStatement

The UpdateFromStatement updates a target table from an existing or computed source table.

Syntax:
[332] UpdateFromStatement ::= UPDATE TargetTable [CorrelationIdentifier]

[WITHOUT DELETE] FROM SourceExpression

[333] TargetTable ::= TableIdentifier
[334] SourceExpression ::= TableExpression

Explanation:

The target table must not be a view. Field number and field types of SourceExpression and TargetTable must be
compatible.

If the WITHOUT DELETE option is not specified then the UpdateFromStatement updates the target table such
that the records are identical to those of the source.

If the WITHOUT DELETE option is specified, the UpdateFromStatement merges target and source: each record
from source whose field values on target's key positions do not exist in target is inserted. Each record from source
whose field values on target's key position match a record in target replaces this matching record.

With the WITHOUT DELETE option, the UpdateFromStatement thus is a special case of the MergeStatement.

Caution

All triggers and referential constraints on the target table are ignored for this statement. Secondary
indexes are maintained.

Data Manipulation Language

90

Privileges: The current user must have INSERT, UPDATE and DELETE privileges on the target table.

Locks: The table referenced by TableName is update locked automatically.

UPDATE quotations FROM quotations_new
UPDATE quotations WITHOUT DELETE FROM addquot@remotedb@remotehost

3.23. MergeStatement

The MergeStatement serves as a combination of the InsertStatement with the UpdateStatement. It combines the
effects of both these statements within a single one.

Syntax:
[335] MergeStatement ::= MERGE INTO TargetTable USING SourceExpression ON (Join-

Predicate) MatchClause NonMatchClause

[333] TargetTable ::= TableIdentifier
[334] SourceExpression ::= TableExpression
[336] JoinPredicate ::= SearchCondition
[337] MatchClause ::= WHEN MATCHED THEN UPDATE SET AssignList
[338] NonMatchClause ::= WHEN NOT MATCHED THEN INSERT [(FieldList)] VAL-

UES ValueList

[326] ValueList ::= Expression [, Expression]...)

Explanation:

The table specified by TargetTable must be updatable, SourceExpression must be an expression delivering a set
of records. The JoinPredicate refers to fields of TargetTable and SourceExpression.

The merge process can be seen as a loop executed on the SourceExression S. For each record of S there must be
either no record or exactly one record in TargetTable which matches. In the first case, the NonMatchClause is
executed which inserts fields of the current record of S into the TargetTable. In the second case, the MatchClause
is executed to update fields of the matching record in TargetTable as specified in the AssignList.

Privileges: The current user must have INSERT and UPDATE privilege on TargetTable.

Locks: The TargetTable is update locked automatically.

MERGE INTO suppliers tar
 USING (SELECT * FROM newsuppliers) src
 ON (tar.suppno = src.suppno)
 WHEN MATCHED THEN UPDATE SET tar.address = src.address
 WHEN NOT MATCHED THEN INSERT VALUES (suppno, name, address)

3.24. General Rule for Updates

The semantics of all modification operations (INSERT, UPDATE, DELETE) is that of a deferred update, i.e.
conceptually the modification is performed in two phases:

1. Compute the whole modification information (records to be inserted, records to be changed and their values to
replace existing records, records to be deleted, resp.). In this phase the table to be modified remains unchanged.

Data Manipulation Language

91

2. Execute the modification.

This principle allows to specify the modification referring to the old state of the table and defines the modification
as an atomic step.

3.25. Rules of Resolution

For the semantics of nested QueryBlocks it is necessary that any FieldReference and any SetFunction can be re-
solved against exactly one QueryBlock. This block is then called the resolution block of the Field or the SetFunc-
tion, resp.

3.25.1. Resolution of Fields

An unqualified Field fld (see FieldReference) has as its resolution block the innermost surrounding QueryBlock
q whose FROM-clause contains a TableReference which exports a field named fld. If there is more than one such
TableReference in q, the resolution fails and an error is returned.

A qualified Field r.fld has as its resolution block the innermost surrounding QueryBlock q whose FROM-clause
contains a TableName or CorrelationName r. If the corresponding TableReference does not export a field
named fld, the resolution fails and an error is returned.

3.25.2. Resolution of SetFunctions

In most cases, the resolution block of a SetFunction is the innermost surrounding QueryBlock.

SELECT partno
FROM quotations
GROUP BY partno
HAVING
 MAX(price) - MIN(price)
 >
 AVG(price) * 0.5

The resolution of all three SetFunctions is the only (and innermost) QueryBlock. Thus, they are computed for
each group of parts.

In general, the resolution of count(*) is always the innermost surrounding QueryBlock; for all other forms of
SetFunctions, the resolution block is the innermost resolving QueryBlock over all fields inside the SetFunction.

SELECT partno
FROM quotations q1
GROUP BY partno
HAVING
 (SELECT COUNT(*) FROM quotations q2
 WHERE q2.partno = q1.partno AND
 q2.price = MIN (q1.price))
 > 1

Data Manipulation Language

92

Here, COUNT(*) refers to the inner QueryBlock whereas MIN(q1.price) refers to the outer QueryBlock and thus
computes as the minimum price over the current group of parts.

Arbitrary (single-valued) Expressions are allowed as arguments of SetFunctions. It is even allowed to nest Set-
Functions as long as the resolution block of the inner SetFunction surrounds the resolution block of the outer
SetFunction.

For each SetFunction s with resolution block q, s must not appear in the WHERE-clause of q.

93

4. Load and Unload Statements
In addition to the TB/SQL language, the Transbase Publishing System (formerly called Trans-
base CD) offers language constructs to control the data transfer from Retrieval Databas-
es to the disk cache and to unload the disk cache. These constructs are called Load
Statements [tbcd.xhtml#ch_Switch_Load_Statements] and Unload Statements
[tbcd.xhtml#ch_Unload_Statement]. They are only relevant and valid in Retrieval Databases and are
explained in the Transbase Publishing Guide [tbcd.xhtml].

tbcd.xhtml#ch_Switch_Load_Statements
tbcd.xhtml#ch_Switch_Load_Statements
tbcd.xhtml#ch_Switch_Load_Statements
tbcd.xhtml#ch_Unload_Statement
tbcd.xhtml#ch_Unload_Statement
tbcd.xhtml
tbcd.xhtml

94

5. Alter Session statements
ALTER SESSION Statements serve to configure runtime parameters of a Transbase session. They are not subject
to the transaction concept; i.e. they can be issued inside or outside a transaction.

They are entered in interactive applications or used in application programs like any other SQL statement.

The effect of a ALTER SESSION statement is restricted to the session, i.e. the connection which issues it.

5.1. Sort Buffer Size

This statement serves to configure the size of the main memory buffer for sorting operations (relevant for ORDER
BY, GROUP BY, sort merge joins etc.). The configuration comes into effect at the start of the next transaction.

Syntax:
[339] AlterSessionSortbufferStmt ::= ALTER SESSION SET SORT_BUFFER_KB = Size
[340] Size ::= IntegerLiteral

Explanation: Size is the desired size of the sortercache in KB. Big sizes favour the computing time for sorter
operations but need more resources.

The default size of the buffer is 2048 KB.

Note that the feasibility of sorter operations does not depend on the size of the buffer.

Note that the reconfiguration of the sortercache is deferred until the start of the next transaction. For the sake of
clarity, it is thus recommended to issue that statement outside of a transaction.

5.2. Multithreading Mode

This statement sets the Transbase query optimizer to one of several possible levels of parallel query execution.
This setting is valid throughout the current session.

Syntax:
[341] AlterSessionMultithreadStmt ::= ALTER SESSION SET QUERY_THREADING = Querythread-

Config

[342] QuerythreadConfig ::= OFF | MEDIUM | HIGH

Explanation:

In mode MEDIUM or HIGH, each suitable query is processed by several threads which run in parallel. The execu-
tion time may decrease considerably. This might be at the expense of other processes running on the same machine.

Without any AlterSessionMultithreadStmt or with mode OFF, queries are processed with the corresponding
threading mode defined by the creation of the database.

Without multithreading Transbase guarantees that data is always processed and returned in the same deterministic
sort order, even if no ORDER BY is specified. The SQL specification does not demand any reproducible sort order
if no ORDER BY is used. With querythreading switched to MEDIUM or HIGH it is likely that data is returned

Alter Session statements

95

in different orders. Thus a query will return the same result but possibly in different order if no ORDER BY is
specified. Only the specification of an ORDER BY guarantees a deterministic result sort order.

Setting Transbase for maximum parallalism:

ALTER SESSION SET QUERY_THREADING = HIGH

5.3. Integer Division Mode

This statement specifies the processing of an arithmetic division of two INTEGER values.

According to the SQL standard, an INTEGER division delivers INTEGER again, i.e. the fractional part is omitted.

With the following statement, the result of integer division can be defined to be a NUMERIC which also contains
the fractional part. With its counterpart, one can return to the standard behaviour.

Syntax:
[343] AlterSessionIntdivStmt ::= ALTER SESSION SET INTEGER_DIVISION =

{ NUMERIC | STANDARD }

5.4. Lock Mode

This statement specifies a fixed lock granularity or the default locking strategy of Transbase. These statements do
not lock objects but influence the lock granularity of the automatic locking of Transbase.

Syntax:
[344] AlterSessionLockmodeStmt ::= ALTER SESSION SET LOCKMODE = Lockgran
[345] Lockgran ::= PAGES | TABLES | MIXED

Explanation: If PAGES is specified, all subsequent locks are on page basis.

If TABLES is specified, all subsequent locks are on table basis. In this mode, at most one lock is set for a table
including all its secondary indexes and its LOBs.

If MIXED is specified, the locking strategy is chosen implicitly by the system which also is the default.

Note

These statements do not lock any objects. Carefully distinguish the SET LOCKMODE statements
from the LOCK and UNLOCK statements which set TABLE locks on random tables.

5.5. Evaluation Plans

This statement enables and disables the generation of evaluation plans.

Alter Session statements

96

Syntax:
[346] AlterSessionPlansStmt ::= ALTER SESSION SET EVALUATION_PLANS =

{ COUNTERS | TIMES | OFF }

Explanation: If PLANS are enabled a textual query execution plan (QEP) is generated when a query is run. The QEP
is stored in the scratch directory of the database but also can be retrieved into the application via the appropriate
API call.

If mode COUNTERS is enabled, each operator of the QEP contains the number of records processed by that part.

If mode TIMES is enabled, each operator of the QEP additionally contains the elapsed time of processing the
operator.

Switching to the mode OFF ends the QEP generation.

Note

Tracing the execution times via mode TIMES may cause a significant overhead in the query's total
elapsed time. The times denoted in the produced QEP are adjusted to compensate this additional
overhead.

5.6. Schema Default

This statement serves to change the default schema of the database for the current connection.

Syntax:
[347] AlterSessionSchemaStmt ::= ALTER SESSION SET SCHEMA_DEFAULT = SchemaIdentifier
[8] SchemaIdentifier ::= UserIdentifier
[7] UserIdentifier ::= Identifier | PUBLIC | USER

Explanation: If an object is specified without schema information, the default schema of the database is used. This
ALTER SESSION statement can change the default setting temporarily for a connection.

5.7. SQL Dialect

This statement serves to adapt the SQL to the dialect of ODBC or MySQL.

Syntax:
[348] AlterSessionSetDialectStmt ::= ALTER SESSION SET DIALECT = SqlDialect
[349] SqlDialect ::= MYSQL | TRANSBASE

Explanation: The default dialect of a session is TRANSBASE

97

6. Lock Statements
Transbase locks database objects (i.e. pages or tables or views) automatically. If, however, explicit control of
locking is needed, Transbase allows to lock and unlock objects explicitly with table locks.

Two statements, namely a LockStatement and an UnlockStatement, are provided for that purpose.

Carefully distinguish the LOCK and UNLOCK statements which set TABLE locks on random tables from the
ALTER SESSION SET LOCKMODE statement which influences the lock granularity for automatic locking by
Transbase.

6.1. LockStatement

Serves to explicitly lock tables and views.

Syntax:
[350] LockStatement ::= LOCK LockSpec [, LockSpec]...
[351] LockSpec ::= LockObject LockMode
[352] LockObject ::= TableIdentifier | ViewIdentifier
[353] LockMode ::= READ | UPDATE | EXCLUSIVE

Explanation: For each LockSpec, the specified lock is set on the specified object. If a view is specified, the lock
is effectively set on the underlying base table(s).

For the semantics of locks see {Transbase System Guide}.

Privileges: The current user needs SELECT-privilege on the specified objects. System tables (the data dictionary)
cannot be locked explicitly.

LOCK suppliers READ, quotations UPDATE

6.2. UnlockStatement

Serves to remove a READ lock.

Syntax:
[354] UnlockStatement ::= UNLOCK LockObject
[352] LockObject ::= TableIdentifier | ViewIdentifier

Explanation: The specified object is unlocked, i.e. implicitly set or explicitly requested locks are removed.

Error occurs if the object is not locked or if the object is update locked, i.e. an InsertStatement, UpdateStatement,
DeleteStatement or an explicit LockStatement with UPDATE or EXCLUSIVE mode has been issued within in
the transaction.

98

7. The Data Types Datetime and
Timespan

7.1. Principles of Datetime

The data type DATETIME is used to describe absolute or periodic points in time with a certain precision. A
datetime value is composed of one or more components. For example, the birthday of a person consists of a year,
a month and a day and is an absolute point in time with a certain precision. If the hour and minute of the birth is
added, then the absolute point in time is described with a higher precision. Examples for periodic points in time
are the 24-th of December, the birthday of a person without the year indication, or 12:00:00 (twelve o'clock).

7.1.1. RangeSpec

The occupied components of a datetime value constitute its range. The components have symbolic names. All
names occur in 2 equivalent variants which come from the original Transbase notation and from the evolving SQL
standard. An overview is given in the following table.

Table 7.1. Ranges of Datetime Components

Notation Meaning Allowed Values

YY year 1 - 32767

MO month 1 - 12

DD day 1 - 31

HH hour 0 - 23

MI minute 0 - 59

SS second 0 - 59

MS millisecond 0 - 999

The range indices MS, …, YY are ordered. MS is the smallest, YY is the highest range index. An explicit range
spec is written as [ub:lb] where ub is the upperbound range and lb is the lowerbound range. For example [YY:DD]
is a valid range spec. [DD:YY] is an invalid range spec.

Upperbound and lowerbound range may be identical, i.e. of the form [ab:ab]. A datetime value with such a range
has a single component only. The corresponding range spec can be abbreviated to the form [ab].

7.1.2. SQL Compatible Subtypes

The SQL standard defines the following subtypes which also are supported by Transbase:

The Data Types Date-
time and Timespan

99

Table 7.2. SQL Types for Datetime

SQL Type Transbase Equivalent

DATE DATETIME[YY:DD]

TIME DATETIME[HH:SS]

TIMESTAMP DATETIME[YY:MS]

For each case, the notations are equivalent.

Note that there are types that can be defined in Transbase but have no equivalent SQL standard formu-
lation. DATETIME[MO:DD] describes yearly periodic datetimes based on day granularity, e.g. birthdays.
DATETIME[HH:MI] describes daily periodic datetimes based on minute granularity, e.g. time tables for public
traffic.

7.1.3. DatetimeLiteral

DatetimeLiteral defines the syntax for a constant value inside the SQL query text or inside a host variable of
type char[]. Transbase supports a variety of literal notations, namely a native Datetime literal representation with
maximal flexibility, the SQL standard representation and a notation compatible with the ODBC standard. All
3 variants are sufficiently explained by the following examples. A fourth variant is supported in a Transbase
spoolfile.

Table 7.3. Variants of Timestamp Literals

Variant Notation

Native TB DATETIME[YY:MS](2002-12-24 17:35:10.25)
DATETIME(2002-12-24 17:35:10.25)

SQL TIMESTAMP '2002-12-24 17:35:10.025'

ODBC { ts '2002-12-24 17:35:10.025' }

Spoolfile only '2002-12-24 17:35:10.25'

• In the native Transbase notation, the MS component (like all other components) gives the total number of
milliseconds. In contrast, in SQL and ODBC notation, the dot separator between SS and MS has the meaning
of a fractional point.

• All variants except ODBC are also supported in a spoolfile if enclosed in single quotes. Thereby the quotes in
the SQL variant has to be escaped by a backslash.

• As a general rule, in the native Transbase notation, the range specification [upb:lwb] can be omitted if upb is YY.

Table 7.4. Variants of Date Literals

Variant Notation

Native TB DATETIME[YY:DD](2002-12-24)

Native TB DATETIME(2002-12-24)

SQL DATE '2002-12-24'

ODBC { d '2002-12-24' }

Spoolfile only '2002-12-24'

The Data Types Date-
time and Timespan

100

Table 7.5. Variants of Time Literals

Variant Notation

Native TB DATETIME[HH:SS](17:35:10)

SQL TIME '17:35:10'

ODBC { t '17:35:10' }

Spoolfile only '17:35:10'

There are literals which are only representable in native Transbase notation, because SQL (as well as ODBC) only
supports subtypes of the most flexible DATETIME type. See the following examples:

The 24-th of December:

DATETIME[MO:DD](12-24)

Twelve o'clock:

DATETIME[HH](12)

Note the following rules illustrated by the examples above:

• The range spec can be omitted if and only if the upperbound range is YY.

• If upperbound and lowerbound range are identical, the range spec can be abbreviated to the form [YX].

7.1.4. Valid Datetime Values

Independent of the notation syntax, some datetime values are not accepted as legal values:

Transbase assumes that the Julian calendar is to be applied from Saturday datetime(1-1-1) to Thurs-
day datetime(1582-10-04). The Gregorian calendar is applied from the following day Friday date-
time(1582-10-15) until Sunday datetime(32767-12-31). Each year starts at datetime[MO:DD]
(1-1) and ends at datetime[MO:DD](12-31).

Only datetimes are accepted that might be legal values according to this premise.

• If MO and DD are inside the range, then the DD value must not exceed the highest existing day of the MO value.

• If YY and DD are inside the range then leap year rules of the Julian/Gregorian time periods specified above
apply.

DATETIME[MO:DD](4-31) -- Illegal: no date with such components exists
DATETIME[MO:DD](2-29) -- Legal: there are dates with such components
DATETIME(1988-2-29) -- Legal: leap year
DATETIME(1900-2-29) -- Illegal: no leap year
DATETIME(1582-10-14) -- Illegal: 1582 was a rather short year anyway

7.1.5. Creating a Table with Datetimes

The type specifier for a datetime field of a table in a CreateTableStatement consists of the keyword DATETIME
followed by a RangeSpec.

The Data Types Date-
time and Timespan

101

CREATE TABLE myfriends
(name CHAR(*),
 birthday DATETIME [YY:DD], -- alternative syntax: DATE
 firstmet DATETIME [YY:HH] -- no alternative
)

This table would be appropriate to describe persons with their name and birthday and the time when met first or
talked to first.

Note that although all datetime values in the table are exactly of the specified format, it is possible to insert records
with datetime fields of a different precision. Implicit conversions (CAST operators) then apply as described in
the following chapters.

7.1.6. The CURRENTDATE/SYSDATE Operator

An operator CURRENTDATE is provided which delivers the actual date and time. SYSDATE is a synonym for
CURRENTDATE. The result type is DATETIME[YY:MS] or TIMESTAMP but note that the effective precision
may be less (e.g. [YY:SS]) depending on the system clock of the underlying machine. In the latter case, it is tried,
however, to set the MS field in such a way that even several successive calls of CURRENTDATE do not deliver
the same date (see also below).

The operator CURRENTDATE may be used wherever a datetime literal can be used.

CURRENTDATE may also appear as value in a spool file.

When used in a statement the CURRENTDATE operator is evaluated only once and its resulting value remains
the same during the whole execution of the statement.

As long as a cursor is open, any interleaving cursor sees the same CURRENTDATE result as the already open
cursor. In other words, a consistent view of the CURRENTDATE is provided for interleaving queries inside an
application. In all other situations (non interleaving queries), it is tried to evaluate successive calls of CURRENT-
DATE such that different results are delivered (see above).

7.1.7. Casting Datetimes

A datetime value can be cast to a different range. A cast operation can be performed explicitly by the CAST
operator or implicitly occurs before an operation with the datetime value is performed (see Type Exceptions and
Overflow).

In an explicit CAST operation, the syntax of the type specifier is the same as the one used in a CreateTableState-
ment .

CURRENTDATE CAST DATETIME[YY:DD] -- current vear/month/day
CURRENTDATE CAST DATE -- equivalent to above
CURRENTDATE CAST DATETIME[YY:MO] -- current vear and month
CURRENTDATE CAST DATETIME[HH:SS] -- current hour/minute/second
CURRENTDATE CAST TIME -- equivalent to above

In the sequel, the range boundaries of the value to be cast are called the upperbound source range and the lower-
bound source range. The range boundaries of the target range are called the upperbound target range and the
lowerbound target range.

The rules to construct the result datetime value from the given one are as follows:

• DTC1: All components having a range index smaller than the source lowerbound range are set to the smallest
possible value (0 for MS, SS, MI, HH and 1 for DD, MO, YY).

The Data Types Date-
time and Timespan

102

• DTC2: All components having a range index higher than the source upperbound range are set to the correspond-
ing components of CURRENTDATE.

• DTC3: The other components (i.e. having range index between source lowerbound index and source upperbound
index) are set as specified by the source datetime fields.

Examples:

-- Assuming that the CURRENTDATE is DATETIME [YY:MS] (1989-6-8...):
DATETIME [HH] (12) CAST DATETIME [YY:MS] --> DATETIME [YY:MS] (1989-6-8 12:0:0.0)
DATETIME [YY:MO] (1989-6) CAST DATETIME [MO:DD] --> DATETIME [MO:DD] (6-1)

DD is set to the smallest possible value, namely 1.

7.1.8. TRUNC Function

The TRUNC function is a shortcut to cast a datetime value to the type DATE, i.e. DATETIME[YY:DD]

TRUNC (DATETIME [YY:MS] (1989-6-8 12:0:0.0))

yields

DATETIME [YY:DD] (1989-6-8)

7.1.9. Comparison and Ordering of Datetimes

Datetime values are totally ordered. A datetime d1 is greater than d2 if d1 is later in time than d2.

The SQL operators <=, <, = etc. as used for arithmetic types are also used for comparison of datetimes.

If datetimes values with different ranges are compared, they are implicitly cast to their common range before the
comparison is performed. The common range is defined by the maximum of both upperbound and the minimum
of both lowerbound ranges. Note, however, special rules for CURRENTDATE as described below!

Thus, it is possible that one or both datetime values are implicitly cast according to the casting rules described
in the preceding chapter.

The DATETIME comparison

DATETIME[YY:MI](1989-6-8 12:30] = DATETIME[YY:DD](1989-6-8)

yields FALSE, because the second operand is implicitly cast to the value DATETIME[YY:MI] (1989-6-8 00:00)

The comparison

DATETIME[MO:DD](6-8) = DATETIME[YY:DD](2000-6-8)

will yield TRUE in the year 2000 and FALSE in other years.

To retrieve all persons who have been met since February this year:

SELECT * FROM Persons
WHERE talked >= DATETIME [MO](2)

The Data Types Date-
time and Timespan

103

To retrieve all persons whose sign of the zodiac is Gemini:

SELECT * FROM Persons
WHERE birthday CAST DATETIME [MO:DD]
BETWEEN DATETIME [MO:DD] (5-21)
AND DATETIME [MO:DD] (6-20)

Note that the CAST operator applied to birthday is necessary to restrict the common range to [MO:DD]. If the
explicit CAST were omitted, the common range would be [YY:DD] and the constant comparison operators would
be extended by the current year so that the query would not hit any person.

To retrieve all persons ordered by their age (i.e. ordered by their birthday descendingly):

SELECT * FROM Persons
ORDER BY birthday DESC

An exception of the type adaption rule is made for the CURRENTDATE operator. In comparisons (=, <>, <,
<=, >, >=) the CURRENTDATE value is automatically adapted to the range of the comparison operand. In most
situations this is useful and avoids explicit CAST operations.

SELECT * FROM Persons
WHERE talked CAST DATETIME[YY:DD] = CURRENTDATE

This example retrieves all records whose field value ''talked'' matches the current day (year, month, day). Without
the type adaption rule for CURRENTDATE, one would also have to cast CURRENTDATE on the range [YY:DD].

7.2. Principles of Timespan and Interval

The data type TIMESPAN (and INTERVAL, as a SQL conformant variant) is used to describe distances between
absolute or periodic points in time with a certain precision. Examples for TIMESPAN values are the result times
of a sports event (measured in hour, minutes, seconds and/or milliseconds), the average life time of a material or
product or the age of a person.

7.2.1. Transbase Notation for Type TIMESPAN

The concepts of components, range and range indices are similar to the type DATETIME. The following example
shows the strong syntactic analogies between DATETIME and TIMESPAN. However, the semantics are clearly
different:

• DATETIME[HH:MI] : suitable for points in time which are periodic on a daily basis (for example taking off
time for a flight).

• TIMESPAN[HH:MI] : suitable for describing time intervals on a minute precision for example duration of a
flight.

The following important rule applies:

• The range of a TIMESPAN must not span the MO-DD border.

The Data Types Date-
time and Timespan

104

This means that the ranges of all TIMESPAN types must either be inside [YY:MO] or inside [[DD:MS]. For
example, the following type definitions are illegal:

• TIMESPAN[YY:DD] -- illegal

• TIMESPAN[MO:HH] -- illegal

The reason is that the number of days is not the same for all months. So the arithmetic rules for timespan calcu-
lations would be compromised.

The set of allowed values on the components are also different from DATETIME. Obviously, the day component
of a TIMESPAN value may have the value 0 whereas a DATETIME value containing a day component shows a
value >= 1. The legal values in a TIMESPAN are shown in table timespan .

7.2.2. INTERVAL Notation for TIMESPAN

The SQL standard notation uses keyword INTERVAL (opposed to TIMESPAN) and different range identifiers
with a different syntactic encapsulation. The following examples show the notation in contrast to the TIMESPAN
notation.

SQL standard notation Transbase notation

INTERVAL YEAR TIMESPAN[YY]

INTERVAL YEAR(4) TO MONTH TIMESPAN[YY:MO]

INTERVAL DAY TIMESPAN[DD]

INTERVAL DAY(5) TIMESPAN[DD]

INTERVAL HOUR TO SECOND TIMESPAN[HH:SS]

INTERVAL HOUR TO SECOND(3) TIMESPAN[HH:MS]

INTERVAL SECOND(3) TIMESPAN[SS]

INTERVAL SECOND(5,3) TIMESPAN[SS:MS]

If SQL notation is used, then the type is internally mapped to the corresponding TIMESPAN type. Thereby the
optional precision on the start range is ignored.

If the end range is SECOND, then a precision indicates a fractional part so the end range effectiveley becomes
milliseconds (MS).

If SECOND is start range (thereby automatically also end range) then a simple precision like (3) is ignored like
in all start ranges - especially this precision does not specifiy a fractional part so the mapping is to SS.

If SECOND is start range (thereby automatically also end range) then a specification of a fractional part must be
given as (m,n) as it is done in the last example.

7.2.3. Ranges of TIMESPAN Components

On the upperbound range of a TIMESPAN value, always values from 0 through MAXLONG are allowed.

On all components different from the upperbound components only those values are allowed which are below a
unity of the next higher component. The allowed values are shown in the table.

The Data Types Date-
time and Timespan

105

By these rules, it is possible for example to express a time distance of 3 days, 1 hour and 5 minutes as 73 hours, 5
minutes i.e. as a TIMESPAN[HH:MI]. However, it is illegal to express it as 72 hours and 65 minutes.

Table 7.6. Ranges of Timespan Components

Transbase Notation SQL Standard Notation Allowed values if not upperbound
range

YY YEAR 0 - MAXLONG

MO MONTH 0 - 11

DD DAY 0 - MAXLONG

HH HOUR 0 - 23

MI MINUTE 0 - 59

SS SECOND 0 - 59

MS -- 0 - 999

7.2.4. TimespanLiteral

There are 2 variants for TIMESPAN literals which correspond to the 2 variants of TIMESPAN type definition
(TIMESPAN and INTERVAL). The following table shows examples in both notations.

Table 7.7. Timespan Literals in Transbase and SQL Notation

SQL standard notation Transbase notation

INTERVAL '2-6' YEAR TO MONTH TIMESPAN[YY:MO](2-6)

INTERVAL '2:12:35' HOUR TO SECOND TIMESPAN[HH:SS](2:12:35)

INTERVAL '2 12' DAY TO HOUR TIMESPAN[DD:HH](2 12)

INTERVAL -'1' YEAR - TIMESPAN[YY](1)

INTERVAL -'4.5' SECOND - TIMESPAN[SS:MS](4.500)

Note that negative TIMESPANs are reasonable (e.g. as the result of a subtraction of a DATETIME value from a
smaller DATETIME value). In SQL syntax, literals with a negative value incorporate the '-' sign within the literal
syntax whereas in Transbase native notation the '-' sign is written (as a separate token) in front of the TIMESPAN
token. See also chapter Sign_of_timespans Sign of Timespans.

7.2.5. Sign of Timespans

A timespan value is positive or zero or negative. It is zero if all components of its range are zero. A negative
timespan may result from a computation (see the following chapters) or can also be explicitly represented as a
timespan literal prefixed with an unary '-' (in terms of the TB/SQL grammar this is an Expression).

The following literal denotes a negative timespan of 3 hours and 29 minutes.

- TIMESPAN [HH:MI] (3:29) -- Transbase notation
 INTERVAL -'3:29' HOUR TO MINUTE -- SQL standard syntax

The Data Types Date-
time and Timespan

106

Note

It is illegal to attach a '-' sign to any component of a timespan literal.

7.2.6. Creating a Table containing Timespans

The type specifier for a timespan field of a table in a CreateTableStatement consists of a TIMESPAN type specifier
either in Transbase native syntax or in SQL standard syntax.

CREATE TABLE Marathon
(name CHAR(*)
 time TIMESPAN [HH:MS] -- or INTERVAL HOUR TO SECOND(3)
)

Note that although all timespan values in the table are exactly of the specified format, it is possible to insert records
with timespan fields of a different precision. Implicit conversions (CAST operators) then apply as described in
the following chapters.

7.2.7. Casting Timespans

Similarily to datetimes, a timespan value can be explicitly or implicitly cast to a target range. Timespan casting,
however, has a complete different semantics than datetime casting (recall Chapter Datetime Casting). A timespan
cast transfers a value into another unit by keeping the order of magnitude of its value unchanged - however a loss
of precision or overflow may occur.

The following rules and restrictions apply:

• TSC1: The target range must be valid, i.e. it must not span the MO-DD border.

• TSC2: The target range must be compatible with the source range, i.e. both ranges must be on the same side
of the MO-DD border.

• TSC3: If the lowerbound target range is greater than the lowerbound source range then a loss of precision occurs.

• TSC4: If the upperbound target range is smaller than the upperbound source range then the component on the
upperbound target range is computed as the accumulation of all higher ranged components. This may lead to
overflow.

Examples:

TIMESPAN [DD] (90) CAST TIMESPAN [MO:DD] --x violates TSC1
TIMESPAN [DD] (90) CAST TIMRSPAN [MO] --x violates TSC2
TIMESPAN [MO] (63) CAST TIMESPAN [YY:MO] --> TIMESPAN [YY:MO] (5-3)
TIMESPAN [YY:MO] (5-3) CAST TIMESPAN [MO] --> TIMESPAN [MO] (63) -- accumulation without overflow
TIMESPAN [SS] (3666) CAST TIMESPAN [HH:MI] --> TIMESPAN [HH:MI] (1:1) -- loss of precision
TIMESPAN [DD:MI] (3 12:59) CAST TIMESPAN [HH] --> TIMESPAN [HH] (84) -- accumulation and loss of precision
TIMESPAN [DD] (365) CAST TIMESPAN [MS] --x overflow on MS component

The Data Types Date-
time and Timespan

107

7.2.8. Comparison and Ordering of Timespans

TIMESPAN values are totally ordered and can be compared, sorted etc. like DATETIME values. If their ranges
differ, they are cast implicitly to an appropriate range.

TIMESPAN [MI](69) = TIMESPAN [HH](1) -- false
TIMESPAN [MI] (69) = TIMESPAN [HH:MI] (1:9) -- true

7.2.9. Scalar Operations on Timespan

A timespan value can be multiplied by a scalar and divided by a scalar. The result is again a timespan value with
the same range as the input timespan value. The scalar can be any arithmetic value but it is cast to type INTEGER
before the operation is performed.

Multiplication:

The semantics of multiplication is that all components of the timespan are multiplied and the resulting value
is normed according to the rules of valid timespans. Overflow occurs if the upperbound range value exceeds
MAXLONG.

TIMESPAN [MI:SS] (30:10) * 10 --> TIMESPAN [MI:SS] (301:40)
TIMESPAN [DD:MS] (1 6:50:07.643) * 4 --> TIMESPAN [DD:MS] (5 3:20:30.572)
TIMESPAN [MI:SS] (214748365:10) * 10 --> Overflow!
TIMESPAN [MI:SS] (214748365:10)
 CAST TIMESPAN [HH:SS] * 10 --> TIMESPAN [HH:SS] (35791394:11:40)
TIMESPAN [MI:SS] (214748365:10)
 CAST TIMESPAN [DD:SS] * 10 --> TIMESPAN [HH:SS] (1491308 02:11:40)

Division:

The semantics of division is as follows: first the timespan value is cast to its lowerbound range (a virtual cast
which never yields overflow!), then the division is performed as an INTEGER division and then the result is cast
back to its original range.

TIMESPAN [YY] (1) / 2 --> TIMESPAN [YY] (0)
TIMESPAN [YY:MO] (1-5) / 2 --> TIMESPAN [YY:MO] (0-8)
TIMESPAN [DD:MS] (5 3:20:30.572) / 4 --> TIMESPAN [DD:MS] (1 6:50:7.643)

7.2.10. Addition and Substraction of Timespans

Two timespans with compatible ranges (see Rule TSC2 in Casting Timespans) can be added or substracted.

The result is a timespan value whose range is the common range of the input values. The common range is again
defined by the maximum of both upperbounds and the minimum of both lowerbounds. The input values are cast
to their common range before the operation is performed.

TIMESPAN [DD] (1000) + TIMESPAN [DD] (2000) --> TIMESPAN [DD] (3000)

The Data Types Date-
time and Timespan

108

TIMESPAN [YY] (1) + TIMESPAN [MO] (25) --> TIMESPAN [YY:MO] (3-1)
TIMESPAN [YY] (1) - TIMESPAN [MO] (27) --> -TIMESPAN [YY:MO] (1-3)

To retrieve the time difference between the winner and the looser of the Marathon as well as the average time:

SELECT MAX(time) - MIN(time), AVG(time)
FROM Marathon

7.3. Mixed Operations

7.3.1. Datetime + Timespan, Datetime - Timespan

If a timespan is added to or substracted from a datetime, the result is again a datetime. The range of the result is
the common range of the two input operands as defined above.

DATETIME [YY:DD] (1989-6-26) + TIMESPAN [DD] (30) --> DATETIME [YY:DD] (1989-7-26)
DATETIME [HH:MI] (12:28) - TIMESPAN [SS] (600) --> DATETIME [HH:SS] (12:18:00)
DATETIME [YY:MO] (1989-2) + TIMESPAN [DD:MI] (3 20:10) --> DATETIME [YY:MI] (1989-2-4 20:10)

If the upperbound range of the input datetime value is less than YY, then the datetime is always cast to [YY:lb]
before the operation is performed (lb is the lowerbound range of the datetime).

DATETIME [MO:DD] (2-28) + TIMESPAN [HH] (24) --> DATETIME [MO:HH] (2-29 0)

if run in a leap year; in other years it yields

DATETIME [MO:DD] (2-28) + TIMESPAN [HH] (24) --> DATETIME [MO:DD] (3-1 0)

When the range of the input timespan is on the left side of the MO-DD border Transbase requires the range of the
input datetime to be completely on the left side of the MO-DD border, too. The reason is to avoid the semantic
ambiguities that migth arise in some cases.

DATETIME [YY:DD] (1992-2-29) + TIMESPAN [YY] (1) --> Invalid
DATETIME [YY:MO] (1992-2) + TIMESPAN [YY] (1) --> DATETIME [YY:MO] (1993-2)

7.3.2. Datetime - Datetime

When two datetimes are subtracted from each other the result is a timespan.

DATETIME [YY:MO] (1989-3) - DATETIME [YY:MO] (1980-4) --> TIMESPAN [YY:MO] (8-11)

The result of a datetime subtraction may, of course, also be negative.

Except to one case (see below) the range of the result is again the common range of the two input values. If the
input ranges are different the two input values are cast to their common range before the operation is performed.

DATETIME [HH:MI] (12:35) - DATETIME [HH] (14) --> TIMESPAN [HH:MI] (1:25)

One slight complication arises when the range of the resulting timespan would span the MO-DD border and thus
would be invalid. In this case, the upperbound of the result range is always DD.

DATETIME [YY:DD] (1989-6-26) - DATETIME [YY:DD] (1953-6-8) --> TIMESPAN [DD] (13167)

The Data Types Date-
time and Timespan

109

7.4. The DAY Operator

The DAY operator is applicable to Datetime and delivers the corresponding day of the year as an INTEGER value
between 1 and 366.

DAY OF DATETIME (2000-12-31)

yields 366.

7.5. The WEEKDAY Operator

The WEEKDAY operator is applicable to Datetime and delivers the corresponding weekday as an INTEGER
value between 0 and 6, where 0 means Sunday, 1 means Monday etc.

WEEKDAY OF DATETIME (2000-1-1)

yields 6 (meaning Saturday).

To retrieve all persons who have been met on a Sunday

SELECT * FROM Persons
WHERE WEEKDAY OF talked = 0

7.6. The WEEK Operator

The WEEK operator is applicable to Datetime and delivers the corresponding week as an INTEGER value between
1 to 54, according to the following rules:

• On every Sunday begins a new week.

• The first week of a year begins on January 1st - regardless of its weekday.

Consequently, the first and last week of a year may contain less than 7 days. A leap year ending on a Sunday
has 54 weeks.

WEEK OF DATETIME (2000-12-31)

yields 54.

The Data Types Date-
time and Timespan

110

7.7. The ISOWEEK Operator

The ISOWEEK operator is applicable to Datetime and delivers the corresponding isoweek as an INTEGER value
between 1 to 53, according to the following rules of ISO 8601 / DIN 1355:

• Each week begins on a Monday and ends on a Sunday.

• The first week of a year contains at least four days of the same year.

Consequently, there are no fragmented weeks, i.e. each week contains exactly 7 days. The 29th, 30th, and 31st
of December may belong to the first week of the following year. The 1st, 2nd, and 3rd of January may belong
to the last week for the previous year.

ISOWEEK OF DATETIME (2000-1-1)

yields 52, as that Saturday belongs to the 52th week of 1999.

7.8. The QUARTER Operator

The QUARTER operator is applicable to Datetime and delivers the corresponding quarter of the year as an IN-
TEGER value between 1 and 4.

QUARTER OF DATETIME (2000-12-31)

yields 4.

7.9. Selector Operators on Datetimes and
Timespans

A selector operator extracts a single component from a datetime or timespan value converted into the type IN-
TEGER. A selector operation consists of one of the keywords YY, MO, DD, HH, MI, SS, MS, followed by an
expression of type DATETIME or TIMESPAN.

Error occurs if the selector is not inside the range of the value.

Note that selecting a component semantically is not the same as casting to the range of the selector as shown by
the examples:

MS OF TIMESPAN [SS:MS] (2.032)

yields 32.

TIMESPAN [SS:MS] (2.032) CAST TIMESPAN [MS]

The Data Types Date-
time and Timespan

111

yields

TIMESPAN [MS] (2032)

Note that the selector operator simply extracts one component without regarding the semantics of DATETIME
or TIMESPAN. However, the selector operators (as well as the CONSTRUCT operator, see below) are useful
because they provide for a bridge between DATETIME/TIMESPAN and the basic arithmetic types of SQL. For
example an application program can retrieve the components of datetime or timespan values into integer program
variables for further arithmetic processing.

7.10. Constructor Operator for Datetimes and
Timespans

The constructor operator (CONSTRUCT) is inverse to the selector operators. It constructs a datetime or timespan
value from a list of arithmetic expressions. Syntactically it consists of the keyword CONSTRUCT followed by
a syntax which is similar to that of a datetime or timespan literal. However, the components can be arithmetic
expressions and are separated by commata. The arithmetic expressions are automatically cast to INTEGER before
the CONSTRUCT operator is performed. Let e1, e2, e3 be arithmetic expressions in the following examples.

CONSTRUCT DATETIME [YY:DD] (1986,10,6)

is equivalent to

DATETIME [YY:DD] (1986-10-6)

CONSTRUCT DATETIME [MO:HH] (e1,e2,e3)

If omitted the range is assumed to start with YY. The following literal therefore denotes a range of [YY:MO].

CONSTRUCT TIMESPAN (e1,e2)

Note that if all values are constants, the CONSTRUCT operator is in no way superior to an equivalent datetime
or literal representation which is also better readable.

CONSTRUCT is appropriate to build datetime and timespan values from components which are evaluated at
runtime. For example, it is very useful for application programs which insert records with datetime or timespan
values built up at runtime.

In an application program, the following SQL command would be suitable to insert a record into the Persons table:

INSERT INTO Persons(name,birthday)
 VALUES (:name, CONSTRUCT DATETIME(:year, :month, :day));

The constructor and selector operators together allow to perform every manipulation on datetime and timespan
values and also to override the built-in semantics. This may be necessary only occasionally as shown below.

The Data Types Date-
time and Timespan

112

Assume that in the table Persons several values for birthdays have been inserted (falsely) without the century of
the year (e.g. 53-6-8 instead of 1953-6-8). The following statement would correct all such entries:

UPDATE Persons
SET birthday = CONSTRUCT DATETIME
 (YY OF birthday + 1900,
 MO OF birthday,
 DD OF birthday)
WHERE YY OF birthday < 100

In effect, the above statement does not express a semantically reasonable operation on datetimes but a correction
of wrong datetime values. Note that this correction cannot be performed by adding a timespan value TIMESPAN
[YY] (1900) because of the subtle semantics of the addition of timespans to datetimes.

113

8. The Datatypes BITS(p) and BITS(*)
The TB SQL datatype BITS(p) and BITS(*) represent bits vectors with fixed or variable size.

8.1. Purpose of Bits Vectors

Bits vectors are suited to represent certain 1-to-many relationships in a very compact manner.

Example 8.1. Construction of BITS Vectors

Assume a table TI with a field FK of arbitrary type and a key field FI of type INTEGER or SMALLINT or
TINYINT.

FK FI(INTEGER)

a 1

a 4

a 7

a 8

b 3

b 10

b 11

A representation using bitvectors yields the following table TB with fields FK and FB where FB is of type BITS(*):

FK FB (BITS(*))

a 0b10010011

b 0b00100000011

The used notation here is that of bits literals (0-1 sequence starting with 0b).

8.2. Creation of Tables with type BITS

The notation in a DDL Statement is analogous to that of CHAR.

Creation of a table TI with a variable sized BITS field:

CREATE TABLE TI
(
 FK INTEGER,
 FB BITS(*),
 ...
)

Creation of a table with a fixed sized BITS field:

CREATE TABLE relb

The Datatypes BITS(p) and BITS(*)

114

(
 k INTEGER,
 b BITS(512),
 ...
)

The number p in BITS(p) is the number of bits that a value or a field of that type may hold. The maximum number
of p is MAXSTRINGSIZE*8-4 , where MAXSTRINGSIZE depends on the pagesize. A value of type BITS(p)
or BITS(*) semantically is a series of 0 or 1-bits. The bit positions are numbered and the leftmost position has
the number 1.

8.3. Compatibility of BINCHAR and BITS

The types BINCHAR and BITS are compatible among each other. They form a hierarchy BINCHAR, BITS in
increasing order (i.e. BITS is the higher of the 2 types).

Analogously to the arithmetic types, the value of the lower level type is automatically cast to the higher level
type when an operation requires a higher level type input or when two values of different types are compared
or combined.

8.4. BITS and BINCHAR Literals

A BITS literal is a sequence of the digits 0 and 1 prefixed by 0b.

0b0101 -- Type is BITS(4)
0b111100001 -- Type is BITS(9)

Inside the 0-1-sequence a positive repetition factor can be used as a shorthand notation for a series of equal bits:

0b0(4)1(5)0

is a shorthand notation for

0b0000111110

A repetition factor is a IntegerLiteral in round brackets.

No computed expression is allowed here. With a little bit care, also BINCHAR literals can be used for constants
of type BITS, because BINCHAR is implicitly cast to BITS where needed. Note however that the values are not
identical, e.g. the SIZE operator delivers different results.

0xaf08 -- is a BINCHAR literal
0b1010111100001000 -- is a BITS literal

They are not identical because

The Datatypes BITS(p) and BITS(*)

115

SIZE OF 0xaf08 -- delivers 2
SIZE OF 0b1010111100001000 -- delivers 16

The following expression, however, is identical to the above BITS literal.

0xaf08 CAST BITS(*)

A further shorthand notation is given by a dynamic bits constructor MAKEBIT (see below).

Note

When a BINCHAR value (e.g. a Literal) of type BINCHAR(p) is used as input for an operation
which requires the type BITS, it is automatically cast to the type BITS(p*8).

8.5. Spool Format for BINCHAR and BITS

The spool format as produced by Transbase is the BinaryLiteral representation. The accepted format for spooling
from file to tables is BITS Literal as well as BINCHAR Literal.

8.6. Operations for Type BITS

In the following paragraphs, the notations bexpr and iexpr are used. bexpr denotes a value of type BITS(p) or
BITS(*). iexpr denotes a value of type TINYINT/SMALLINT/INTEGER. Both notations stand for constants as
well as for computed expressions, e.g. subqueries.

8.6.1. Bitcomplement Operator BITNOT

Syntax:

BITNOT bexpr

Explanation: Computes the bitwise complement of its operand. The result type is the same as the input type.

BITNOT 0b001101 --> 0b110010

8.6.2. Binary Operators BITAND , BITOR

Syntax:

The Datatypes BITS(p) and BITS(*)

116

bexpr1 BITAND bexpr2
bexpr1 BITOR bexpr2

Explanation: BITAND computes the bitwise AND, BITOR the bitwise OR of its operands. The shorter of the
two input operands is implicitly filled with 0-bits up to the length of the longer input operands. If one of bexpri
is type BITS(*) then the result type is also BITS(*) else the result type is BITS(p) where p is the maximum of
the input type lengths.

0b1100 BITAND 0b0101 --> 0b0100
0b1100 BITOR 0b0101 --> 0b1101

8.6.3. Comparison Operators

All comparison operators (< , <= , = , <> , > , >=) as known for the other Transbase types are also defined
for BITS. Length adaption is done as for BITAND and BITOR. A BITS value b1 is greater than a BITS value b2
if the first differring bit is 1 in b1 and 0 in b0.

8.6.4. Dynamic Construction of BITS with MAKEBIT

Syntax:

MAKEBIT (iexpr1, [, iexpr2])

Explanation: If both iexpr1 and iexpr2 are specified: iexpr1 and iexpr2 describe a range of bit positions. Both
expressions must deliver exactly one value which is a valid bit position (>= 1). MAKEBIT constructs a bits value
which has 0-bits from position 1 to iexpr1-1 and has 1-bits from position iexpr1 to iexpr2.

If only iexpr1 is specified: iexpr1 describes one bit position or (in case of a subquery) a set of bit positions.
MAKEBIT constructs a bits value which has 1-bits exactly on those positions described by iexpr1.

The result type is BITS(*).

MAKEBIT (3 , 7) --> 0b0011111
MAKEBIT (SELECT ...) --> 0b00101001
 -- assuming the subquery delivers
 -- values 3, 5, 8

8.6.5. Counting Bits with COUNTBIT

Syntax:

COUNTBIT (bexpr)

Explanation: Returns number of 1-bits in bexpr, i.e. a non-negative INTEGER.

COUNTBIT (0b01011) --> 3

The Datatypes BITS(p) and BITS(*)

117

8.6.6. Searching Bits with FINDBIT

Syntax:

FINDBIT (bexpr [, iexpr])

Explanation: If iexpr is not specified it is equivalent to 1. If iexpr is greater or equal to 1, FINDBIT returns the
position of the iexpr-th 1-bit in bexpr if it exists else 0. If iexpr is 0, FINDBIT returns the position of the last 1-
bit in bexpr if there exists one else 0.

The result type is INTEGER.

FINDBIT (0b001011 , 1) --> 3
FINDBIT (0b001011 , 2) --> 5
FINDBIT (0b001011 , 4) --> 0
FINDBIT (0b001011 , 0) --> 6

8.6.7. Subranges and Single Bits with SUBRANGE

Syntax:

bexpr SUBRANGE (iexpr1 [, iexpr2])

Explanation: If iexpr2 is specified then SUBRANGE constructs from bexpr a bits value which consists of the bits
from position iexpr1 until position iexpr2 (inclusive). If iexpr2 exceeds the highest bit position of bexpr then 0-
bits are implicitly taken.

If iexpr2 is not specified then SUBRANGE returns the iexpr1-th bit from bexpr as a INTEGER value (0 or 1).

In all cases iexpri must be valid bit positions > 0).

The result type is BITS(*) if iexpr2 is specified else INTEGER.

0b00111011 SUBRANGE (4, 6) --> 0b110 (BITS(*))
0b00111011 SUBRANGE (6, 10) --> 0b01100 (BITS(*))
0b00111011 SUBRANGE (2) --> 0 (INTEGER)
0b00111011 SUBRANGE (3) --> 1 (INTEGER)

8.7. Transformation between Bits and Integer
Sets

Two operations are defined which serve to transform 1-n relationships into a compact bits representation and
vice versa. Assume again the sample tables TI and TB given in Purpose of Bits Vectors. The following picture
illustrates how the tables can be transformed into each other by an extension of the GROUP BY operator and a
complementary UNGROUP BY operator. The operators are explained in detail in the following sections.

The Datatypes BITS(p) and BITS(*)

118

FK FI(INTEGER)

a 1

a 4

a 7

a 8

b 3

b 10

b 11

FK FB (BITS(*))

a 0b10010011

b 0b00100000011

8.7.1. Compression into Bits with the SUM function

The set function SUM, originally defined for arithmetic values, is extended for the type BITS(p) and BITS(*). For
arithmetic values, SUM calculates the arithmetic sum over all input values. Applied to BITS values, SUM yields
the BITOR value over all input values where a start value of 0b0 is assumed.

In combination with a GROUP BY operator and MAKEBIT operator, the table TI can be transformed to the table
TB (see Purpose of Bits Vectors):

SELECT FK , SUM (MAKEBIT (FI))
FROM RI
GROUP BY FK

Also the notation OR instead of SUM is legal here.

8.7.2. Expanding BITS into Record Sets with UN-
GROUP

Given a table of the shape of TB (i.e. with at least one field of type BITS(p) or BITS(*), one can expand each
record into a set of records where the BITS field is replaced by an INTEGER field.

An UNGROUP operator is defined which can be applied to a field of type BITS(p) or BITS(*).

The following statement constructs table TI from table TB (see Purpose of Bits Vectors):

SELECT * FROM RB
 UNGROUP BY FB

The UNGROUP BY operator can be applied to exactly one field and this field must be of type BITS.

For completeness, the full syntax of a SelectExpression (QueryBlock) is:
[280] SelectExpression ::= SelectClause

[FromClause
/
* 6 *//

The Datatypes BITS(p) and BITS(*)

119

[WhereClause]
[UngroupClause]
[GroupClause]
[HavingClause]
[FirstClause]]

* 1 *//
* 2 *//
* 3 *//
* 4 *//
* 5 */

[284] UngroupClause ::= UNGROUP BY FieldReference

The numbers at the left margin show the order in which the clauses are applied. It shows that the UngroupClause
takes the result of the WhereClause as input: it constructs from each input record t a set of records where the
BITS value of t at position FieldName is replaced by INTEGER values representing those bit positions of t
which are set to 1.

120

9. LOB (Large Object) datatypes
This chapter gives an overview of LOBs (BLOBs and CLOBs) in Transbase. Described are the DDL statements
and SQL language extensions.

9.1. The Data Type BLOB (Binary Large Ob-
ject)

9.1.1. Inherent Properties of BLOBs

BLOB is a data type for fields of tables. Arbitrary many fields of a table can be declared with type BLOB. BLOBs
are variable sized.

9.1.1.1. Overview of operations

Transbase does not interpret the contents of a BLOB. Each field of type BLOB either contains the NULL value
or a BLOB object. The only operations on BLOBs are creation, insertion, update of a BLOB, testing a BLOB on
being the NULL value, extracting a BLOB via the field name in the SELECT clause, extracting a subrange of a
BLOB (i.e. an adjacent byte range of a BLOB), and extracting the size of a BLOB.

9.1.1.2. Size of BLOBs

BLOB fields are variable sized. The size of a BLOB object is restricted to the positive byte range of a 4-byte
integer (231 Bytes) minus some per-page-overhead of about 1%. The sum of sizes of all BLOBs of one table is
restricted to 242 Bytes (about 4 Terabytes) minus some overhead of about 1.5 %.

9.1.2. BLOBs and the Data Definition Language

The keyword BLOB describes the data type of a BLOB field in the CreateTableStatement.

CREATE TABLE GRAPHIK
(
 GRAPHIK_NAME CHAR(20),
 GRAPHIK_TYP INTEGER,
 IMAGE BLOB
)
KEY IS GRAPHIK_NAME

LOB (Large Object) datatypes

121

A BLOB field can be declared NOT NULL. No secondary index can be built on a BLOB field.

9.1.3. BLOBs and the Data Manipulation Language

9.1.3.1. BLOBs in SELECT Queries

A SELECT Query that contains result fields of type BLOB prepares the database server to deliver the BLOB
objects, however, it requires an extra call to fetch the BLOBs contents.

BLOB fields can appear in the ExprList of the SELECT clause of a QueryBlock, either explicitly or via the '*'
notation.

No operators (except the subrange operator and the SIZE OF operator, see below) are allowed on BLOB fields.

SELECT GRAPHIK_NAME, IMAGE
FROM GRAPHIK

With the SUBRANGE operator (n,m) where n and m are positive integers, a part of a BLOB can be retrieved. The
following example retrieves the first 100 bytes of all image fields:

SELECT GRAPHIK_NAME, IMAGE SUBRANGE (1,100)
FROM GRAPHIK

With the SIZE OF operator, one can retrieve the size in bytes of a BLOB field. SIZE OF delivers NULL if the
field is NULL. The following example retrieves the sizes of all BLOB objects in the sample table.

SELECT GRAPHIK_NAME, SIZE OF IMAGE
FROM GRAPHIK
WHERE IMAGE IS NOT NULL

A BLOB field can appear in the SearchCondition of the WHERE clause only inside a NullPredicate. It is important
to note that the DISTINCT clause in the ExprList of a SELECT clause does not eliminate 'identical' BLOB objects.
This means that any two BLOB objects are considered different in the database even if their contents actually are
identical. Analogously, the GROUP BY operator if applied BLOB objects forms one GROUP for every BLOB
object.

BLOB objects have no meaningful order for the user. It is not an error to apply the ORDER BY clause to BLOB
fields but the ordering refers to internal BLOB addresses and thus the result is of no use in the user's view.

9.1.3.2. BLOBs in INSERT Queries

BLOB values can be specified as binary literals in insert queries, but usually they are specified as parameters of
prepared insert queries.

LOB (Large Object) datatypes

122

9.1.3.3. Spooling BLOBs

The SPOOLing of tables with BLOB objects is described in Chapter 'Spooling Lob Objects' within the Section
'The Data Spooler'.

9.2. The Data Type CLOB (Character Large
Object)

CLOBs are used for storing large character data.

9.2.1. Inherent Properties of CLOBs

CLOB is like BLOB a variable sized data type for fields of tables. Arbitrary many fields of a table can be declared
with type CLOB.

9.2.1.1. Overview of operations

Each field of type CLOB either contains the NULL value or a CLOB object. The only operations on CLOBs are
creation, insertion, update of a CLOB, testing a CLOB on being the NULL value, extracting a CLOB via the field
name in the SELECT clause, extracting a subrange of a CLOB (i.e. an adjacent byte range of a CLOB), extracting
a substring of a CLOB and extracting the size (number of characters) of a CLOB.

9.2.1.2. Size of CLOBs

CLOB fields are variable sized. The size (in bytes) of a CLOB object is restricted to the positive byte range of a
4-byte integer (231 Bytes) minus some per-page-overhead of about 1%. Thus the maximum number of characters
of a CLOB dependes on the size of the UTF8-encoded text. The sum of sizes of all LOBs of one table is restricted
to 242 Bytes (about 4 Terabytes) minus some overhead of about 1.5 %.

9.2.2. CLOBs and the Data Definition Language

The keyword CLOB describes the data type of a CLOB field in the CreateTableStatement.

CREATE TABLE BOOK
(
 BOOK_TITLE CHAR(100),
 BOOK_CONTENT CLOB
)

LOB (Large Object) datatypes

123

KEY IS BOOK_TITLE

A CLOB field can be declared NOT NULL. No secondary indexes except a fulltext index can be built on a CLOB
field.

9.2.3. CLOBs and the Data Manipulation Language

9.2.3.1. CLOBs in SELECT Queries

A SELECT Query that contains result fields of type CLOB causes the database server to deliver the CLOB objects,
but an extra call per CLOB is needed to fetch the contents.

CLOB fields can appear in the ExprList of the SELECT clause of a QueryBlock, either explicitly or via the '*'
notation.

The following operators are allowed on CLOBS: SUBRANGE, SUBSTRING, SIZE OF,
CHARACTER_LENGTH and TO_CHAR (which is equivalent to a CAST VARCHAR(*)).

SELECT BOOK_TITLE, BOOK_CONTENT CAST VARCHAR(*)
FROM BOOK

Note that without the CAST VARCHAR(n) operation (or the TO_CHAR function) the result type would still
be CLOB and not a representation as a printable string. This is necessary to enable the insertion of a (possibly
modified) CLOB object into another CLOB field of a table.

With the SUBRANGE operator (n,m) where n and m are positive integers, a part of a CLOB can be retrieved. The
SUBSTRING function is equivalent. The following examples retrieve the first 100 bytes of all book_content fields:

SELECT BOOK_TITLE, BOOK_CONTENT SUBRANGE (1,100) CAST VARCHAR(*)
FROM BOOK

SELECT BOOK_TITLE, TO_CHAR (SUBSTRING(BOOK_CONTENT FROM 1 FOR 100))
FROM BOOK

With the CHARACTER_LENGTH operator, one can retrieve the size in characters of a CLOB field. The two
operators deliver NULL if the field is NULL.

9.2.3.2. CLOBs in INSERT Queries

CLOB values can be specified as string literals in insert queries, but usually they are specified as parameters of
prepared insert queries.

INSERT INTO BOOK VALUES ('title of book','content of book')

LOB (Large Object) datatypes

124

9.2.3.3. Spooling CLOBs

The SPOOLing of tables with CLOB objects is described in Chapter 'Spooling Lob Objects' within the Section
'The Data Spooler'.

125

10. Fulltext Indexes
Transbase fulltext search is supported on fields of type CLOB, CHAR(p), CHAR(*), VARCHAR(p) and VAR-
CHAR(*).

10.1. FulltextIndexStatement

A FulltextIndexStatement is provided which creates a fulltext index on one field.

Syntax:
[126] FulltextIndexStatement ::= CREATE [POSITIONAL] FULLTEXT INDEX IndexIdentifier

[FulltextSpec] ON TableIdentifier (FieldIdentifier)
[ScratchArea]

[127] FulltextSpec ::= [WITH SOUNDEX] [{ Wordlist) | Stopwords }]
[Charmap] [Delimiters]

[128] Wordlist ::= WORDLIST FROM TableIdentifier
[129] Stopwords ::= STOPWORDS FROM TableIdentifier
[130] Charmap ::= CHARMAP FROM TableIdentifier
[131] Delimiters ::= DELIMITERS FROM TableIdentifier |

DELIMITERS NONALPHANUM

[132] ScratchArea ::= SCRATCH IntegerLiteral MB

Explanation: A fulltext index is the prerequisite for fulltext search on the specified field (Fulltext-Predicate).
Depending on whether POSITIONAL is specified or not, the fulltext index is called positional index or word index.

A word index allows so called word search whereas a positional index additionally offers so called phrase search.
Word search and phrase search are explained below.

Beside the two variants called word index and positional index, fulltext indexes come in three further independent
variants. The specifications WORDLIST, STOPWORDS, CHARMAP and DELIMITERS influence the contents
of the fulltext index. They are explained below. All four specifications include a TableName which is a user
supplied table. The contents of the table(s) supply information to the FulltextIndexStatement at the time it is
performed.

After the statement's execution, the contents of the tables are integrated into the index and the tables themselves
do not further influence the behaviour of the created index. They can be dropped by the user if they are not needed
any more for other purposes.

The SCRATCH Clause is explained in Chapter 'Scratch Area for Index Creation'.

10.1.1. WORDLIST and STOPWORDS

By default, if neither WORDLIST nor STOPWORDS is specified, all words from the indexed field are indexed.

By WORDLIST, a positive list of words can be specified, i.e. specified words are indexed only.

By STOPWORDS, a negative list of words is specified, i.e. all words except those in the stopword list are indexed.

The tables supplied as Wordlist or Stopwords must have a single field of type STRING or any other string type.

The WORDLIST and STOPWORDS variant mutually exclude each other.

Fulltext Indexes

126

If WORDLIST or STOPWORDS are specified, the fulltext index typically becomes much smaller because less
words are indexed. On the other hand, if the fulltext predicate contains words which are not indexed, records which
contain not-indexed words do not appear in the result set.

10.1.2. CHARMAP

By specifying CHARMAP, a character mapping algorithm can be supplied. It is specified by first inserting binary
records into a binary table (let's say CTable) with fields VARCHAR(1) and VARCHAR(*) and by specifying
CTable in the CHARMAP clause. For example, the table could contain a mapping from the German 'umlauts' ä,
into ae, ö into oe, etc. such that the search need not rely on German keyboards.

'ä' 'ae'

'ö' 'oe'

'ü' 'ue'

Note

The character mapping is applied to the indexed words as well as to all search arguments in the
FulltextPredicate. In the example above, the word 'lösen' would be stored as 'loesen' and a search
pattern 'lö%' in a query would be transformed to 'loe%'.

It is also possible to specify the empty string as the target string for a certain character. Consequently, this causes
all occurrences of that character to be ignored. For example, a record in CTable of the form

'.' ''

causes all occurrences of dot to be ignored. Thus, the word 'A.B.C.D' would be stored as 'ABCD' (and search
for 'A.B.C.D' would hit as well as a search for 'ABCD'). Note, however, that in this example, a missing blank
(delimiter, to be exact) after the concluding dot of a sentence would have the undesired effect to combine 2 words
into one.

By default, a fulltext index works in case sensitive mode. Case insensitive search can be achieved by supplying a
character mapping table which maps each upper case letter to its corresponding lower case letter.

10.1.3. DELIMITERS

The DELIMITERS clause specifies the word processing in the indexing process. If no DELIMITERS clause
is specified, the indexing procedure handles each longest sequence of non-white-space characters as one word,
i.e. by default, words are separated by white-space characters (blank, tabulator and newline). Also non-printable
characters are treated as delimiters.

For example, the preceeding sentence would produce, among others, the words 'specified,' and 'non-white-space'.
It is often convenient to supply additional word delimiters like '(', '.' or '-'.

Different delimiters can be specified by the DELIMITERS clause. If a Delimiters Table is specified, it must have
1 field of type VARCHAR(1) or VARCHAR(*) and must contain characters (strings of length 1). However, non-
printable character are always treated as delimiters.

The NONALPHANUM specification provides a shorthand notation for the convenient case that all characters
which are not alphanumeric are to be treated as delimiters.

Fulltext Indexes

127

Note that search patterns in Fulltext Predicates are not transformed with respect to delimiters (in contrast to
CHARMAP!).

For example, if default delimiters have been used (white space) and a fulltext predicate contains a search compo-
nent with a blank (e.g 'database systems'), then no record fulfills the predicate. In this case, one would have to
formulate a fulltext phrase with two successive words ==- this is described later.

In all following examples for CreateIndexStatements, let f be a table which contains a CLOB field fb, and wl,
sw, del be unary tables containing a wordlist, a stopword list, a delimiter character list, resp. Let cm be a binary
table containing a character mapping.

CREATE FULLTEXT INDEX fbx
ON f(fb)

CREATE POSITIONAL FULLTEXT INDEX fbx
ON f(fb)

CREATE FULLTEXT INDEX fbx
WORDLIST FROM wl
ON f(fb)

CREATE FULLTEXT INDEX fbx
STOPWORDS FROM sw
CHARMAP FROM cm
DELIMITERS FROM del
ON f(fb)

CREATE FULLTEXT INDEX fbx
DELIMITERS NONALPHANUM
ON f(fb)

10.1.4. WITH SOUNDEX

The WITH SOUNDEX option adds the facility to search the fulltext index phonetically. This can be specified
in the fulltext search predicate "CONTAINS" by also adding a SOUNDEX specification there: "CONTAINS
SOUNDEX". See the example below and the section FulltextPredicate .

The WITH SOUNDEX option triggers a moderate space overhead which tends to become a negligible fraction
as the base table grows.

... creating a fulltext index with phonetic search capability
CREATE FULLTEXT INDEX fbx WITH SOUNDEX ON f(fb)
... standard sarch is unaffected: searching for the name "Stuart" ...
SELECT * FROM f WHERE fb CONTAINS ('Stuart')
... searching for names which sound like "Stuart" (also hits for "STEWART" e.g.) ...
SELECT * FROM f WHERE fb CONTAINS SOUNDEX ('Stuart')

10.2. Implicit Tables of a Fulltext Index

Each fulltext index has a wordlist which contains the words that have been indexed so far (or, in the case of a
Wordlist clause have been defined as the positive wordlist). The wordlist can be accessed by SQL statements as
a pseudo table via a pseudo name described below.

Fulltext Indexes

128

For each of the STOPWORDS, CHARMAP and DELIMITERS clause, another pseudo table is created and is
accessible like a normal table via a pseudo name. These tables should not be confused with the tables specified in
the Stopwords, Charmap and Delimiters clause of a CreateIndexStatement. The latter are user defined tables used
to define the contents of the pseudo tables at statement execution time. Any successive update to these user tables
does not have any influence to the index and its pseudo tables.

If the WITH SOUNDEX option has been specified, an additional pseudo table SOUNDEX exists.

The names of the pseudo tables are derived from the name of the fulltext index. The table and field names as well
as their types are given as follows (assume that the fulltext index has the name fbx):

FULLTEXT WORDLIST OF fbx (word VARCHAR(*), wno INTEGER)

FULLTEXT STOPWORDS OF fbx (word VARCHAR(*))

FULLTEXT CHARMAP OF fbx (source VARCHAR(1), target VARCHAR(*))

FULLTEXT DELIMITERS OF fbx (delimword VARCHAR(1))

FULLTEXT SOUNDEX OF fbx (sound VARCHAR(*), word VARCHAR(*))

For example, to see the words indexed up so far or to see the valid delimiters (if a DELIMITERS clause had been
specified) one could say:

SELECT word FROM FULLTEXT WORDLIST OF fbx

SELECT * FROM FULLTEXT DELIMITERS OF fbx

The pseudo tables are not recorded in the catalog table systable.

It is also possible to update the internal WORDLIST OF table or STOPWORDS OF table in a restricted manner:

• The allowed update operating on a WORDLIST OF table is DELETE.

• The allowed update operating on a STOPWORDS OF table is INSERT.

By modifications of these internal tables one can influence the indexing behaviour of the fulltext index for future
INSERTs into the base table. The current contents of the fulltext index are not changed.

10.3. FulltextPredicate

Search expressions on fulltext-indexed fields are expressed with a FulltextPredicate.

Syntax:
[266] FulltextPredicate ::= FieldIdentifier CONTAINS [SOUNDEX] (FulltextTerm)
[267] FulltextTerm ::= FulltextFactor [OR FulltextFactor]
[268] FulltextFactor ::= FulltextPhrase [Andnot FulltextPhrase]
[270] FulltextPhrase ::= (FulltextTerm) |

Atom [[DistSpec] Atom]...

[269] Andnot ::= AND | NOT
[271] Atom ::= SingleValueAtom | MultiValueAtom
[272] SingleValueAtom ::= StringLiteral | Parameter | FtExpression
[273] MultiValueAtom ::= ANY (TableExpression)
[274] DistSpec ::= Leftbracket [MinBetween ,] MaxBetween Rightbracket
[275] MinBetween ::= <Expression of type Integer>
[276] MaxBetween ::= <Expression of type Integer>
[155] Parameter ::= # IntegerLiteral (DataType) |

systable

Fulltext Indexes

129

Colon StandardIdentifier |
Questionmark

[277] FtExpression ::= <Expression without FieldReference to same block>

Explanation: The FieldName of a FulltextPredicate must refer to a field which has a fulltext index. The result
type of SingleValueAtom must be VARCHAR(n) or VARCHAR(*).

A FulltextPredicate consists of a FieldName, the operator CONTAINS and a FulltextTerm in parentheses. The
FulltextTerm is an expression consisting of FulltextPhrases and the operators AND, OR, NOT. The precedence
is NOT before AND before OR. Parentheses may be used.

FulltextPhrases are of different complexities. The simplest form is a single Atom (e.g. a CHAR literal like 'database'
or an application host variable). More complex forms have sequences of Atoms separated by DistSpecs.

A FulltextPredicate whose FulltextPhrases all consists of single Atoms only, is called a 'word search'.

A FulltextPredicate which contains a FulltextPhrase which is not a single Atom (i.e. contains at least 1 DistSpec)
is called a 'phrase search'.

Note

If the FulltextPredicate is a phrase search then the fulltext index must be a POSITIONAL fulltext
index.

A POSITIONAL fulltext index uses about three times the space of a non-positional fulltext index.

The following statements show word searches:

SELECT * FROM f WHERE fb CONTAINS ('database')

SELECT * FROM f WHERE fb CONTAINS (:hvar) -- with named parameter

SELECT * FROM f WHERE fb CONTAINS ('data%' AND 'systems')

SELECT * FROM f WHERE
fb CONTAINS ('database' NOT 'object' OR 'SQL' NOT '4GL')

The following statements show phrase searches:

SELECT * FROM f WHERE
fb CONTAINS ('database' 'systems')

SELECT * FROM f WHERE
fb CONTAINS ('object%' [0,1] 'database' 'systems'
OR 'distributed' [1] 'systems')

Wildcards:

Wildcard characters '%' and '_' have the same semantics as in the second operand of the LIKE predicate.

Escaping Wildcards:

The character '\' is reserved to escape a wildcard. If '\' is needed as a character of a word it must also be escaped.
These rules are the same as in the LIKE predicate with a specified ESCAPE '\'.

Fulltext Indexes

130

Word Set of an Atom:

An Atom A in a FulltextPredicate specifies a word set WS(A) defined as follows.

• If Atom A is a SingleValueAtom with result value SV: If the result value of SV does not contain a wildcard then
WS(A) consists of SV only, otherwise if SV contains wildcard(s), WS(A) consists of all words matching the
pattern SV where matching is defined like in the explanation of the SQL LIKE predicate (with the '\' character
as ESCAPE character).

• If Atom A is a MultiValueAtom with result set MV: WS(A) is the union of all WS(A') where A' are Atoms for
the single elements of MV.

Semantics of Fulltext Predicates:

• fb CONTAINS (Atom) yields TRUE if and only if the field fb contains one of the words of WS(Atom), the word
set specified by Atom.

• fb CONTAINS (Atom1 [n,m] Atom2) where n and m are integer values, then the predicate yields TRUE if and
only if the field fb contains a word w1 of the WS(Atom1) and a word w2 of WS(Atom2) and the number of
words between w1 and w2 is at least n and at most m.

• Atom [m] Atom is equivalent to: Atom [0,m] Atom A missing distance specification is equivalent to [0]. Espe-
cially, a phrase for a series of adjacent words can be simply expressed as Atom Atom Atom ….

• FulltextPhrase1 NOT FulltextPhrase2 delivers TRUE if and only if fb CONTAINS(FulltextPhrase1) delivers
TRUE and fb CONTAINS(FulltextPhrase2) does not deliver TRUE.

• FulltextPhrase1 AND FulltextPhrase2 is equivalent to: fb CONTAINS(FulltextPhrase1) AND fb
CONTAINS(FulltextPhrase2)

• FulltextFactor1 OR FulltextFactor2 is equivalent to: fb CONTAINS(FulltextFactor1) OR fb
CONTAINS(FulltextFactor2)

Note

Do not omit the separating blank characters in the series of words of a phrase search! For example,
consider the following specification:

 fb CONTAINS('object''database''systems')

effectively searches for a single word consisting of 23 characters including two single apostrophes.
Note that the rules for SQL string literals apply.

10.4. Examples and Restrictions

In the following examples let F be a table with field fb of type CLOB where a fulltext index on fb has been created.
Let WT be a table with a field word of type CHAR(*).

Fulltext Indexes

131

10.4.1. Examples for Fulltext Predicates

1.
SELECT * FROM F
WHERE fb CONTAINS ('database' [0,1] 'systems')
== delivers records where fb contains
== the series of the two specified words
== with at most one word in between.

2.
SELECT * FROM F
WHERE fb CONTAINS ('object' 'database' 'systems')
== yields TRUE for records where "fb"
== contains the series of the three specified words.

3.
SELECT word FROM FULLTEXT WORDLIST WT
WHERE EXISTS
(SELECT * FROM F WHERE fb CONTAINS (WT.word))
== delivers the values of "word"
== which occur as words in the field "fb" of any record of F.

4.
SELECT * FROM F
WHERE fb contains (ANY (SELECT LOWER(word) FROM WT))
== delivers the records of "F"
== whose "fb" value contains at least one lowercase word
== of the word set described by field "word" of table "WT".

(enum:3) shows an application of a SingleValueAtom where the Atom is not a simple Literal or Primary.

(enum:4) shows an application of a MultiValueAtom.

10.4.2. Restrictions for Fulltext Predicates

Although the fulltext facility of Transbase is of considerable power, it also exhibits some syntactic restrictions
which, however, can be circumvented.

Restriction 1:

A SingleValueAtom must not start with a '('.

For example, a SingleValueAtom of the form

('a' || :hvar) CAST CHAR(30)

is illegal because the '(' syntactically introduces a FulltextTerm of FulltextPhrase.

In these very rare cases replace the SingleValueAtom SVA by

'' || (SVA)

which is a string concatenation with the empty string.

Fulltext Indexes

132

Restriction 2:

An Atom must not contain a field reference to the same block where the fulltext table occurs.

Assume a table FT with fulltext field fb and fields fk and fc, where fc is of type CHAR(*) and fk is the key.

The following is illegal:

SELECT * FROM FT
WHERE fb CONTAINS (fc) -- ILLEGAL

This query must be formulated by using a subquery which combines FT with FT via the key fk:

SELECT * FROM FT ftout
WHERE EXISTS (
 SELECT *
 FROM FT ftin
 WHERE ftout.fk = ftin.fk
 AND ftin.fb CONTAINS (ftout.fc)
)

This query is legal because an outer reference in a fulltext atom is legal.

10.4.3. Phonetic Search in Fulltext Indexes

If a fulltext index has been specified with the WITH SOUNDEX option at creation time, the search via the CON-
TAINS operator may contain the phonetic option SOUNDEX.

Syntax:
[266] FulltextPredicate ::= FieldIdentifier CONTAINS [SOUNDEX] (FulltextTerm)

search a phonetic fulltext index for names sounding like "Stuart":

SELECT * FROM FT WHERE fb CONTAINS SOUNDEX ('Stuart')

Note that the arguments of the "CONTAINS SOUNDEX" operator are automatically mapped onto their phonetic
representation. It is thus unwise to apply the SOUNDEX operator onto the argument itself.

erroneous application of the "CONTAINS SOUNDEX" operator:

++++ SELECT * FROM FT WHERE fb CONTAINS SOUNDEX (SOUNDEX('Stuart'))
++++ erroneous semantics

It is also unwise in most cases to apply the standard "CONTAINS" operator with an argument mapped to phonetic
representation:

further erroneous try to do phonetic search:

++++ SELECT * FROM FT WHERE fb CONTAINS (SOUNDEX('Stuart'))
++++ ... not a phonetic search

... correct phonetic search:

Fulltext Indexes

133

SELECT * FROM FT WHERE fb CONTAINS SOUNDEX ('Stuart')

This concept stems from the fact that the arguments of "CONTAIN" might be delivered also by a subquery
processed at runtime.

10.5. Performance Considerations

10.5.1. Search Performance

The fulltext index enables very good search times for fulltext searches. It, however, also causes some Performance
limitations in database processing. This is described in the following chapters.

10.5.2. Scratch Area for Index Creation

Creation of a Fulltext Index is a time-consuming task if the base table and/or the field values (BLOBs) are large.

The processing time considerably depends on the amount of available temporary disk space. Transbase breaks
all info to be fulltext-indexed into single portions to be processed at at time. The performance increases with the
size of the portions.

It is therefore recommended to specify in a CREATE FULLTEXT INDEX statement the capacity of the available
disk space in the scratch directory. For example if it is assured that 60 MB will be available, then the statement
might look like:

CREATE FULLTEXT INDEX x ON f(fb) SCRATCH 60 MB

Note, however, that the scratch area is shared among all applications on the database.

10.5.3. Record Deletion

Deletion of records from a table is slow if the table has at least one fulltext index. The deletion takes time which
is proportional (linear) to the size of the fulltext index.

Note additionally, that it is much faster to delete several records in one single DELETE statement rather than to
delete the records one at a time with several DELETE statements.

134

11. Data Import
Mass data import from various data sources is supported in Transbase. Data can origin from external data sources
such as databases, from flat files storing delimiter separated values and from XML files.

There are two spool statements with the following functions:

• transfer of external data from a file into the database (SpoolTableStatement)

• transfer of a query results into a text file (SpoolFileStatement).

The first command is useful for building up a database from external data (residing on textfiles in a standard format,
see below). The latter command is for extracting data from the database into textfiles. Also some Transbase tools
like tbarc (the Transbase Archiver) use the facilities of the Spooler.

Also LOBs (large objects) can be handled by the spooler although - of course - the corresponding files then do
not contain text in general.

There is the possibility to choose between the DSV and the XML mode of the data spooler. Both modes are
explained next.

11.1. SpoolStatement

Syntax:
[355] SpoolStatement ::= SpoolTableStatement | SpoolFileStatement
[356] SpoolTableStatement ::= SPOOL LocalTableSpec

FROM [SORTED] FileLiteral [LOCAL]
{ DSVSpec | XMLSpec } [ClobInlineSpec] [BlobInlineSpec]

[357] SpoolFileStatement ::= SPOOL
INTO FileLiteral [LOCAL]
{ DSVSpec | XMLSpec } [ClobInlineSpec] [BlobInlineSpec] [Lob-
FileSpec]
SelectStatement

[358] DSVSpec ::= [FORMAT DSV]
[CodePageSpec] [NullSpec]
[DelimSpec]
[QuoteSpec]

[359] XMLSpec ::= FORMAT XML [NullSpec]
[360] NullSpec ::= NULL [IS] StringLiteral
[361] DelimSpec ::= DELIM [IS] { TAB | StringLiteral } /

* DSV
on-
ly */

[362] QuoteSpec ::= QUOTE [IS] StringLiteral /
* DSV
on-
ly */

[363] ClobInlineSpec ::= CLOBSINLINE /
* DSV
on-
ly */

[364] BlobInlineSpec ::= BLOBSINLINE [HEX | BASE64] /
* DSV

Data Import

135

on-
ly */

[365] LobFileSpec ::= LOBFILESIZE = IntegerLiteral [KB|MB]
[84] CodePageSpec ::= CODEPAGE [IS] CodePage

[[WITH | WITHOUT] PROLOGUE]]

[85] CodePage ::= UTF8 | UCS | UCS2 | UCS4 |
UCS2LE | UCS2BE | UCS4LE | UCS4BE

11.1.1. The DSV Spooler

The DSV Spooler (delimiter separated values) works with quite simple text docu-ments as spool files. This means,
that each record needs to have a value for each column of the destination table. Furthermore, the ordering of the
record fields and the table columns have to be same. More details about the DSV spool files can be found in the
section External File Format.

Syntax:
[356] SpoolTableStatement ::= SPOOL LocalTableSpec

FROM [SORTED] FileLiteral [LOCAL]
{ DSVSpec | XMLSpec } [ClobInlineSpec] [BlobInlineSpec]

[357] SpoolFileStatement ::= SPOOL
INTO FileLiteral [LOCAL]
{ DSVSpec | XMLSpec } [ClobInlineSpec] [BlobInlineSpec] [Lob-
FileSpec]
SelectStatement

[358] DSVSpec ::= [FORMAT DSV]
[CodePageSpec] [NullSpec]
[DelimSpec]
[QuoteSpec]

[360] NullSpec ::= NULL [IS] StringLiteral
[361] DelimSpec ::= DELIM [IS] { TAB | StringLiteral } /

* DSV
on-
ly */

[362] QuoteSpec ::= QUOTE [IS] StringLiteral /
* DSV
on-
ly */

[84] CodePageSpec ::= CODEPAGE [IS] CodePage
[[WITH | WITHOUT] PROLOGUE]]

[85] CodePage ::= UTF8 | UCS | UCS2 | UCS4 |
UCS2LE | UCS2BE | UCS4LE | UCS4BE

Explanation:

The SpoolTableStatement inserts records from the specified file into the specified table (base table or view). The
specified table must exist (but need not necessarily be empty). Thus, the SpoolTableStatement can be used as a
fast means for insertion of bulk data.

The SpoolTableStatement has very good performance if the records in the table are ascendingly sorted by the
table key(s) (best performance is achieved if the table additionally is empty). If the records are not sorted then
Transbase inserts on-the-fly those records which fulfill the sortorder, the others are collected, then sorted, then
inserted. For very large unsorted spoolfiles, it can be advantageous to split and spool them into pieces depending
on the available disk space which is additionally needed temporarily for sorting.

Data Import

136

Usage of the keyword ''SORTED'' allows to test if the input is actually sorted (if specified, an error is reported
and the TA is aborted when a violation of the sort order is detected). This feature does not influence the spool
algorithm but only checks if the input was suited to be spooled with maximal performance.

Without the LOCAL keyword, the specified file is read by the client application and transferred to the Transbase
service process. If the file is accessible by the service process, the LOCAL clause can be used to speed up the
spool process: in this case the service process directly accesses the file under the specified name which must be
a complete path name.

For the checking of integrity constraints (keys, null values) the same rules as in InsertStatement apply.

The SpoolFileStatement stores the result records of the specified SelectStatement into the specified file (which is
created if it does not yet exist, overwritten otherwise).

The spool files are searched or created in the current directory by default if they are not absolute pathnames.

For C programmers at the TCI interface a special property TCI_ATTR_DATA_DIRECTORY is available to
change the default.

The StringLiteral in a DelimSpec must be of type CHAR(1) or BINCHAR(1), i.e. of byte length 1.

The StringLiteral in a NullSpec must be of type VARCHAR(1).

The StringLiteral in a QuoteSpec must be of type VARCHAR(1). Allowed values are '''', '"' or ''. The latter case
implies "null is ''" and deactivates any quoting.

The optional ClobInlineSpec and BlobInlineSpec influence the representation of CLOB and BLOB fields.

See External File Format for the meaning of these specifications.

The codepage specification UTF8 means that the external file is UTF8-coded.

The codepage specification UCS2LE means that the external file is UCS2 (2 byte fixed length, little-endian).
The codepage specification UCS2BE means that the external file is UCS2 (2 byte fixed length, big-endian). The
codepage specification UCS2 means that the external file is UCS2 (2 byte fixed length, default format).

The codepage specification UCS4LE means that the external file is UCS4 (4 byte fixed length, little-endian).
The codepage specification UCS4BE means that the external file is UCS4 (4 byte fixed length, big-endian). The
codepage specification UCS4 means that the external file is UCS4 (4 byte fixed length, default format).

The codepage specification UCS means that the external file is the default UCS in default format. which is e.g.
UCS2 on Windows platforms and UCS4 on UNIX platforms.

The optional PROLOGUE clause can be applied if the external file is prologued with the Unicode character 0uF-
EFF. If no PROLOGUE clause is given on input and no byte-order is specified, the byte order is determined auto-
matically. If a byte-order is specified, and a differing PROLOGUE character is found, a runtime error is reported.

If no codepage is specified, the external file is assumed to be coded in UTF8.

SPOOL suppliers FROM suppliersfile

SPOOL suppliers FROM /usr/transb/data/suppliersfile LOCAL

SPOOL INTO suppliers_bak SELECT * FROM suppliers

11.1.1.1. FILE Tables

Syntax:

Data Import

137

[83] FileTableStatement ::= CREATE
FILE (FileLiteral [CodePageSpec] [NullSpec] [DelimSpec])
TABLE [IF NOT EXISTS] TableIdentifier
(FieldDefinition [, FieldDefinition]...)

[89] FieldDefinition ::= FieldIdentifier DataTypeSpec
[DefaultClause | AUTO_INCREMENT]
[FieldConstraintDefinition]...

[90] DataTypeSpec ::= DataType | DomainIdentifier

Data stored in spool files or other compatible file formats may be integrated into the database schema as virtual
tables. These FILE tables offer read-only access to those files via SQL commands. They can be used throughout
SQL SELECT statements like any other base table.

The table definition supplies a mapping of columns in the external file to column names and Transbase datatypes.

Currently a File table can only be created WITHOUT IKACCESS and no key specifications are allowed. Therefore
the creation of secondary indexes is currently not possible. These restrictions might be dropped in future Transbase
versions.

For details on the optional parameters CodePageSpec, NullSpec and DelimSpec please consult the SpoolTableS-
tatement.

FILE tables are primary designed as an advanced instrument for bulk loading data into Transbase and applying
arbitrary SQL transformations at the same time.

CREATE FILE (/usr/temp/data_file)
 TABLE file_table WITHOUT IKACCESS
 (a INTEGER, b CHAR(*))

SELECT a+10, upper(b) from file_table
SELECT b FROM file_table, regular_table
 WHERE file_table.a=regular_table.a

11.1.1.2. External File Format

For building up a Transbase database from given text files, the DelimSpec and the NullSpec are of importance for
scanning the text files. With the DelimSpec the separator between 2 field values in the text file can be specified
(the default value is the tabulator). With the NullSpec the textual encoding of a SQL NULL Value is specified
(the default value is a question mark ?).

If not explicitly stated differently, the following description of records in text files both applies to the format
generated by the spooler and to the format accepted by the spooler:

• Each line of text corresponds to one record.

• By default, fields are separated by one or more tabulators (TAB) unless differently specified by the DelimSpec.
The DelimSpec always is exactly one character.

• By default, the character ? represents a null value of any type unless differently specified by the NullSpec. The
NullSpec always is exactly one character.

• The representation of INTEGER, REAL, NUMERIC, BOOL, DATETIME and TIMESPAN values corresponds
to those of IntegerLiteral, RealLiteral, NumericLiteral, BoolLiteral, DatetimeLiteral and TimespanLiteral in the
TB/SQL syntax. Integers, reals, numerics and timespans can be preceded by an - sign.

Data Import

138

For text strings, the following rules apply:

• The empty string is represented as a sequence of two single quotes.

• A non-empty string x1 ... xn is spooled out with single quotes and as sequence of transformed characters 'T(x1) ...
T(xn)'. In most cases T(xi) = xi holds. However, characters which have a special meaning must be escaped.
Thus, for some characters x, T(x) is a two-character-sequence of a backslash ('\') and the character x. Special
characters and their representation are shown in the table below.

As input for the spooler, the string can be represented as x1 … xn as well as $'x1 … xn'$ (i.e. the spooler eliminates
surrounding quotes).

Special characters and their representation inside strings are shown in the following table.

Table 11.1. Special Characters in Spool Files

Special Character Representation

' \'

<tab> \t

<newline> \n

\ \\

Special Rule for Type Binchar

As stated above, when spooling tables from external files, the spooler accepts strings in the form xyz as well as 'xyz',
although the form xyz is not a valid SQL literal for the type (VAR)CHAR(p) or CHAR(*). This is comfortable for
data migration into Transbase but has the consequence that table spooling compromises type compatibility in the
case of CHAR and BINCHAR. Inside a spool file, values for a BINCHAR field must be written as BinaryLiterals,
e.g. in the form 0xa0b1c2. Whereas a value in the form xyz is accepted for a CHAR field, the same value is not
accepted for a BINCHAR field because special values in that form would not be parsable in a unique manner, e.g.
0xa0b1c2 could be interpreted as a 8 byte CHAR value or a 3 byte BINCHAR value.

11.1.1.3. Key Collisions

When a table is spooled then Transbase rejects the data if there are 2 different records with the same key. In this
situation the data to be spooled is inconsistent with the table creation specification. It may be advantageous to use
Transbase to find out all records which produce a key collision. For this, recreate the table with the desired key
but extended to all fields. For example, if the table T has the key on k1 and other fields f2,f3,f4, then create a table
TFK with the clause: KEY IS k1,f2,f3,f4.

Then spool the table which in any case now works (except there are syntactical errors in the spoolfile). To find
out all records with the same key, issue the query:

SELECT *
FROM TFK
WHERE k1 IN
(SELECT k1
 FROM TFK
 GROUP BY k1
 HAVING COUNT(*) > 1
)
ORDER BY k1

Data Import

139

11.1.1.4. Spooling LOB objects

For a table which has one or several LOB fields, the corresponding data in a spool file does not contain the LOB
objects themselves but contains file names instead. Each LOB object is represented by a file name and the LOB
object itself is stored in that file.

This is the default behaviour. BLOBs and CLOBs may also be stored inline if BLOBSINLINE or CLOBSINLINE,
resp., is specified in the SPOOL statement.

Example 11.1. Spooling a file from a table with LOBs

Assume a 4-ary table ''graphik'' with field types CHAR(20), INTEGER, BLOB, CLOB.

• SPOOL INTO spfile SELECT * FROM graphik

This SPOOL command creates a file spfile and a subdirectory b_splfile. The BLOB and CLOB objects
are stored in files (one file per object) in the subdirectory. The names of the files are B0000001 etc. with
increasing numbers.

The created file spfile would look like:

'image31' 123 b_spfile/B0000001.003 b_spfile/B0000001.004
'image32' 321 b_spfile/B0000002.003 b_spfile/B0000002.004
'image33' 987 b_spfile/B0000003.003 b_spfile/B0000003.004

• SPOOL Option LOBFILESIZE:

To reduce the number of files in the subdirectory, the LOBFILESIZE specification can be used, for example:
LOBFILESIZE=10 MB

SPOOL INTO spfile LOBFILESIZE=10 MB SELECT * FROM graphik

Then a set of BLOBs whose size is not bigger than 10 MB is stored in a single file instead of n different files.
Without a KB or MB qualification, the specified number is interpreted as MB.

• BLOBs and CLOBs as Inline Values:

BLOBs and CLOBs may also be spooled as inline values inside the main target spool file.

The option CLOBSINLINE outputs all CLOB fields as inline values similar to CHAR and VARCHAR fields.

The option BLOBSINLINE BASE64 writes BLOB fields in a BASE64 representation.

The option BLOBSINLINE HEX writes BLOB fields in hexadecimal form. This representaion is more space
consuming than BASE64.

SPOOL INTO spfile CLOBSINLINE BLOBSINLINE BASE64 SELECT * FROM graphik

Note that for spooling a table from such a file also the corresponding INLINE specifications are mandatory in
the SPOOL command.

Example 11.2. Spooling a table with LOBs from a file

Assume again the table graphik described above.

• spool data from a file spoolfile into the table graphik:

SPOOL graphik FROM spoolfile

The file spoolfile may look like:

'image31' 123 b_spfile/B0000001.003 b_spfile/B0000001.004
'image32' 321 b_spfile/B0000002.003 b_spfile/B0000002.004
'image33' 987 b_spfile/B0000003.003 b_spfile/B0000003.004

Data Import

140

• BLOBs and CLOBs as Inline Values:

If BLOBs and/or CLOBs are given as INLINE values in the source spool file, then the SPOOL command must
look like:

SPOOL graphik FROM spoolfile CLOBSINLINE

or (for BLOBs in BASE64)

SPOOL graphik FROM spoolfile BLOBSINLINE BASE64

or (if both are INLINE)

SPOOL graphik FROM spoolfile CLOBSINLINE BLOBSINLINE BASE64

The file could also contain absolute path names.

11.1.1.5. Filename Adaption on non-UNIX Operating Systems

If the application and/or the server is running on a non-UNIX operating system, the filename syntax requires some
consideration. In the following, the filename translation mechanisms that Transbase uses are described.

In Transbase SQL, filenames occur in 3 different places: in the SpoolTableStatement as specification of the source
file, in the SpoolFileStatement as specification of the target file and inside spoolfiles as LOB placeholders.

On all three places mentioned above, Transbase SQL allows filenames in UNIX syntax as described in the pre-
ceeding chapters. This means that all examples about data spooling and LOB filenames in spoolfiles also would
be legal when the application and/or the database server run on MS WINDOWS.

When communicationg with the operating system, Transbase translates the filenames into valid system syntax.
The '/' character is thereby interpreted as the delimiter between different directory levels.

For example, on a Windows machine the UNIX filename /usr/tmp/BLOBFILE003 would be mapped onto \usr
\tmp\BLOBFILE003.

It is also legal to use WINDOWS filename syntax if the application is running on WINDOWS. For example, the
statement

SPOOL graphik FROM \usr\tmp\graphikspf

would be legal on a Windows client.

Also note that Transbase maps UNIX-like filenames to WINDOWS-like style but not vice versa. If portability is
required for applications and/or spoolfiles with LOBs, filenames should be written in UNIX syntax.

11.1.2. The XML Spooler

11.1.2.1. General Characteristics of XML

The eXtensible Markup Language (XML) is used to represent structural data within text documents. An XML
document consists of nested elements describing the document structure. Nesting means, that each element may

Data Import

141

have one or more child elements, each containing further elements. The application data is stored within fields
or the content of elements. The usage of tags containing the element names makes XML data self-describing.
Since an XML document may have only a single root element, the hierarchical structure of an XML document
can be modeled as a tree, also known as document tree. In the following figure a small XML document and its
document tree is shown.

Figure 11.1. Example of an XML Document and the Document Tree

todo: includegraphics{eps/smalldocandtree}

The context of XML elements must not contain the signs >, <, &, ", and '. They have to be replaced with escape
sequences. In the following table the special characters and their escape sequences are shown.

Table 11.2. Special Characters

Character XML Representation

> <

< >

& &

" "

' '

11.1.2.1.1. The Syntax of the XML Spool File

The XML spooler works only with XML documents that have a restricted structure. An XML spool file may only
have four levels: the root level, whose tag is labeled with Table. The next level serves as delimiter between records
and its tags are named Row. The third level consists of XML elements displaying the fields of the record. There
are two possibilities to present elements of the third level:

1. The names of the elements have to be identical to the column labels of the destination table.

2. The elements are labeled with Field and have to carry an field name whose value displays the name of the
table column.

<lname>Smith</lname>
<Field name="lname">Smith</Field>

These two line both have the same meaning.

Finally, values are presented as content of XML elements at the fourth level. The XML elements also may carry
attributes. At the first level, the attributes name and nullrep are defined. The first defines the name of the destination
table. The later one is used for the definition of the null representation. Its meaning is explained in section nullval
. For the second level (i.e. Row), only the attribute name is known by the spooler. The attributes defined for the
third level and their meanings are declared in section attributes .

An example document with the document tree containing the four levels is shown in Fig. ExampleOfAnXMLDoc .

According to these syntax rules, there are tag names with special meaning in the spool file called delimiter tags:
Table, Row, Field and Column (see section use_fi). The XML spooler is case insensitive concerning these labels,
i.e. one can write ROW or row and so on.

In contrast to this, in the DSV data spooler (Delimiter-Separated Values mode) the values of each record are
presented in one line in the spool file. Usually, the values are separated by a tabulator ('\t') sign. Each record must

Data Import

142

have the same number of elements as there are columns in the destination table. Furthermore, these elements need
to have the same ordering as the table columns. NULL values are usually presented as '?' per default.

In Fig. dsv_spf , a spool file suited for the spooler in the DSV mode is shown. It is used to transfer data into the
table SUPPLIERS. The CREATE statement of that table is defined as follows:

CREATE TABLE supplier(supno INTEGER NOT NULL,
 name VARCHAR(*),
 address VARCHAR(*),
 PRIMARY KEY(supno))

Figure 11.2. DSV spool File

5 DEFECTO PARTS 16 BUM ST., BROKEN HAND WY
52 VESUVIUS, INC. 512 ANCIENT BLVD., POMPEII NY
53 ATLANTIS CO. 8 OCEAN AVE., WASHINGTON DC

The spool file shown in Fig. dsv_spf has three records. In the XML spool file, additionally the structural informa-
tion, as described above, is required.

Figure 11.3. XML Spool File

<Table>
 <Row>
 <Field name="supno">5</Field>
 <Field name="name">DEFECTO PARTS</Field>
 <Field name="address">16 BUM ST., BROKEN HAND WY</Field>
 </Row>
 <Row>
 <Field name="supno">52</Field>
 <Field name="name">VESUVIUS, INC.</Field>
 <Field name="address">512 ANCIENT BLVD., POMPEII NY</Field>
 </Row>
 <Row>
 <Field name="supno">53</Field>
 <Field name="name">ATLANTIS CO.</Field>
 <Field name="address">8 OCEAN AVE., WASHINGTON DC</Field>
 </Row>
</Table>

Fig. xml_spf shows an XML spool file containing the same data as shown in the DSV spool file from Fig. dsv_spf .

In contrast to the DSV spool file, within an XML spool file the order of the record fields does not matter. Further-
more, additional elements may be present or elements can be missing (see also section transfer). This provides
more flexibility in order to transfer query results into a database table whose scheme does not exactly match the
output of the query.

Note

The Transbase XML spooler is not able to read XML documents containing a Document Type De-
scription nor is it able to manage documents with namespace declarations.

11.1.2.2. Principal Functionality of the XML Spooler

11.1.2.2.1. Transfering XML Data Into the Database

Syntax:
[356] SpoolTableStatement ::= SPOOL LocalTableSpec

Data Import

143

FROM [SORTED] FileLiteral [LOCAL]
{ DSVSpec | XMLSpec } [ClobInlineSpec] [BlobInlineSpec]

[359] XMLSpec ::= FORMAT XML [NullSpec]
[360] NullSpec ::= NULL [IS] StringLiteral

Explanation:

<tablename> is the name of the destination table where the records of the spool file are inserted.

<file> presents the file name of the spool file.

DSV stands for delimiter separated values. If the statement contains no format option the DSV mode is used per
default. XML signals the XML spooling mode.

With the 'NULL IS' option, the null representation can be defined (see also section nullval).

In case of the XML mode, the spooler scans the provided spool file and reads until the end of a record is reached
(signaled by the end tag</Ro>). If a field is missing, the default value is inserted in the database. If no default
value is available, the NULL value is used for that field. If there are additional fields for which no column in the
destination table can be found, these fields are ignored.

Figure 11.4. Complex XML spool File

<Table>
 <Row>
 <address>64 TRANQUILITY PLACE, APOLLO MN</address>
 <anything>?</anything>
 <supno>57</supno>
 </Row>
</Table>

So for example, the spool file of Fig. comp_xml_spf contains one record for the table SUPPLIERS (see section
spf_syntax). The ordering of the fields does not match with the ordering of the table columns. The field 'name'
is missing and since no default value is present, this field gets the value NULL. Furthermore, the record of the
spool file contains a field labeled 'anything' which is ignored because the table SUPPLIERS does not have any
column of that name.

11.1.2.2.2. Extracting Query Results Into an XML Document

Syntax:
[357] SpoolFileStatement ::= SPOOL

INTO FileLiteral [LOCAL]
{ DSVSpec | XMLSpec } [ClobInlineSpec] [BlobInlineSpec] [Lob-
FileSpec]
SelectStatement

[359] XMLSpec ::= FORMAT XML [NullSpec]
[360] NullSpec ::= NULL [IS] StringLiteral

Explanation: <file> presents the name of the output spool file. If the format option XML is used the result of the
entered statement is formatted to XML. The SelectStatement can be any valid select statement.

As explained in section spf_syntax, the root of an XML spool file is labeled Table. The information of each record
is presented within the begining and ending Row tag. For each record field, the name of the associated column
is presented as attribute of the beginning Field tag. Between the beginning and the ending Field tags, the query
result for this field is printed (see Fig. xml_spf).

Data Import

144

11.1.2.3. Extended Functionality of the XML Spooler

11.1.2.3.1. Reading the XML Declaration

XML documents optionally may have an XML declaration which always is located at the beginning of the doc-
ument. Among the version number, this declaration may include information about the encoding. The latter one
may be of interest for the XML spooler.

<?xml version="1.0" encoding="UTF-8" ?>

The XML Spooler notices only the value of the encoding attribute within the declaration. All other information is
ignored. However, at the moment, the XML spooler supports only UTF-8 encoded XML documents.

11.1.2.3.2. The Usage of Format Information

The XML spooler provides the opportunity to add format information as a header in front of the records. Such
information are declared for the datetime and timespan types, so far. They are used to specify the range of these
types for the complete spool file. Nevertheless, another format description may be entered as attributes within a
record field. Furthermore, within the format information, the null representation and the default value of a table
column may be defined. The format information has to be placed after the root tag (i.e. before the first record).
For each column of the destination table, which requires additional information, an XML element named Column
carrying several attributes is defined. This kind of information is called format information header here after wards.

Figure 11.5. Format Information Header

<Table>
 <column name="bdate" type="datetime[yy:dd]" nullrep="x"/>
 <column name="age" type="timespan[dd:ss]" default="22592 12:2:4"/>
 <Row>
 ...
 </Row>
</Table>

Fig. fiBegin shows an example of the format information header at the beginning of the spool file. For the Col-
umn element the attributes name, type, nullrep, and default are defined. With the value of the name attribute, the
column of the destination table is identified. Accordingly, the type attribute carries the type definition and the
range specification of this column as value. If the nullrep and/or the default attributes are present they define the
representation of the null and/or the default value for the according table column. Because of the format informa-
tion shown in Fig. fiBegin, the XML Spooler supposes that values of the column bdate for example are of type
datetime and are formatted beginning with the year and ending with days. Accordingly, values of the column age
are of type timespan, beginning with days and ending with seconds. If this field is missing in one of the record,
the default value '22592 12:2:4' is inserted.

The meaning of the nullrep attribute is explained in section nullval . Morover, the usage of the default attribute
is explained in section defVals.

Data Import

145

The Usage of Format Information when Transferring Data Into the Database

Together with the option explained above, there are four possibilities how the XML spooler determines which
format should be used for a record field:

1. Datatime or timespan values can be represented in the TB/SQL syntax, i.e. the format information is written
in front of the data (see section External File Format).

<Table>
 <Row>
 ...
 <age>timespan[dd:ms](19273 12:2:4:1)</age>
 </Row>
</Table>

2. The type and range specification is declared by an XML attribute. According to this, the XML parser listens
for the attribute named type within the beginning tag of a record field.

<Table>
 <Row>
 ...
 <bdate type="datetime[yy:dd]">1945-12-8</bdate>
 </Row>
</Table>

If the parser determines this attribute, it remembers its value until it can be used for type checking before
inserting the record in the database.

Note

There is also the possibility to enter format information as TB/SQL syntax and additionally pro-
vide the concerning XML attributes. In this case, the attributes are ignored.

 <today type="datetime[yy:dd]">
 datetime[yy:hh](2007-12-11 15)
 </today>

In this case, the spooler assumes that the range specification of [yy:hh] is correct.

3. A header containing the format information as described above may be present. This information is only used,
if the parser did not find such information within the field declaration (either as XML attributes or as TB/SQL
representation).

4. If there is neither any format information within the field declaration nor any format information header present,
the XML spooler assumes that the appropriate value has the format as defined in the column of the destination
table.

Note

If the format of the value does not match the format to be used according to the added format infor-
mation or the database scheme, an error handling is started (see section err_reports).

Data Import

146

Writing the Format Information for Query Results

If a query result contains fields of type timespan or datetime, a header containing the format information as de-
scribed above is generated and written into the output spool file.

<Table>
 <column name="bdate" type="datetime[yy:dd]"/>
 <column name="age" type="timespan[dd:ss]"/>
 <Row>
 ...
 </Row>
</Table>

11.1.2.3.3. The Representation of Null Values

With the XML spooler, there are several opportunities, to declare the representation of the null value: the definition
of a single character within the spool statement, to add a null representation string as attribute of the Table element,
or to use the nullrep attribute within the Column element. If none of these three possibilities is used, the default
('?') is used for the representation of the null value.

Table Spool Statement with a Null Representation

The spool table statement provides the option to enter a single character representing the Null value.

spool employee from test.xml format xml null is 'x'

If an 'x' is scanned for a field value, the spooler generates a NULL to be inserted in the database. If the value 'x'
should be inserted instead of NULL, in the spool file the attribute null has to be set to false.

<Table>
 <Row>
 <Field name="lname" null="false">x</Field>
 ...
 </Row>
 ...
</Table>

Note

The XML spooler also supports the representation of null values by setting the null attribute of the
Field element to true. Hence, the following two lines have the same meaning, if the null represen-
tation is set to 'x':

<Field name="lname">x</Field>
<Field name="lname" null="true"/>

The Null Representation for the Complete Document

As mentioned in section spf_syntax , the Table element may have an attribute named nullrep. Its value displays
the representation of the null value for the remaining document. In contrast to the representation of the table spool
statement, this value may be a string, not only a single character. If the nullrep attribute is present within the Table
tag, the null representation of the spool statement - if any - is ignored. Again, if for a record field the same value
as for the null representation should be inserted in the database, the null attribute has to be set to false.

Data Import

147

<Table nullrep="xyz">
 <Row>
 <Field name="lname">x</Field>
 <Field name="rname" null="false>xyz</Field>
 <Field name="address">xyz</Field>
 ...
 </Row>
</Table>

Since the nullrep attribute is present, the value 'x' for the field lname is not interpreted as null although it was
defined as null representation by the spool table statement. Thus, the following record values are inserted in the
database: x, xyz, NULL, ...

The Null Representation for a Single Column

Within the format information header described in section use_fi , it is possible, to declare a value for the null
representation. This is done with the nullrep attribute within the column element. As for the null representation of
the Table element, the value may be a string. If this attribute is entered there, the value defines the null represen-
tation only for the column of the specified name. Other null representations (that from the Table element or that of
the spool statement) then are not applied to the specified column. Again, if a value to be inserted in the database
is the same as the null representation value, the attribute null has to be set to false.

<Table nullrep="xyz">
 <Column name="lname" nullrep="abc"/>
 <Row>
 <Field name="lname">abc</Field>
 <Field name="rname">xyz</Field>
 ...
 </Row>
 <Row>
 <Field name="lname" null="false">abc</Field>
 <Field name="rname" null="false">xyz</Field>
 ...
 </Row>
 <Row>
 <Field name="lname">xyz</Field>
 <Field name="rname">x</Field>
 ...
 </Row>
 </Table>

Although, if in the spool statement the NULL IS 'x' option was used, the following record values are generated
and inserted in the database:

NULL, NULL, ...
abc, xyz, ...
xyz, x, ...

The Default Value for the Null Representation

If no null representation is present (neither in the spool statement nor nor in the spool file), the default null symbol
('?') is used. This is also true for the DSV Spooler. Also in this case, it is necessary, to set the field attribute null
to false if the value ? has to be inserted in the database.

Data Import

148

Writing the Null Representation

When writing the query result in an XML document, the Table element gets the attribute nullrep in any case. At
the moment, the value of this attribute can be only a single character. The value is either the default null symbol
('?') or was entered with the file spool statement. Furthermore, it is not possible to define a null representation
for a single column.

spool into test.xml format xml null is 'x' select * from employee

In this case, the output document looks as follows:

<Table nullrep="x">
 <Row>
 <Field
 </Row>
 ...
</Table>

11.1.2.3.4. The Default Values

After a complete record was scanned by the XML spooler, for fields that are not present the default value if any
available is inserted in the data base. Otherwise, for these fields a NULL is inserted. There are two possibilities to
define the default values: first, default values can come from the table description. Second, within the format in-
formation header, an attribute declaration can be used to define the default value. These possibilities are explained
next.

Default Values from the Table Description

Default values that come from the table description are declared within the CREATE TABLE statement or with
an ALTER TABLE statement.

In the following example, a spool file is used to transfer data in a table called employee. The CREATE TABLE
statement of this destination table looks as follows:

CREATE TABLE employee (..., fname VARCHAR(*) DEFAULT 'MARY', ...)

For each record, where the field fname is not present, the value "Mary" is inserted.

If the default value of the table description represents a sequence, this sequence has to be updated each time the
default value is used.

In the following, parts of a spool file are shown that should be transfered into a data base table:

<Table>
 <Row>
 <Field name="ssn">20</Field>
 ...
 </Row>
 ...

Data Import

149

</Table>

The field 'ssn' is of type integer and has as default a sequence. In the first record, this field is present. In all other
records not shown, the field is missing and hence, the sequence is increased each time the default value is inserted.

Note

If there are more than one sequences per table, all sequences are increased at the same time. Hence,
more sequences may result in confusing values.

Default Values within the Format Information Header

In order to declare a default value within the format information header, the attribute named default is used.

<column name="fname" default="Max"/>

In this case, for missing fields with the name fname, the default value "Max" is inserted.

If the attribute default is present within the format information header, the XML spooler checks if its value is
valid according to the type declaration of the table description. If an uncorrect value was entered the definition
of the default value is ignored.

Note

The definition of the default value within the format information header has a higher priority than
that of the table description. I.e. if both, the table description and the format information header
contain a default value for the same field, the default value of the table description is ignored.

11.1.2.3.5. XML Attributes Known by the XML Spooler

The following table shows the attributes known by the XML spooler and their possible values.

Table 11.3. Attributes and Their Values

Attribute Name Possible Values

name any string

nullrep any string

type datetime[cc:cc] | timespan[cc:cc]

null true | false

default any string

blobfile any string

clobfile any string

offset any number

blobsize any number

clobsize any number

Data Import

150

Attribute Name Possible Values

encoding any string

If the spool file contains other attributes as declared within the above table, these attributes are ignored by the
spooler. Similarly, if the parser encounters a not expected attribute value, depending on the location, an error is
generated as explained in chapter err_reports.

Attributes Describing Format Information

As described in section use_fi, the parser of the XML spooler has to know the following attributes within a Column
element: name, type, and default. The attributes name and type are also known within the beginning tag of a record
field.

The Attributes for Null Values

As explained in section nullval , for both - the DSV and the XML spooler, the default null symbol is presented by
the '?' sign. Furthermore, a single character for the null representation may be entered with the spool statement.
Within an XML spool file, the attribute labeled with nullrep may be used to overwrite this null representation for
the complete document or only for a single column (see section nullval). Additionally, the attribute 'null' can be
used to signal the usage of a null value for a particular field. If this attribute carries the value 'true', a NULL is
inserted for the appropriate record field. There are three possibilities, to declare a NULL field with this attribute:

1. The null attribute is set to true and no value is entered. In this case, usually no closing tag is required because
the opening tag is closed after the attribute declaration.

 <today null="true"/>

2. Although no value is entered, it is valid to use the opening and closing tag within the XML document.

 <today null="true"></today>

3. The null field may carry a value.

 <today null="true">2007-12-07</today>

Since the attribute value null is set to true, the data entered between opening and closing tag is ignored and a
NULL is inserted for this record field.

Attributes Defining Lob Characteristics

The attributes blobfile, clobfile, blobsize, clobsize and offset are used when spooling lob. More details for these
attributes can be found in chapter lob_spooling .

Attributes of the XML Declaration

As already explained in section xml_decl, an XML document optionally may have an XML declaration including
attributes. The parser only remembers the value of the 'encoding' attribute, all other attributes within this decla-
ration are ignored.

Data Import

151

11.1.2.4. Error Reports

The transbase error handling differs between hard and soft errors. If a hard error occurs, the insertion process is
stopped immediately and a roll back is performed. Hence, in case of an hard error, no record from the spool file
is inserted. If a soft error is encountered, the appropriate record is ignored and skipped and all correct records
are inserted.

11.1.2.4.1. Hard Errors

Concerning the XML spool mode, hard errors occur in connection with lobs or if an unexpected tag is encountered.
If at least one column of the destination table is of type blob, each encountered error is handled as an hard error. The
error of an unexpected tag occurs especially in connection with the delimiter tags defined in section spf_syntax. So
for example, an XML spool file my begin only with an XML declaration or with the Table tag. After the beginning
Table tag, the XML spooler accepts only a Column or a Row Tag. At the end of a Column tag, a further Column
tag or a beginning Row tag is required. Finally, after a closing Row tag, only a beginning Row or an ending Table
tag is allowed. If the spooler encounters another tag as expected, the spool process is aborted since no realistic
recovery point is available.

11.1.2.4.2. Soft Errors

XML Syntax Errors

According to the error treating, there are three classes of XML syntax errors: hard errors as unexpected tags, syntax
errors forcing the skipping of a record, and syntax errors leading in a scanning to the next recovery point. The first
error class is already explained in section hardErr, the other two classes will be explained next.

1. XML Syntax Errors Leading in a Skip Operation: If an XML syntax error occurs that still allows the correct
interpretation of the following XML segments (i.e. tag, attribute, value, ...), the rest of the record is skipped.
This means, the record is not inserted into the database but is written in the error report with an appropriate
error message as XML comment. The end tag differs from the beginning tag as shown next.

<Row>
 <fname>John</fname>
 <lname>Smith</lname>
 <ssn>123456789</ssn>
 <address>731 Fondren, Houston, TX</add>
 <sex>M</sex>
</Row>

In the example, the fourth record field starts with an address tag and ends with an add tag. In this case, the
complete record is written in the error file that contains all incorrect records along with the proper error message.
The spooling then starts at the beginning of the next record.

Error Message:

<Row>
 <fname>John</fname>
 <lname>Smith</lname>
 <ssn>123456789</ssn>
 <!== missmatch between open and closing tag ==>
 <address>731 Fondren, Houston, TX</add>
 <sex>M</sex>

Data Import

152

</Row>

2. XML Syntax Errors Leading in an Ignore Operation: If in the XML spool file an unexpected sign occurs, the
spooler is not able to interpret the meaning of the following segments. Hence, nothing of the record is inserted
in the database. The spooler ignores everything until to the next recovery point. A recovery point can be found
at the beginning of each record, i.e. if a beginning Row tag is encountered. Such errors are for example missing
angles, forgotten inverted commas, and so forth. Due to the restricted syntax of XML spool files, the transbase
spooler also interprets mixed content as syntax error.

<Row name="row1">
 <field name="fname">?</field>
 this text is mixed content
 <lname>?</lname>
 ...
</Row>
<Row name="row2"'>
 ...
</Row>

After a closing Field tag, only an opening Field, a closing Row tag, or a XML comment is expected. When
scanning the text after the first record field, the spooler ignores the rest of the record and starts the spooling
process at the begin of the next record <Row name="row2>). In the error report, the following error message
is written.

<Row name="row1">
 <field name="fname">?</field>
 <!== XML Syntax error found, scanning to begin of next record ==>
</Row>

Errors Occurring During the Spooling of a record

There are several errors that may occur during the parsing process of the record. If such an error is determined,
the rest of the record is skipped. The incorrect record is written in an error report file where an error message is
inserted before the faulty record field. Especially wrong types, invalid null definitions, or invalid field values may
occur during the record spooling. These errors are explained next.

1. Invalid Null Definition: If in the table description a field is declared to be not null and in the spool file for this
field the null attribute is set to true or the value for the null representation was entered, this record is skipped.
In the following example, the field address must not be null according to the table description.

<Row>
 <fname>Franklin</fname>
 <lname>Wong</lname>
 <ssn>333445555</ssn>
 <address null="true"/>
 <sex>M</sex>
</Row>

In the error file the following error message is entered: Error Message:

<Row>
 <fname>Franklin</fname>
 <lname>Wong</lname>
 <ssn>333445555</ssn>
 <!== field must not be null ==>
 <address null="true"/>
 <sex>M</sex>
</Row>

2. Wrong Types: Such errors occur for example, if a string is added where a numeric value is supposed.

<Row>
 <fname>Joyce</fname>
 <lname>English</lname>
 <ssn>453453453</ssn>

Data Import

153

 <address>563 Rice, Houston, TX</address>
 <sex>M</sex>
 <salary>error</salary>
</Row>

In the example above, the field salary is of type numeric. During the record spool, a string value is scanned and
hence the error handling is started. Error Message:

<Row>
 <fname>Joyce</fname>
 <lname>English</lname>
 <ssn>453453453</ssn>
 <address>563 Rice, Houston, TX</address>
 <sex>M</sex>
 <!== numeric error ==>
 <salary>error</salary>
</Row>

3. Errors Concerning XML Attributes: In Tab. formatAts, the attributes and their possible values are listed. Errors
concerning XML attributes are encountered if a not expected value was entered. The attributes can be classified
in three categories: attributes describing format information, attributes describing characteristics of lobs and
attributes belonging to the Field element. The error handling for attributes depends on this classification.

4. a. Errors Within Field Attributes: Usually, errors are encountered during the spooling stage which causes the
skipping of the record and the generation of an appropriate error message. An example of an incorrect
attribute value and the according error message is shown below.

 <Row>
 <fname>James</fname>
 <lname>Borg</lname>
 <ssn>888665555</ssn>
 <bdate null="nonsense">1975-11-30<bdate>
 <sex>M</sex>
</Row>

In this case, the attribute 'null' of the XML element 'bdate' has the value 'nonsense'. Since for this attribute
only the values 'true' or 'false' are defined, the following error message is generated.

 <Row>
 <fname>James</fname>
 <lname>Borg</lname>
 <ssn>888665555</ssn>
 <!== not expected attribute value (nonsense) ==>
 <bdate null="nonsense">1975-11-30<bdate>
</Row>

b. Errors at Attributes Describing Lob Functionality: As mentioned above, if the destination table of the spool
statement contains at least one lob column, each error is classified to be an hard error. Due to this, wrong
values for the attributes offset, and blobsize result in an hard error. Hence, in such a case, no record of the
spool file is inserted in the database.

c. Errors at Attributes Describing Format Information: As described in section use_fi, attributes that describe
format information may occur in the format information header or within the begin tag of the record field.
The correctness of the type and range specifications is verified at the insertion stage when the complete
value is available. If there is an error encountered, the record is skipped and an error message is generated.
By the reason of this, if there was entered an incorrect type (especially in the range part) within the format
information header this results in the skipping of all records that use this information in the remaining spool
file.

Errors Occurring at the Insertion Stage

After a record is scanned completely, problems may occur before or at the insertion step. So for example, which
record fields are missing can be determined only after the complete record was parsed. Furthermore, integrity

Data Import

154

violations and key collisions can be recognized only when trying to insert the record. If such an error occurs, the
record is not inserted in the database. It is written in the error file together with a proper error message. Since
the error concerns the complete record and not only a single record field, the error message is placed in front of
the record declaration. The spooling process goes ahead with spooling of the next record. An example of such
an error is explained below.

As explained in section spf_syntax, it is not necessary to declare all record fields within an XML spool file. For
a missing field the default value is inserted. If no default value is declared the NULL value is used. However, if
such a field may not be null according to the table description the record must not be inserted in the database and
hence, the error handling is started.

<Row>
 <fname>James</fname>
 <lname>Borg</lname>
 <ssn>888665555</ssn>
 <sex>M</sex>
</Row>

In this example, the field address which was declared to be not null is not present within the record. Hence, if no
default value is available, the following error message is generated.

Error Message

<!== The field address must be declared - not null ==>
<Row>
 <fname>James</fname>
 <lname>Borg</lname>
 <ssn>888665555</ssn>
 <sex>M</sex>
</Row>

11.1.2.4.3. Attempt to Use an XML Document in the DSV Spooling Mode

The spool statement allows optional to choose the spooling mode (DSV or XML). If the format part is not entered,
the DSV spooler is used per default. It may happen, that the format specification was forgotten and the user attempts
to spool an XML document in the DSV spooling mode. In such a case, at the end of the spooling process, a proper
error message is generated (error in DSV spooler - possibly forgot to enter 'format xml' option in statement).

For this error message, two conditions have to be fulfilled:

1. The first scanned symbol may be the start of an XML document.

2. There is at least one error for each line: If an XML document is used with the DSV spooling mode usually no
correct record is encountered in the spool file, i.e. there are as many errors as spooled lines.

11.1.2.5. Spooling of Lobs with the XML Spooler

11.1.2.5.1. Transferring Lobs Into the Database

In the mode of delimiter separated values, the spool file usually contains file names for each lob field. The lob
data is stored in the associated files (see section sql_spool_lobs). The spooling process is performed by two runs:
in the first scan, the file names are collected and requested from the client. The client than sends these files to the

Data Import

155

server. In the second scan, the remaining values of the spool file are read and the complete records are inserted in
the data base. There is also the option to spool several lobs stored in one file by the usage of offset and size values.

If the XML mode is used, the file names of the blobs are entered as values of the attribute blobfile and the file
names of the clobs are entered as values of the attribute clobfile at the according record fields. The spool statement
is the same as explained in section transfer. Fig. spf_blobs shows an example of an XML spool file containing
blob file names. It is used to spool records in the table blobex which was created with the following statement:

CREATE TABLE blobex (nr INTEGER NOT NULL,
 picture BLOB,
 PRIMARY KEY (nr))

Figure 11.6. XML Spool File Containing Blobs

<Table>
 <Row>
 <nr>1</nr>
 <picture blobfile="B0000001.001"/>
 </Row>
 <Row>
 <nr>4</nr>
 <picture blobfile="maske.jpg"/>
 </Row>
 <Row>
 <nr>6</nr>
 <picture blobfile="photo.jpg"/>
 </Row>
</Table>

11.1.2.5.2. Writing Lobs from a Query Result

If a query result contains lob columns, the lobs usually are written in a separate file. The output spool file then
contains the name of these files. In order to this, the spool file may look like that shown in Fig. spf_blobs .

11.1.2.5.3. Inline Lobs

As in the DSV spooling mode, the lob data may also be entered as inline information. In an XML spool file,
the inline lob data is presented as value between the proper opening and closing field tags. For inline blobs, the
attributes blobfile, blobsize and offset are not present. Hence, if none of those attributes was entered, the spooler
assumes that the value between open and closing tag belongs to an inline blob. Inline lobs are only useful if the
lob is not too large. Inline lobs have to be encoded with hex representation or with the base64 (for pictures).

<picture>/9j/4AAQSkZ ... </picture>

In this example, the value of the blob represents parts of the code of a jpg-encoded picture.

While in the DSV spooling mode, mixing of inline lobs and lobs data located in a file is not possible, this mech-
anism is allowed in the XML spooling mode. The spooler decides because of the attributes that are available or
not if the lob data is located in the spool file or if it has to be loaded from a file.

Data Import

156

11.1.2.5.4. Storing Several Lobs in One File

Spooling Several Lobs into One File

As in the delimiter separated value mode, also in the XML mode it is possible to spool several lobs into one file.

In the following, an example statement is presented. It allows the spooling of the content from the table blobex
containing one blob column in the file blobexample:

SPOOL INTO blobexample LOBFILESIZE=100 mb SELECT * FROM blobex

Fig. dsv_blobs shows the output document that is generated for the statement above when using the DSV mode.
For each lob optionally the file name and a the byte offset is printed. The size of the lob always has to be present
(see Fig. dsv_blobs).

Figure 11.7. Output DSV Spool File

1 'B0000001.001<0:11505>' 'M'
4 '<11505>' 'M'
6 '<11505>' 'M'
7 '<11505>' 'M'

This output specifies that the first lob can be found in the file B0000001.001 at byte offset 0 and has a size of
11,505 bytes. Since for the second and all further lobs no file name is add the same file is used. For those lobs
only the size is specified. This means, the lob starts with the end of the lob before.

In the XML mode, the size and offset values are written as XML attributes (see Fig. xml_blobs).

Figure 11.8. Output XML Spool File

<Table>
 <Row>
 <nr>1</nr>
 <picture offset="0" blobsize="11505" blobfile="B0000001.001"/>
 <sex>M</sex>
 </Row>
 <Row>
 <nr>4</nr>
 <picture blobsize="11505"/>
 <sex>M</sex>
 </Row>
 <Row>
 <nr>6</nr>
 <picture blobsize="11505"/>
 <sex>M</sex>
 </Row>
 <Row>
 <nr>7</nr>
 <picture blobsize="11505"/>
 <sex>M</sex>
 </Row>
 <Row name="nr4">
 <nr>8</nr>
 <picture blobfile="photo.jpg"/>
 </Row>
</Table>

Data Import

157

Spooling Several Lobs from One File

In the spool file, for each lob, optionally the filename and the byte offset has to be entered. The lob size is always
required. In the XML mode, this information has to be presented as shown in the output document from Fig.
xml_blobs. Since for the second and all further records no file name is present in the spool file, the spooler uses
the file (B0000001.001) from the record before. Furthermore, no byte offsets are available for these records.
Hence, the spooling of the second lob starts and the end of the first lob and so on. If there is a blob field in a record
where only the attribute blobfile is present but no size and no offset, then the spooler supposes that the complete
file data belongs to one blob. So for example, for the last record of Fig. xml_blobs, the complete content of the
file 'photo.jpg' is loaded in the concerning lob container.

11.2. External data sources

11.2.1. Remote Database Access

Transbase offers direct and transparent read/write access to remote Transbase databases for distributed queries
and data import. Please consult TableReference for details on how to connect to a remote Transbase site in an
SQL statement.

The following example is a distributed join using two remote databases.

INSERT INTO T
SELECT q.partno, supp.sno
FROM quotations@//server3/db1 q, suppliers@//server5/db2 supp
WHERE q.suppno = supp.sno

11.2.2. JDBCReader

Additionally it is possible to transfer data from arbitrary JDBC or other database data sources via TableFunction
s. These functions may be used throughout SQL SELECT statements like any other base table and can be used
for querying remote data, data loading and data transformation.

The JDBCReader can be used for querying remote JDBC data sources or for data import.

INSERT INTO T SELECT * FROM
 FUNCTION JDBCReader('conn_string','user','passwd',
 'SELECT * FROM jdbc_table')

Refer to TableFunction for more details on the configuration of the JDBCReader.

11.2.3. OraReader

Similar to the JDBCReader, the OraReader is a TableFunction that provides read-only access to remote Oracle
databases. For maximum efficiency, the function is implemented via a dynamic link library (in C programming

Data Import

158

language) using the OCI interface to access Oracle. Thus it will outperform the JDBCReader on Oracle data
sources. The function may be used throughout SQL SELECT statements just like any other base table.

The OraReader can be used for querying remote Oracle data sources for data import.

INSERT INTO T SELECT * FROM
 FUNCTION OraReader('//orasrv/oradb','scott','tiger',
 'SELECT * FROM ora_table')

11.2.4. FILE Tables

Data stored in files may be integrated into the database schema as virtual tables. These FILE tables offer read-
only access to those files via SQL commands. They can be used throughout SQL SELECT statements like any
other base table.

CREATE FILE ('/usr/temp/data.csv')
 TABLE file_table WITHOUT IKACCESS
 (a INTEGER, b CHAR(*))

SELECT a+10, upper(b) from file_table
SELECT b FROM file_table, regular_table
 WHERE file_table.a=regular_table.a

If the FILE table is not needed persistently in the schema it can also be used inline within the SELECT statement:

SELECT a+10, upper(b)
 FROM ('/usr/temp/data.csv') (a INTEGER, b CHAR(*))
 WHERE a > 100

FILE tables are primarily designed as an advanced instrument for bulk loading data into Transbase and applying
arbitrary SQL transformations at the same time.

159

12. Administration Language
TB/SQL provides several administrative operations for databases and grids.

12.1. Overview of AdministrationStatement

Syntax:
[366] AdministrationStatement ::= CreateDatabaseStatement |

AlterDatabaseStatement |
RegisterDatabaseStatement |
DeregisterDatabaseStatement |
BootDatabaseStatement |
ShutdownDatabaseStatement |
MigrateDatabaseStatement |
DropDatabaseStatement |
PublishDatabaseStatement |
DumpDatabaseStatement |
CreateGridStatement |
AlterGridStatement |
DropGridStatement

12.2. Database Parameters

This section describes all parameters for creating and modifying databases.

Syntax:
[367] DBParamBlockSize ::= BLOCK_SIZE = { 1 | 2 | 4 | 8 | 16 | 32 }
[368] DBParamBufferConcurrency ::= BUFFER_CONCURRENCY = IntegerLiteral
[369] DBParamBufferSize ::= BUFFER_SIZE = StringLiteral
[370] DBParamCaseInsensitive ::= CASE_INSENSITIVE = BoolLiteral
[371] DBParamCommCompression ::= COMMUNICATION_COMPRESSION = BoolLiteral
[372] DBParamConnectionLimit ::= CONNECTION_LIMIT = IntegerLiteral
[373] DBParamSize ::= SIZE = StringLiteral
[374] DBParamDBConf ::= DBCONF = StringLiteral
[375] DBParamDump ::= DUMP = StringLiteral
[376] DBParamEncryption ::= ENCRYPTION = { NONE | RIJNDAEL_256 }
[377] DBParamJavaOutput ::= JAVA_OUTPUT = BoolLiteral
[378] DBParamLogFileSize ::= LOG_FILE_SIZE = StringLiteral
[379] DBParamLogWindow ::= LOG_WINDOW = { UNLIMITED | IntegerLiteral }
[380] DBParamLogWriteThru ::= LOG_WRITETHRU = { COMMIT | DEMAND | NONE }
[381] DBParamName ::= NAME = StringLiteral
[382] DBParamPassword ::= PASSWORD = StringLiteral
[383] DBParamPath ::= PATH = StringLiteral
[384] DBParamPublication ::= PUBLICATION = StringLiteral
[385] DBParamQueryThreading ::= QUERY_THREADING = { OFF | MEDIUM | HIGH }
[386] DBParamRecoveryMethod ::= RECOVERY_METHOD = { LOGGING | BEFOREIMAGE }
[387] DBParamRecoveryPath ::= RECOVERY_PATH = StringLiteral
[388] DBParamReplicationMaster ::= REPLICATION_MASTER = StringLiteral

Administration Language

160

[389] DBParamReplicationMode ::= REPLICATION_MODE = { NONE | ONCE | ASYNCHRONOUS
| SYNCHRONOUS | SEMISYNCHRONOUS }

[390] DBParamReplicationSlave ::= REPLICATION_SLAVE = BoolLiteral
[391] DBParamSchemaDefault ::= SCHEMA_DEFAULT = { PUBLIC | USER }
[392] DBParamSortBufferSize ::= SORT_BUFFER_SIZE = StringLiteral
[393] DBParamTempPath ::= TEMP_PATH = StringLiteral

[394] DBParamTrace ::= TRACE = BoolLiteral
[395] TraceEvent ::= ERROR | CONN | TA | SQL | STORE | STAT
[396] TraceEventList ::= TraceEvent

[Colon TraceEvent]...

[397] DBParamTraceEvents ::= TRACE_EVENTS = { ALL | TraceEventList }
[398] DBParamTraceFileCount ::= TRACE_FILE_COUNT = IntegerLiteral
[399] DBParamTraceFileSize ::= TRACE_FILE_SIZE = StringLiteral
[400] DBParamTracePath ::= TRACE_PATH = StringLiteral
[401] DBParamTraceSyntax ::= TRACE_SYNTAX = { CSV | SPOOL }

Explanation:

• DBParamBlockSize sets the page size in kB for the database. If omitted, page size defaults to 8k. See Tuning
Guide.

• DBParamBufferConcurrency specifies the number of shared memory areas allocated for the database

• DBParamBufferSize specifies the size of a single shared memory area.

• DBParamCaseInsensitive: if TRUE, the database will be case-insensitive, i.e. all identifiers will be mapped to
upper-case. If omitted, case-insensitivity defaults to off.

• DBParamCommCompression enables or disables communication compression between client and server. The
default is FALSE.

• DBParamConnectionLimit sets the maximum number of concurrent sessions on the database. It cannot be set
higher than permitted by the Transbase server license.

• DBParamSize sets the size of the initial datafile. e.g. size=1024MB

• DBParamDBConf create a database with settings identical to those referenced by the dbconf files.

• DBParamDump specifies the location of the dump file or directory.

• DBParamEncryption enables database encryption. The default is RIJNDAEL_256. Encryption is a creation
parameter and cannot be changed later.

• DBParamJavaOutput enables or disables redirection of the java virtual machine output.

If redirection is on, then all output generated by the JVM during one database connection is written to a tem-
porary file in the databases scratch directory. The file names consist of the four characters of the username
that generated that output and are consecutively numbered. See Stored Procedures and User-Defined Functions
Guide [stoproc.xhtml] for more information.

• DBParamLogFileSize specifies the size of logfiles in MBytes.

• DBParamLogWindow: if disk recovery is switched on for the database, the expiration of the logfiles can be
set via this option. The logfiles are removed after the chosen amount of days, if they are no longer needed for
transaction recovery. If omitted, expiration defaults to unlimited.

• DBParamLogWriteThru specifies how often the transaction log is flushed to disk. Since log flush may be a
lengthy operation, this parameter has significant impact on performance for update transactions.

stoproc.xhtml
stoproc.xhtml
stoproc.xhtml

Administration Language

161

• The default value is COMMIT which means that the log is flushed upon commit of each update transaction.
Thus committed transactions are always guaranteed to be persistent, no committed transaction will be lost
due to a machine crash. Additionally Transbase will perform a log flush on demand in order to guarantee the
consistency of disk files. A log flush on demand will happen very seldom for large data caches and for short
transactions. It will happen more often when long transactions are processed or when data cache is small.

• DEMAND means that the log is not flushed upon commit of each transaction but on demand to avoid data
corruption. This setting means that transactions may be lost if committed shortly before a crash. Performance
for update transactions may be improved significantly.

• NONE means that the log is never flushed. The IO system must compensate this behaviour to avoid data
corruption.

• DBParamName sets the name of the database.

• DBParamPassword specifies the tbadmin password. If omitted, the tbadmin password is the empty string.

• DBParamPath sets home directory of the database. If omitted the database home directory will be located in the
current directory and named $TRANSBASE/databases/<DatabaseName>.

• DBParamPublication specifies the location of the romfiles.

• DBParamQueryThreading configures the multithreading behaviour of a single query being processed.

• HIGH activates the full potential of multithreading: it establishes data pipelines in query plans that run in
parallel, also using out-of-order execution, for improved overall performance.

• MEDIUM uses a rather defensive strategy of parallel query execution: parallel execution is limited to I/O
relevant nodes (e.g. REL or REMOTE) and activates work-ahead for the entire SELECT query.

• OFF means there is no query-internal parallel processing at all. This is the default.

• DBParamRecoveryMethod changes the recovery method of the database. If set to BEFOREIMAGE, database
is switched to Before-Image-Logging. If set to LOGGING, database is switched to Delta-Logging.

• DBParamRecoveryPath must be a valid path name for the Before Image Disk Recovery directory. If omitted,
the pathname defaults to bfim/ in the database home directory.

• DBParamReplicationMaster specifies the connection string of the master database.

• DBParamReplicationMode sets the replication mode for updating a slave database If set to ONCE, the slave
database will be updated to the current state of the master. Afterwards the service is terminated. With ASYN-
CHRONOUS, SYNCHRONOUS and SEMISYNCHRONOUS the replication is started as a continuous service in
the background. If set to NONE, the service will be stopped.

• With DBParamReplicationSlave a slave database can be altered to a read/write standard database.

• DBParamSchemaDefault specifies the default schema of database objects, if they are created without specifi-
cation of a schema. If omitted, schema defaults to PUBLIC.

• DBParamSortBufferSize sets the size (in kB) of the local (sorter) cache which is allocated for each database
instance. If omitted, the local cache size defaults to 2 MB. See Tuning Guide.

• DBParamTempPath must be a valid path name for the scratch directory. If omitted, the pathname defaults to
scratch/ in the database home directory.

• DBParamTrace switches database tracing on or off. The list of events to be recorded is preserved when it is
switched off, so that they can be reactivated in the configuration chosen.

• DBParamTraceFileCount sets the maximum number of trace files. If this number is exhausted, the oldest trace
file is deleted.

Administration Language

162

• DBParamTracePath must be a valid path name for the trace files.

• DBParamTraceFileSize sets the maximum size of each trace file.

• DBParamTraceSyntax sets the format of the trace files. spool means format for Transbase spooler, csv means
comma separated values (e.g. for Microsoft EXCEL et.al.)

• DBParamTraceEvents sets the events to be logged into the trace file.

12.3. CreateDatabaseStatement

Serves to create a database, optionally from dump, replication or publication.

Syntax:
[402] DatabaseName ::= DirectoryLiteral
[403] DeviceName ::= DirectoryLiteral
[404] CreateDatabaseStatement ::= CREATE DATABASE DatabaseName CreateDatabaseSpec
[405] CreateDatabaseSpec ::= CreateDatabaseStandardSpec |

CreateDatabaseDumpSpec |
CreateDatabaseReplicationSpec |
CreateDatabasePublicationSpec

[406] CreateDatabaseStandardSpec ::= [SET CreateDatabaseStandardParam [, CreateDatabaseStandard-
Param]...]

[407] CreateDatabaseStandardParam ::= DBParamBlockSize |
DBParamBufferConcurrency |
DBParamBufferSize |
DBParamCaseInsensitive |
DBParamCommCompression |
DBParamConnectionLimit |
DBParamSize |
DBParamDBConf |
DBParamEncryption |
DBParamJavaOutput |
DBParamLogFileSize |
DBParamLogWindow |
DBParamLogWriteThru |
DBParamPassword |
DBParamPath |
DBParamQueryThreading |
DBParamRecoveryMethod |
DBParamRecoveryPath |
DBParamSchemaDefault |
DBParamSortBufferSize |
DBParamTempPath |
DBParamTrace |
DBParamTraceEvents |
DBParamTraceFileCount |
DBParamTraceFileSize |
DBParamTracePath |
DBParamTraceSyntax

[408] CreateDatabaseDumpSpec ::= FROM DUMP DumpSpec |
SET DBParamDump

[409] DumpSpec ::= FILE { FileLiteral | DeviceName } | DIRECTORY DirectoryLiteral
[410] CreateDatabaseReplicationSpec ::= FROM REPLICATION DatabaseName [SET CreateData-

baseReplicationParam [, CreateDatabaseReplicationParam] ...] |

Administration Language

163

SET DBParamReplicationMaster [, CreateDatabaseReplication-
Param] ... }

[411] CreateDatabaseReplicationParam ::= DBParamDump | DBParamPath
[412] CreateDatabasePublicationSpec ::= FROM PUBLICATION [DIRECTORY] DirectoryName [SET

CreateDatabasePublicationParam [, CreateDatabasePublication-
Param] ...] | SET DBParamPublication [, CreateDatabasePublica-
tionParam]...

[413] CreateDatabasePublicationParam ::= DBParamBufferConcurrency |
DBParamBufferSize |
DBParamCommCompression |
DBParamConnectionLimit |
DBParamJavaOutput |
DBParamLogFileSize |
DBParamLogWriteThru |
DBParamPath |
DBParamQueryThreading |
DBParamRecoveryPath |
DBParamSchemaDefault |
DBParamSortBufferSize |
DBParamTempPath |
DBParamTrace |
DBParamTraceEvents |
DBParamTraceFileCount |
DBParamTracePath |
DBParamTraceSyntax

Explanation:

• CREATE DATABASE DatabaseName SET ... creates a standard database.

• CREATE DATABASE DatabaseName FROM DUMP ... creates a database from a dump. Alternatively,
the dump can be specified by SET DUMP

• CREATE DATABASE DatabaseName FROM REPLICATION ... creates a slave database. Alternatively,
the master can be specified by SET REPLICATION_MASTER

• CREATE DATABASE DatabaseName FROM PUBLICATION ... creates a database from a publication.
Alternatively, the publication directory can be specified by SET PUBLICATION

Note

• Databases created from dump, replication and publication are not booted afterwards.

• Parameters DBParamPath, DBParamTempPath and DBParamRecoveryPath are not available for
private databases.

CREATE DATABASE stddb
CREATE DATABASE stddb SET CONNECTION_LIMIT=100, BLOCK_SIZE=32

CREATE DATABASE publdb FROM PUBLICATION DIRECTORY '/data/publ'
 SET QUERY_THREADING=HIGH
CREATE DATABASE publdb SET PUBLICATION='/data/publ', QUERY_THREADING=HIGH

CREATE DATABASE dumpdb FROM DUMP DIRECTORY '/data/dump_dir'
CREATE DATABASE dumpdb SET DUMP='/data/dump_dir'

CREATE DATABASE slavedb FROM REPLICATION masterdb SET DUMP='/data/dump_file'
CREATE DATABASE slavedb SET REPLICATION_MASTER=masterdb, DUMP='/data/dump_file'

Administration Language

164

12.4. AlterDatabaseStatement

Serves to alter a database or to update a database from dump or replication.

Syntax:
[414] AlterDatabaseStatement ::= ALTER DATABASE DatabaseName AlterDatabaseSpec
[415] AlterDatabaseSpec ::= AlterDatabaseStandardSpec |

AlterDatabaseDumpSpec |
AlterDatabaseReplicationSpec

[416] AlterDatabaseStandardSpec ::= SET AlterDatabaseStandardParam [, AlterDatabaseStandardParam
]...

[417] AlterDatabaseStandardParam ::= DBParamBufferConcurrency |
DBParamBufferSize |
DBParamCaseInsensitive |
DBParamCommCompression |
DBParamConnectionLimit |
DBParamJavaOutput |
DBParamLogFileSize |
DBParamLogWindow |
DBParamLogWriteThru |
DBParamName |
DBParamPassword |
DBParamQueryThreading |
DBParamRecoveryMethod |
DBParamRecoveryPath |
DBParamReplicationMaster |
DBParamReplicationSlave |
DBParamSortBufferSize |
DBParamTempPath |
DBParamTrace |
DBParamTraceEvents |
DBParamTraceFileCount |
DBParamTraceFileSize |
DBParamTracePath |
DBParamTraceSyntax

[418] AlterDatabaseDumpSpec ::= UPDATE FROM DUMP DumpSpec |
SET DBParamDump

[409] DumpSpec ::= FILE { FileLiteral | DeviceName } | DIRECTORY DirectoryLiteral
[419] AlterDatabaseReplicationSpec ::= UPDATE FROM REPLICATION ReplicationUpdateMode | SET

DBParamReplicationMode

[420] ReplicationUpdateMode ::= ONCE |
START [SYNCHRONOUS | ASYNCHRONOUS | SEMISYN-
CHRONOUS] | STOP

Explanation:

• ALTER DATABASE DatabaseName SET ... alters a standard database.

• ALTER DATABASE DatabaseName UPDATE FROM DUMP ... updates a database from a dump.
Alternatively, the dump can be specified by ALTER DATBASE DatabaseName SET DUMP

• ALTER DATABASE DatabaseName UPDATE FROM REPLICATION ... updates a slave database. Al-
ternatively, the master can be specified by ALTER DATABASE DatabaseName SET REPLICATION_MODE
ONCE updates a slave database to the current state of the master. Afterwards the service is terminated. SYN-
CHRONOUS | ASYNCHRONOUS | SEMISYNCHRONOUS starts the replication of a slave database as a con-
tinuous service. STOP | NONE stops the continuous service.

Administration Language

165

ALTER DATABASE stddb SET CONNECTION_LIMIT=100, QUERY_THREADING=HIGH

ALTER DATABASE dumpdb UPDATE FROM DUMP DIRECTORY '/data/dump_dir'
ALTER DATABASE dumpdb SET DUMP='/data/dump_dir'

ALTER DATABASE slavedb UPDATE FROM REPLICATION ONCE
ALTER DATABASE slavedb SET REPLICATION_MODE=ONCE

ALTER DATABASE slavedb UPDATE FROM REPLICATION START SYNCHRONOUS
ALTER DATABASE slavedb SET REPLICATION_MODE=SYNCHRONOUS

ALTER DATABASE slavedb UPDATE FROM REPLICATION STOP
ALTER DATABASE slavedb SET REPLICATION_MODE=NONE

12.5. RegisterDatabaseStatement

Serves to register a database from an existing database directory.

Syntax:
[421] RegisterDatabaseStatement ::= REGISTER DATABASE DatabaseName RegisterDatabaseSpec
[422] RegisterDatabaseSpec ::= FROM [DIRECTORY] DirectoryLiteral

[SET RegisterDatabaseParam [, RegisterDatabaseParam]...]

[423] RegisterDatabaseParam ::= DBParamBufferConcurrency |
DBParamBufferSize |
DBParamCommCompression |
DBParamConnectionLimit |
DBParamJavaOutput |
DBParamLogFileSize |
DBParamLogWriteThru |
DBParamQueryThreading |
DBParamSortBufferSize |
DBParamTrace |
DBParamTraceEvents |
DBParamTraceFileCount |
DBParamTraceSyntax

Explanation:

• REGISTER DATABASE DatabaseName ... registers a database from an existing database directory
into dblist.ini.

REGISTER DATABASE db FROM /databases/db SET CONNECTION_LIMIT=100

12.6. DeregisterDatabaseStatement

Serves to deregister a database.

Syntax:
[424] DeregisterDatabaseStatement ::= DEREGISTER DATABASE DatabaseName

Explanation:

Administration Language

166

• DEREGISTER DATABASE DatabaseName ... deletes the entry of the database in dblist.ini, but all files
of the database remain in the file system.

DEREGISTER DATABASE db

12.7. BootDatabaseStatement

This statement boots databases, i.e. recovers them from previous crashes and installs their corresponding shared
memories. A database must be booted before it can be accessed by programs.

Syntax:
[425] BootDatabaseStatement ::= BOOT DATABASE DatabaseName |

BOOT ALL [DATABASES]

Explanation:

• BOOT DATABASE DatabaseName boots database DatabaseName.

• BOOT ALL [DATABASES] boots all databases on the local machine.

BOOT DATABASE db
BOOT ALL DATABASES

12.8. ShutdownDatabaseStatement

This statement shuts databases down, i.e. saves their buffers persistently to disk and uninstalls their corresponding
shared memories and semaphores. After shutdown the database cannot be accessed by programs.

Syntax:
[426] ShutdownDatabaseStatement ::= SHUTDOWN DATABASE DatabaseName [IMMEDIATE] |

SHUTDOWN ALL [DATABASES] [IMMEDIATE]

Explanation:

• SHUTDOWN DATABASE DatabaseName database DatabaseName shuts down.

• SHUTDOWN ALL [DATABASES] all databases on the local machine are shut down.

• [IMMEDIATE] terminates all active database connections to databases operated by this service thereby
aborting any active transactions on the databases.

SHUTDOWN DATABASE db IMMEDIATE
SHUTDOWN ALL DATABASES

12.9. MigrateDatabaseStatement

This statement is used to migrate a database that has been created with an older Transbase version to the current
version.

Administration Language

167

Syntax:
[427] MigrateDatabaseStatement ::= MIGRATE DATABASE DatabaseName

Explanation:

• MIGRATE DATABASE DatabaseName migrates database DatabaseName.

MIGRATE DATABASE db

12.10. DropDatabaseStatement

This statement deletes a database. The database is shut down first and then all files are deleted and the database
entry in dblist.ini is deleted.

Syntax:
[428] DropDatabaseStatement ::= DROP DATABASE DatabaseName

Explanation:

• DROP DATABASE DatabaseName deletes database DatabaseName.

DROP DATABASE db

12.11. PublishDatabaseStatement

This statement is used for creating romfiles. See the Transbase Publishing Guide [tbcd.xhtml] for more informa-
tion.

Syntax:
[429] PublishDatabaseStatement ::= PUBLISH DATABASE DatabaseName [INCREMENTAL

[XOR]]
TO [DIRECTORY] DirectoryLiteral

Explanation:

• PUBLISH DATABASE DatabaseName creates romfiles and writes ("flushes") the contents of the diskfile(s)
to the romfiles.

• PUBLISH DATABASE DatabaseName INCREMENTAL updates a romfiles directory with new data from
the database.

• [XOR] specifies whether or not XOR technique should be used for calculating the difference.

• TO [DIRECTORY] DirectoryName specifies the output directory for the romfiles.

PUBLISH DATABASE db TO DIRECTORY /publish_directory/db_pub
PUBLISH DATABASE db INCREMENTAL TO /publish_directory/db_pub

tbcd.xhtml
tbcd.xhtml

Administration Language

168

12.12. DumpDatabaseStatement

This statement is used for creating database dumps.

Syntax:
[430] DumpDatabaseStatement ::= DUMP DATABASE DatabaseName [INCREMENTAL]

TO DumpSpec

[409] DumpSpec ::= FILE { FileLiteral | DeviceName } | DIRECTORY DirectoryLiteral

Explanation:

• DUMP DATABASE DatabaseName TO ... creates a full dump of database DatabaseName.

• [INCREMENTAL] only logfile changes since the last (differential) dump are appended to the given dump.

• TO FILE FileName | DeviceName specifies the output file or device for the dump.

• TO DIRECTORY DirectoryName specifies the output directory for the dump.

DUMP DATABASE db TO DIRECTORY /dump_directory/db_dump
DUMP DATABASE db INCREMENTAL TO DIRECTORY /dump_directory/db_dump

12.13. CreateGridStatement

This statement creates a new database grid on the local machine.

Syntax:
[431] CreateGridStatement ::= CREATE GRID GridName

WITH DatabaseName [, DatabaseName]...

[432] GridName ::= DatabaseName

Explanation:

• CREATE GRID GridName WITH DatabaseName creates a grid GridName containing database Data-
baseName

CREATE GRID grid1 WITH db1, db2, db3

12.14. AlterGridStatement

This statement adds or removes database entries.

Syntax:
[433] AlterGridStatement ::= ALTER GRID GridName

{ ADD | DROP } [DATABASE] DatabaseName

Explanation:

• ALTER GRID GridName ADD DatabaseName adds database DatabaseName to grid Gridname.

Administration Language

169

• ALTER GRID GridName DROP DatabaseName removes database DatabaseName from grid Gridname.
The database itself remains unaltered.

ALTER GRID grid1 ADD DATABASE db4
ALTER GRID grid1 DROP db2

12.15. DropGridStatement

This statement deletes a database grid.

Syntax:
[434] DropGridStatement ::= DROP GRID GridName

Explanation:

• DROP GRID GridName deletes a grid GridName

DROP GRID grid1

170

Appendix A. The Data Dictionary
The Transbase data dictionary is a set of system tables which define the database structure.

• Permissions on SystemTables: The data dictionary is owned by tbadmin - usually a database administrator
(dba), but it belongs to the schema public.

All users are allowed to read the data dictionary, i.e. to retrieve information about the database structure. Reading
the data dictionary is in no way different from reading user tables.

• Locks on SystemTables: For read access of system tables, a read lock is set as for user tables. However, to avoid
bottlenecks on the system tables the read locks are released immediately after the evaluation of the corresponding
query.

Repeated read accesses to the system tables might produce different results, if - in the meantime - a DDL
transaction has been committed.

• Summary of SystemTables:

The data dictionary consists of the following tables:

• sysdatabase contains information about database parameters.

• syssession contains information about session parameters.

• sysuser contains users/schemas.

• systable contains tables, views and sequences.

• syscolumn contains colum definitions of tables and views.

• sysindex contains indexes of all tables.

• sysview contains view definitions of all views.

• sysviewdep contains dependencies of views on tables or other views.

• systablepriv contains INSERT, UPDATE and SELECT privileges on tables or views.

• syscolumnpriv contains UPDATE privileges on distinguished fields of tables or views.

• sysblob contains imformation about LOB containers used for BLOBs and CLOBs.

• sysconstraint contains information about CHECK constraints on tables.

• sysrefconstraint contains information about reference constraints on tables. Reference constraints are often
referred to as foreign key constraints.

• sysdomain contains the definitions of domains.

• sysdataspace contains information about data spaces.

• sysdatafile contains information about the data files the data spaces are stored in.

• loadinfo contains information about blocks from ROM-files cached on the file system for faster access or
modification. It is present only in retrieval databases.

The Data Dictionary

171

A.1. The sysdatabase(s) Table

The sysdatabase table contains entries for all configuration parameters of a database.

The sysdatabases table in the admin database contains entries for all configuration parameters of all databases
managed by the corresponding Transbase service.

Field Explanation

database_name The name of the database concerned. [sysdatabases only]

property The database property or database configuration parameter.

value The current value of this property for the specified database.

unit The unit in which the current value is specified where this applies.

datatype The data type of the property.

comment Gives useful information on this property. Mostly the collection of possible values
and the default value.

A.2. The syssession Table

The syssession table contains entries for all configuration parameters of a session.

Field Explanation

property The session property or session configuration parameter.

value The current value of this property for the current session.

unit The unit in which the current value is specified where this applies.

datatype The data type of the property.

comment Gives useful information on this property. Mostly the collection of possible values
and the default value.

A.3. The sysuser Table

The sysuser table contains an entry for each registered database user.

Column Type

username CHAR(*)

userclass CHAR(*)

passwd CHAR(*)

userid INTEGER

Primary key: (username)

• username: the name of the user/schema.

The Data Dictionary

172

• userclass: has one of the following values:

• no access cannot login on the database.

• access is allowed to access database tables according to the privileges granted, but is not allowed to create,
alter or drop database objects like tables, views or indexes.

• resource has privileges as in class access plus the right to create, alter or drop database objects, e.g.
tables, views and indexes.

• dba has all access rights including the right to add or drop users and to alter or drop objects without being
the owner.

dba implicitly has all privileges on any database object including the right to revoke privileges granted by
others. Strictly speaking dba bypasses all privilege checks.

• passwd: Contains the encrypted password of the user. Note that the user's password is not stored anywhere in
unencrypted form.

• userid: Gives a unique identification for the user. This userid is used in other system tables to refer to users,
e.g. in the systable table to denote the owner and the schema of a table.

Explanation:

Upon creation of a database two users are already predefined and cannot be dropped:

• public with userclass no access and userid 0

• tbadmin with userclass dba and userid 1

These users cannot be dropped but their userclass can be changed. The keywords public and tbadmin are
provided to refer to these users in case-insensitve form. The user public is of particular importance in the
GrantPrivilegeStatement.

Security Alert

The password for tbadmin should be changed asap. for security reasons.

A.4. The systable Table

The systable table contains a single entry for each table, view or sequence defined in the database.

Column Type

tname CHAR(*)

owner INTEGER

ttype CHAR(*)

segno INTEGER

colno INTEGER

date DATETIME[YY:MS]

cluster SMALLINT

version INTEGER

indextype CHAR(*)

The Data Dictionary

173

Column Type

schema INTEGER

Primary key: (schema, tname)

• tname: The name of the table, view or sequence.

• owner: Denotes the owner of the table or view by the user's userid. To retrieve the owner 's username, join the
tables sysuser and systable (see example below).

• ttype: The entry has one of the values ''R'',''r'',''V'',''v'',''S''.

A user table has the value ''R'' or ''r'', where ''R'' is used for a table created WITH IKACCESS (this is the default)
and ''r'' for a table created WITHOUT IKACCESS.

User views are denoted with entry ''V''. System tables which are visible to the user have entry ''v''. In effect, all
system tables described in this manual are views.

Sequences are denoted with entry "S".

• segno: A positive integer value which denotes the physical segment number of the table or is a negative integer
value if the entry is a view. segno is used in other system tables to identify a table or view uniquely.

• colno: Contains the number of the columns (fields) of the given table or view.

• date: Contains the creation time of the table or view (type {tt DATETIME[YY:MS]}).

• cluster: Contains the dataspace number of the table. Tables created without DATASPACE option contain the
number 0 here (system data space). Tables created with in a user defined DATASPACE carry a number > 0
which is an internal identifier for the user created DATASPACE. The mapping between dataspace names and
numbers is visible in the (virtual) system table "sysdataspace".

• version: Contains the version number of the table.

• indextype: Contains the index type of the table.

• schema: Contains the schema id of the table.

Example A.1. Table Names and Owners of Non-System Tables

SELECT s.username as "schema", tname as "name", o.username as "owner"
 FROM systable t, sysuser s, sysuser o
 WHERE schema = s.userid and owner = o.userid AND ttype in ('R', 'r')

A.5. The syscolumn Table

The syscolumn table contains a single entry for each field of each table or view defined in the database.

Column: Type:

tsegno INTEGER

cname CHAR(*)

ctype CHAR(*)

domainname CHAR(*)

defaultvalue CHAR(*)

The Data Dictionary

174

Column: Type:

suppressed INTEGER

cpos INTEGER

ckey INTEGER

notnull CHAR(*)

surrid INTEGER

surref INTEGER

domainschema INTEGER

Primary key: (tsegno, cpos)

• tsegno: Identifies the table or view to which the entry belongs. The name of the table can be retrieved via a join
between systable and syscolumn on the fields tsegno and segno of syscolumn and systable , resp.

• cname: Contains name of the column of the table or view.

• ctype: contains the base data type of the column. The data type is given as specified in the corresponding
CREATE TABLE statement. Although data type specifications in TB/SQL are case-insensitive, strings stored
in field ctype are all lower-case.

• domainname: Contains the domainname if a domain has been used for field definition else NULL. Note that
even if a domain has been used, its base type is recorded in field ctype.

• defaultvalue: Contains the literal representation of the default value of the field. If no default value has been
specified, the value NULL (again explicitly represented as literal) is stored.

• cpos: Gives the position of the field in the table (first position is 1).

• ckey: Contains the position of this column in the primary key of a table starting with 1 or 0 if the column is
not part of the primary key.

• notnull: If the CREATE TABLE statement has specified a NOT NULL clause, this field has the value "Y",
otherwise "N".

• surrid: If the column contains a surrogate this is a key to the syssurrogate table.

• surref: If the column contains a surrogate this is a key to the syssurrogate table.

• domainschema: Contains the schema id of the domain when a domain was specified in the type definition of
this column.

Example A.2. Create table statement with resulting entries in syscolumn

CREATE TABLE quotations (Partno INTEGER,
 suppno INTEGER,
 price NUMERIC(8,2) NOT NULL,
 PRIMARY KEY (suppno, partno)
)

produces the following three entries in syscolumn (not all fields are shown!):

cname ctype cpos ckey notnull

partno integer 1 2 N

suppno integer 2 1 N

price numeric(8,2) 3 0 Y

syssurrogate
syssurrogate

The Data Dictionary

175

A.6. The sysindex Table

For each index defined for the database, entries in the sysindex table are made. If an n-field index is defined, n
entries in sysindex are used to describe the index structure.

Column Type

tsegno INTEGER

iname CHAR(*)

weight INTEGER

cpos INTEGER

isuniq CHAR(*)

isegno INTEGER

wlistsegno INTEGER

stowosegno INTEGER

charmapsegno INTEGER

delimsegno INTEGER

ftxttype CHAR(*)

wlisttype CHAR(*)

schema INTEGER

func CHAR(*)

soundexsegno INTEGER

Primary key: (tsegno, iname, weight)

• tsegno: Identifies the base table which the index refers to. To retrieve the name of the table, perform a join
between systable and sysindex on fields tsegno,segno.

• iname: Stores the name of the index. Index names are unique with respect to the database.

• weight: Serial number for the fields of one index, starting at 1 with the first field specified in the CreateIndexS-
tatement.

• cpos: Identifies a field of the base table which the index refers to. To retrieve the name of the field, perform a
join between syscolumn and sysindex on the fields (tsegno, cpos) in each table (see the example below).

• isuniq: Contains string ''Y'' if the index is specified as ''UNIQUE'' , ''N'' otherwise.

• isegno: The field isegno contains the physical segment number of the index. Note that indexes are stored as
B*-trees in physical segments.

• wlistsegno: Contains for a fulltext index the segment number of the wordlist table, else NULL.

• stowosegno, charmapsegno, delimsegno: Contain NULL value for a non-fulltext index. Contain segment num-
ber for the stopword table, charmap table, delimiters table, resp., if they have been defined else NULL.

• ftxttype: Contains NULL value for a non-fulltext index else one of values ''positional'' or ''word''. ''positional''
is for a POSITIONAL fulltext index, ''word'' is the default.

• wlisttype: Contains NULL value for a non-fulltext index. Contains value ''fix'' for a specified wordlist, ''var''
is the default.

The Data Dictionary

176

The DDL statement

CREATE INDEX partprice ON quotations (partno, price)

would produce the following two entries in sysindex (only some fields of sysindex are shown):

iname … weight cpos isuniq

partprice … 1 1 N

partprice … 2 3 N

To retrieve the names of the index fields in proper order, the following statement is used:

SELECT t.tname, c.cname, i.iname, i.weight
FROM systable t, syscolumn c,
sysindex i
WHERE t.segno=c.tsegno AND c.tsegno=i.tsegno AND c.cpos=i.cpos
 AND i.iname='partprice' and i.schema = 0 -- == schema public
ORDER BY i.weight

A.7. The sysview Table

Contains one record for each view defined in the database.

Column Type

vsegno INTEGER

viewtext CHAR(*)

checkopt CHAR(*)

updatable CHAR(*)

viewtree CHAR(*)

Primary key: (vsegno)

• vsegno: Contains (negative) integer value which uniquely identifies the view. The same value is used e.g. in
systable and syscolumn to refer to the view.

• viewtext: Contains SQL SELECT statement which defines the view. This is is used by Transbase whenever the
view is used in a SQL statement.

• checkopt: Contains ''Y'' if the view has been defined WITH CHECK OPTION else ''N''.

• updatable : Contains ''Y'' if the defined view is updatable else ''N''.

If a view is not updatable, only SELECT statements may be applied to the view. If a view is updatable, UPDATE,
INSERT, and DELETE statements may be applied, too.

For the definition of updatability and for the semantics of updates on views see the TB/SQL Reference Manual.

• viewtree: Reserved for internal use of Transbase.

Note

Additional information for a view is contained in systable and syscolumn like for base tables (join
systable, syscolumn, sysview).

systable
syscolumn

The Data Dictionary

177

A.8. The sysviewdep Table

Contains dependency information of views and base tables.

A view may be defined on base tables as well as on other previously defined views. If a base table or view is
dropped, all views depending on this base table or view are dropped automatically. For this reason the dependency
information is stored in sysviewdep.

sysviewdep

basesegno INTEGER

vsegno INTEGER

Primary key: (basesegno, vsegno)

• basesegno: Contains the segment number of the base table or view on which the view identified by vsegno
depends. basesegno is positive or negative depending on being a base table or view.

• vsegno: Identifies the view which depends on the base table or view identified by basesegno. vsegno always
is negative.

A.9. The sysblob Table

Contains the information about all BLOB container segments. For each user base table which has at least one
column of type BLOB there is one record in the sysblob table. All BLOB objects of the table are stored in the
denoted BLOB container.

Column Type

rsno INTEGER

bcont INTEGER

Primary key: (rsno)

• rsno: Contains segment number of the base table containing BLOB field(s).

• bcont: Contains segment number of the BLOB container of the base table.

A.10. The systablepriv Table

Describes the privileges applying to tables of the database. Note that UPDATE privileges can be specified colum-
nwise; those privileges are defined in table syscolumnpriv.

systablepriv contains for each table all users who have privileges on this table. Furthermore it contains who granted
the privilege and what kind of privilege it is.

systablepriv

grantee INTEGER

syscolumnpriv

The Data Dictionary

178

systablepriv

tsegno INTEGER

grantor INTEGER

sel_priv CHAR(*)

del_priv CHAR(*)

ins_priv CHAR(*)

upd_priv CHAR(*)

Primary key: (grantee, tsegno, grantor)

• grantee,tsegno,grantor: These three fields describe who (i.e. the grantor) has granted a privilege to whom (i.e.
the grantee) on which base table or view (tsegno). The kind of privilege(s) is described in the other fields. grantor
and grantee refer to field userid of table sysuser. tsegno refers to field segno of table systable.

• sel_priv, del_priv, ins_priv, upd_priv: These fields describe privileges for SELECT, DELETE, INSERT,
UDATE. Each contains one of the values ''N'', ''Y'', ''G'', or in case of updpriv also ''S''. ''Y'' means that grantee
has received from grantor the corresponding privilege for the table or view identified by tsegno. ''G'' includes
''Y'' and additionally the right to grant the privilege to other users, too. ''S'' (only in updpriv) stands for ''selective
UPDATE privilege'' ; it indicates that there exist entries in table syscolumnpriv which describe column-specific
UPDATE privileges granted from grantor to grantee on table tsegno. ''N'' is the absence of any of the above
described privileges. For each record, at least one of the fields selpriv, delpriv, inspriv, updpriv is different
from ''N''.

• Default: The owner of a table always has all privileges with GRANT OPTION on the table, by default. Those
privileges are recorded in systablepriv, too. Namely, if user 34 creates a table identified by 73, the following
entry in systablepriv is made:

(34, 73, 34, 'G', 'G', 'G', 'G')

A.11. The syscolumnpriv Table

The table syscolumnpriv describes the UPDATE privileges on columns of the database.

Column Type

grantee INTEGER

tsegno INTEGER

grantor INTEGER

cpos INTEGER

upd_priv CHAR(*)

Primary key: (grantee, tsegno, grantor, cpos)

• grantee, tsegno, grantor, cpos: These four fields describe who (grantor) has granted a privilege to whom
(grantee) on which field (cpos) on which base table or view (tsegno). The kind of privilege(s) is described in
the other fields. grantor and grantee refer to field userid of table sysuser. tsegno refers to field segno of table
systable.

• upd_priv: Contains one of the strings ''Y'' or ''G''. ''Y'' means that grantee has received from grantor the UPDATE
privilege for the specified field on the specified table or view. ''G'' includes ''Y'' and additionally the right to
grant the privilege to other users, too.

The Data Dictionary

179

Note

If a user grantee has been granted the same update privilege (''Y'' or ''G'') on all fields on tsegno
from the same grantor, then these privileges are recorded via a corresponding single record in table
systablepriv.

A.12. The sysdomain Table

Contains at least one record for each created DOMAIN of the database. Several records for one domain are present
if more than one check constraints are defined on the domain.

Column Type

name CHAR(*)

owner INTEGER

basetype CHAR(*)

defaultvalue CHAR(*)

constraintname CHAR(*)

attributes CHAR(*)

constrainttext CHAR(*)

schema INTEGER

Primary key: (name,constraintname)

• name: Contains the name of the domain.

• owner: Contains the userid of the creator of the domain.

• basetype: Contains the basetype of the domain.

• defaultvalue: Contains the defaultvalue (in literal representation) of the domain if there has been declared one
otherwise the literal NULL.

• constraintname, attributes, constrainttext: These fields describes a domain constraint if there has been defined
one else they are all NULL. Field attributes contains the value IMMEDIATE (for use in later versions), con-
straintname stores the user defined constraintname if any else NULL, constrainttext stores the search condition
of the constraint.

• schema: Contains the schema id of the table.

Note

If n > 1 constraints are defined, all n records redundantly have the same owner, basetype, default-
value.

A.13. The sysconstraint Table

Contains one record for each table constraint. Constraint types are PRIMARY KEY or CHECK(…) constraints.

The Data Dictionary

180

Column Type

segno INTEGER

constraintname CHAR(*)

attributes CHAR(*)

constrainttext CHAR(*)

cpos INTEGER

Primary key: (segno,constraintname)

• segno: Contains the segment of the table the constraint refers to.

• constraintname: stores the user defined constraintname if any or a unique system defined constraintname.

• attributes: Field attributes has the constant value IMMEDIATE (for more general use in later versions).

• constrainttext: stores the constraint text which is either of the form PRIMARY KEY (...) or CHECK(...).

• cpos: has value -1 except in the case that the constraint was initially defined in a domain that was used for the
type of a field in the table the constraint refers to. In this particular case the constrainttext contains the keyword
VALUE instead of an explicit field reference and field cpos contains the position of the field.

Note

Reference constraints (FOREIGN KEY ...) are stored in table sysrefconstraint.

A.14. The sysrefconstraint Table

Contains records to describe reference constraints (FOREIGN KEY ...).

Field Type

constraintname CHAR(*)

attributes CHAR(*)

srcsegno INTEGER

srccpos INTEGER

tarsegno INTEGER

tarcpos INTEGER

delact CHAR(*)

updact CHAR(*)

Primary key: (srcsegno,constraintname)

• constraintname: Contains the name of the constraint (explicitly by user or system defined).

• attributes: Contains value IMMEDIATE (for more general use in later versions).

• srcsegno, tarsegno: Contain the segment number of the referencing table and the referenced table, resp.

• delact: Contains the action to be performed with a referencing record rf when rf looses its referenced record rd
due to a deletion of rd. The field has one of the string values ''NO ACTION'' , ''CASCADE'' , ''SET NULL'' ,

The Data Dictionary

181

''SET DEFAULT''. For the semanticsof these actions, (see TB/SQL Reference Manual, CreateTableStatement,
ForeignKey).

• updact: Contains the action to be performed on a referencing records rf when rf looses its referenced record rd
due to a update of rd. The field has the constant string values ''NO ACTION'' and is for more general use in later
versions. For the semantics of this action, (see TB/SQL Reference Manual, CreateTableStatement, ForeignKey).

• srccpos, tarcpos: Contains a pair of field positions (>=1) which correspond to the referencing and referenced
field of the reference constraint. If the reference constraint is defined over a n-ary field combination, then n
records are in sysrefconstraint where all values except srcpos and tarcpos are identical and srcpos and tarcpos
have the values of the corresponding field positions.

CREATE TABLE sampletable
(keysample INTEGER,
 f1 INTEGER,
 f2 INTEGER,
 CONSTRAINT ctref
 FOREIGN KEY (f1,f2)
 REFERENCES reftable(key1,key2)
 ON DELETE CASCADE
)

Assume that sampletable and reftable have numbers 13 and 19, resp., and that reftable has fields key1 and key2
on positions 7 and 8.

Then the following two records are inserted in sysrefconstraint:

constraint-
name

attributes srcsegno srccpos tarsegno tarcpos delact updact

ctref IMMEDIATE 13 2 19 7 CASCADE NO ACTION

ctref IMMEDIATE 13 3 19 8 CASCADE NO ACTION

A.15. The sysdataspace Table

Contains records to describe the dataspaces.

Field Type

name VARCHAR(*)

autoextend INTEGER

dspaceno INTEGER

maxsize INTEGER

online BOOL

defaultpath VARCHAR(*)

available_pg INTEGER

size_pg INTEGER

Primary key: (name)

• name: User defined name for the dataspace.

• autoextend: Dataspace is automatically extended by a new datafile having the specified size. For disabling set
autoextend to OFF

The Data Dictionary

182

• dspaceno: Corresponding number for the dataspace.

• maxsize: Maximum size for the dataspace.

• online: Contains false if the dataspace has been set offline else true.

• defaultpath: The directory where the datafiles of this dataspace are stored by default.

• available_pg: Number of actually free pages for the dataspace.

• size_pg: Number of actually allocated pages for the dataspace.

A.16. The sysdatafile Table

Contains records to describe the files attached to dataspaces.

Field Type

name VARCHAR(*)

dspaceno INTEGER

datafile VARCHAR(*)

size INTEGER

lobcontainer BOOL

available INTEGER

Primary key: (name, datafile)

• name: User defined name for the dataspace.

• dspaceno: Corresponding number for the dataspace

• datafile: Pathname of file attached to this dataspace. The filenames for user defined dataspaces are system
generated. They contain 2 numbers where the first number is the dspaceno of the dataspace where the file
belongs to, and the second number is a running number over all existing files in the dataspace.

• size: Maximum size of the datafile.

• lobcontainer: Datafile is dedicated to LOB's Contains true if the datafile is dedicated to LOB's else false.

• available: Number of available pages.

A.17. The loadinfo Table

Describes the status of the diskcache in Retrieval Databases.

For each page which is in the diskcache there is one record in loadinfo.

Field Type

segment INTEGER

The Data Dictionary

183

Field Type

rompage INTEGER

diskpage INTEGER

flag INTEGER

Primary key: (segment, rompage)

• segment: Contains the segment number of the page.

• rompage: Contains the page number of the page in the ROM address space.

• diskpage: Contains the page number of the page in the diskfile address space.

• flag: Contains the value 1 if the page has just been cached via a LOAD STATEMENT and the value 2 if the
page has been changed with some INSERT or UPDATE or DELETE operation.

A.18. The syskeyword Table

List all SQL keywords recognized by the SQL compiler of the connected database..

Field Type

keyword STRING

Primary key: (keyword)

184

Appendix B. Sample Database
The database SAMPLE used in the exercises throughout this manual consists of three tables SUPPLIERS, QUO-
TATIONS and INVENTORY that are described below.

Table B.1. Table SUPPLIERS

suppno name address

51 DEFECTO PARTS 16 BUM ST., BROKEN HAND WY

52 VESUVIUS, INC. 512 ANCIENT BLVD., POMPEII NY

53 ATLANTIS CO. 8 OCEAN AVE., WASHINGTON DC

54 TITANIC PARTS 32 LARGE ST., BIG TOWN TX

57 EAGLE HARDWARE 64 TRANQUILITY PLACE, APOLLO MN

61 SKY PARTS 128 ORBIT BLVD., SIDNEY

64 KNIGHT LTD. 256 ARTHUR COURT, CAMELOT

Table B.2. Table INVENTORY

partno description qonhand

207 GEAR 75

209 CAM 50

221 BOLT 650

222 BOLT 1250

231 NUT 700

232 NUT 1100

241 WASHER 6000

285 WHEEL 350

295 BELT 85

Table B.3. Table QUOTATIONS

suppno partno price delivery_time qonorder

51 221 .30 10 50

51 231 0.10 10 0

53 222 0.25 15 0

53 232 0.10 15 200

53 241 0.08 15 0

54 209 18.00 21 0

54 221 0.10 30 150

54 231 0.04 30 200

54 241 0.02 30 200

57 285 21.00 4 0

57 295 8.50 21 24

61 221 0.20 21 0

61 222 0.20 21 200

Sample Database

185

suppno partno price delivery_time qonorder

61 241 0.05 21 0

64 207 29.00 14 20

64 209 19.50 7 7

186

Appendix C. Precedence of Operators
The Table below defines the precedence of operators. A precedence of 1 means highest precedence.

Associativity within a precedence level is from left to right.

Precedence Operators

1 SUBRANGE, SIZE OF

2 <timeselector> OF, CONSTRUCT

3 CAST

4 PRIOR, +, - (unary) , BITNOT

5 BITAND, BITOR

6 *, /

7 +, - (binary), ||, < <= = <> >= >

8 LIKE, MATCHES, IN, BETWEEN, SUBSET, CONTAINS

9 NOT

10 AND

11 OR

12 SELECT

13 INTERSECT

14 UNION, DIFF

	Transbase® SQL Reference Manual
	Table of Contents
	Introduction
	1. General Concepts
	1.1. Syntax Notation
	1.2. Separators
	1.3. Keywords
	1.4. Identifiers
	1.4.1. User Schemas
	1.4.2. Names and Identifiers

	1.5. Data Types
	1.5.1. Type Compatibility
	1.5.2. Type Exceptions and Overflow
	1.5.3. CASTing Types from and to CHAR
	1.5.3.1. CASTing to CHAR
	1.5.3.2. Casting from CHAR
	1.5.3.3. Implicit CASTing of CHAR to Arithmetic Types

	1.6. Literals
	1.6.1. Directory/File Literal
	1.6.2. IntegerLiteral
	1.6.3. NumericLiteral
	1.6.4. RealLiteral
	1.6.5. StringLiteral
	1.6.6. BinaryLiteral
	1.6.7. BitsLiteral
	1.6.8. BoolLiteral
	1.6.9. DATETIME Literal
	1.6.10. TIMESPAN Literal

	2. Data Definition Language
	2.1. Dataspaces
	2.1.1. CreateDataspaceStatement
	2.1.2. AlterDataspaceStatement

	2.2. Users
	2.2.1. GrantUserclassStatement
	2.2.2. RevokeUserclassStatement
	2.2.3. AlterPasswordStatement
	2.2.4. GrantPrivilegeStatement
	2.2.5. RevokePrivilegeStatement

	2.3. Domains
	2.3.1. CreateDomainStatement
	2.3.2. AlterDomainStatement
	2.3.3. DropDomainStatement

	2.4. Sequences
	2.4.1. CreateSequenceStatement
	2.4.2. DropSequenceStatement

	2.5. CreateTableStatement
	2.5.1. Defaults
	2.5.2. AUTO_INCREMENT Fields
	2.5.2.1. Processing implicitly assigned AUTO_INCREMENT values

	2.5.3. TableConstraintDefinition FieldConstraintDefinition
	2.5.4. PrimaryKey
	2.5.5. CheckConstraint
	2.5.6. ForeignKey

	2.6. AlterTableStatement
	2.6.1. AlterTableConstraint
	2.6.2. AlterTableChangeField
	2.6.3. AlterTableRenameField
	2.6.4. AlterTableFields
	2.6.5. AlterTableRename
	2.6.6. AlterTableMove

	2.7. DropTableStatement
	2.8. CreateIndexStatement
	2.8.1. StandardIndexStatement
	2.8.1.1. UNIQUE and KEY IS specification of an Index

	2.8.2. HyperCubeIndexStatement
	2.8.3. FulltextIndexStatement
	2.8.4. BitmapIndexStatement

	2.9. DropIndexStatement
	2.10. Triggers
	2.10.1. CreateTriggerStatement
	2.10.2. DropTriggerStatement

	2.11. Views
	2.11.1. CreateViewStatement
	2.11.2. DropViewStatement

	3. Data Manipulation Language
	3.1. FieldReference
	3.2. User
	3.3. Expression
	3.4. Primary, CAST Operator
	3.5. SimplePrimary
	3.5.1. SetFunction
	3.5.2. WindowFunction
	3.5.3. StringFunction
	3.5.3.1. PositionFunction
	3.5.3.2. InstrFunction
	3.5.3.3. LengthFunction
	3.5.3.4. UpperFunction, LowerFunction
	3.5.3.5. TrimFunction
	3.5.3.6. SubstringFunction
	3.5.3.7. ReplaceFunction
	3.5.3.8. ReplicateFunction
	3.5.3.9. SoundexFunction

	3.5.4. TocharFunction
	3.5.5. SignFunction
	3.5.6. ResultcountExpression
	3.5.7. SequenceExpression
	3.5.8. ConditionalExpression
	3.5.8.1. IfExpression
	3.5.8.2. CaseExpression
	3.5.8.3. DecodeExpression
	3.5.8.4. CoalesceExpression, NvlExpression, NullifExpression

	3.5.9. TimeExpression
	3.5.10. SizeExpression
	3.5.11. LobExpression
	3.5.11.1. BlobExpression
	3.5.11.2. ClobExpression

	3.5.12. ODBC_FunctionCall
	3.5.13. UserDefinedFunctionCall
	3.5.14. LastInsertIdFunc
	3.5.15. LastUpdateFunc
	3.5.16. ReplicationStatusFunc

	3.6. SearchCondition
	3.7. HierarchicalCondition
	3.8. Predicate
	3.8.1. ComparisonPredicate
	3.8.2. ValueCompPredicate
	3.8.3. SetCompPredicate
	3.8.4. InPredicate
	3.8.5. BetweenPredicate
	3.8.6. LikePredicate
	3.8.7. MatchesPredicate, Regular Pattern Matcher
	3.8.8. ExistsPredicate
	3.8.9. QuantifiedPredicate
	3.8.10. NullPredicate
	3.8.11. FulltextPredicate

	3.9. Null Values
	3.10. SelectExpression (QueryBlock)
	3.11. TableExpression, SubTableExpression
	3.12. TableReference, SubTableReference
	3.13. FlatFileReference - direct processing of text files
	3.14. TableFunction
	3.15. JoinedTable (Survey)
	3.15.1. INNER JOIN with ON/USING Clause
	3.15.2. JoinedTable with NATURAL
	3.15.3. JoinedTable with OUTER JOIN

	3.16. Scope of TableReferences and CorrelationNames
	3.17. SelectStatement
	3.18. WithClause
	3.19. InsertStatement
	3.19.1. Insertion with Fieldlist and DEFAULT Values
	3.19.2. Insertion on AUTO_INCREMENT Fields
	3.19.3. Insertion on Views
	3.19.4. Handling of Key Collisions
	3.19.5. Insertion with ReturningClause

	3.20. DeleteStatement
	3.21. UpdateStatement
	3.22. UpdateFromStatement
	3.23. MergeStatement
	3.24. General Rule for Updates
	3.25. Rules of Resolution
	3.25.1. Resolution of Fields
	3.25.2. Resolution of SetFunctions

	4. Load and Unload Statements
	5. Alter Session statements
	5.1. Sort Buffer Size
	5.2. Multithreading Mode
	5.3. Integer Division Mode
	5.4. Lock Mode
	5.5. Evaluation Plans
	5.6. Schema Default
	5.7. SQL Dialect

	6. Lock Statements
	6.1. LockStatement
	6.2. UnlockStatement

	7. The Data Types Datetime and Timespan
	7.1. Principles of Datetime
	7.1.1. RangeSpec
	7.1.2. SQL Compatible Subtypes
	7.1.3. DatetimeLiteral
	7.1.4. Valid Datetime Values
	7.1.5. Creating a Table with Datetimes
	7.1.6. The CURRENTDATE/SYSDATE Operator
	7.1.7. Casting Datetimes
	7.1.8. TRUNC Function
	7.1.9. Comparison and Ordering of Datetimes

	7.2. Principles of Timespan and Interval
	7.2.1. Transbase Notation for Type TIMESPAN
	7.2.2. INTERVAL Notation for TIMESPAN
	7.2.3. Ranges of TIMESPAN Components
	7.2.4. TimespanLiteral
	7.2.5. Sign of Timespans
	7.2.6. Creating a Table containing Timespans
	7.2.7. Casting Timespans
	7.2.8. Comparison and Ordering of Timespans
	7.2.9. Scalar Operations on Timespan
	7.2.10. Addition and Substraction of Timespans

	7.3. Mixed Operations
	7.3.1. Datetime + Timespan, Datetime - Timespan
	7.3.2. Datetime - Datetime

	7.4. The DAY Operator
	7.5. The WEEKDAY Operator
	7.6. The WEEK Operator
	7.7. The ISOWEEK Operator
	7.8. The QUARTER Operator
	7.9. Selector Operators on Datetimes and Timespans
	7.10. Constructor Operator for Datetimes and Timespans

	8. The Datatypes BITS(p) and BITS(*)
	8.1. Purpose of Bits Vectors
	8.2. Creation of Tables with type BITS
	8.3. Compatibility of BINCHAR and BITS
	8.4. BITS and BINCHAR Literals
	8.5. Spool Format for BINCHAR and BITS
	8.6. Operations for Type BITS
	8.6.1. Bitcomplement Operator BITNOT
	8.6.2. Binary Operators BITAND , BITOR
	8.6.3. Comparison Operators
	8.6.4. Dynamic Construction of BITS with MAKEBIT
	8.6.5. Counting Bits with COUNTBIT
	8.6.6. Searching Bits with FINDBIT
	8.6.7. Subranges and Single Bits with SUBRANGE

	8.7. Transformation between Bits and Integer Sets
	8.7.1. Compression into Bits with the SUM function
	8.7.2. Expanding BITS into Record Sets with UNGROUP

	9. LOB (Large Object) datatypes
	9.1. The Data Type BLOB (Binary Large Object)
	9.1.1. Inherent Properties of BLOBs
	9.1.1.1. Overview of operations
	9.1.1.2. Size of BLOBs

	9.1.2. BLOBs and the Data Definition Language
	9.1.3. BLOBs and the Data Manipulation Language
	9.1.3.1. BLOBs in SELECT Queries
	9.1.3.2. BLOBs in INSERT Queries
	9.1.3.3. Spooling BLOBs

	9.2. The Data Type CLOB (Character Large Object)
	9.2.1. Inherent Properties of CLOBs
	9.2.1.1. Overview of operations
	9.2.1.2. Size of CLOBs

	9.2.2. CLOBs and the Data Definition Language
	9.2.3. CLOBs and the Data Manipulation Language
	9.2.3.1. CLOBs in SELECT Queries
	9.2.3.2. CLOBs in INSERT Queries
	9.2.3.3. Spooling CLOBs

	10. Fulltext Indexes
	10.1. FulltextIndexStatement
	10.1.1. WORDLIST and STOPWORDS
	10.1.2. CHARMAP
	10.1.3. DELIMITERS
	10.1.4. WITH SOUNDEX

	10.2. Implicit Tables of a Fulltext Index
	10.3. FulltextPredicate
	10.4. Examples and Restrictions
	10.4.1. Examples for Fulltext Predicates
	10.4.2. Restrictions for Fulltext Predicates
	10.4.3. Phonetic Search in Fulltext Indexes

	10.5. Performance Considerations
	10.5.1. Search Performance
	10.5.2. Scratch Area for Index Creation
	10.5.3. Record Deletion

	11. Data Import
	11.1. SpoolStatement
	11.1.1. The DSV Spooler
	11.1.1.1. FILE Tables
	11.1.1.2. External File Format
	11.1.1.3. Key Collisions
	11.1.1.4. Spooling LOB objects
	11.1.1.5. Filename Adaption on non-UNIX Operating Systems

	11.1.2. The XML Spooler
	11.1.2.1. General Characteristics of XML
	11.1.2.1.1. The Syntax of the XML Spool File

	11.1.2.2. Principal Functionality of the XML Spooler
	11.1.2.2.1. Transfering XML Data Into the Database
	11.1.2.2.2. Extracting Query Results Into an XML Document

	11.1.2.3. Extended Functionality of the XML Spooler
	11.1.2.3.1. Reading the XML Declaration
	11.1.2.3.2. The Usage of Format Information
	11.1.2.3.3. The Representation of Null Values
	11.1.2.3.4. The Default Values
	11.1.2.3.5. XML Attributes Known by the XML Spooler

	11.1.2.4. Error Reports
	11.1.2.4.1. Hard Errors
	11.1.2.4.2. Soft Errors
	11.1.2.4.3. Attempt to Use an XML Document in the DSV Spooling Mode

	11.1.2.5. Spooling of Lobs with the XML Spooler
	11.1.2.5.1. Transferring Lobs Into the Database
	11.1.2.5.2. Writing Lobs from a Query Result
	11.1.2.5.3. Inline Lobs
	11.1.2.5.4. Storing Several Lobs in One File

	11.2. External data sources
	11.2.1. Remote Database Access
	11.2.2. JDBCReader
	11.2.3. OraReader
	11.2.4. FILE Tables

	12. Administration Language
	12.1. Overview of AdministrationStatement
	12.2. Database Parameters
	12.3. CreateDatabaseStatement
	12.4. AlterDatabaseStatement
	12.5. RegisterDatabaseStatement
	12.6. DeregisterDatabaseStatement
	12.7. BootDatabaseStatement
	12.8. ShutdownDatabaseStatement
	12.9. MigrateDatabaseStatement
	12.10. DropDatabaseStatement
	12.11. PublishDatabaseStatement
	12.12. DumpDatabaseStatement
	12.13. CreateGridStatement
	12.14. AlterGridStatement
	12.15. DropGridStatement

	Appendix A. The Data Dictionary
	A.1. The sysdatabase(s) Table
	A.2. The syssession Table
	A.3. The sysuser Table
	A.4. The systable Table
	A.5. The syscolumn Table
	A.6. The sysindex Table
	A.7. The sysview Table
	A.8. The sysviewdep Table
	A.9. The sysblob Table
	A.10. The systablepriv Table
	A.11. The syscolumnpriv Table
	A.12. The sysdomain Table
	A.13. The sysconstraint Table
	A.14. The sysrefconstraint Table
	A.15. The sysdataspace Table
	A.16. The sysdatafile Table
	A.17. The loadinfo Table
	A.18. The syskeyword Table

	Appendix B. Sample Database
	Appendix C. Precedence of Operators

