
Update Distribution and Replication

(Version 6.9 and later)

1. Terminology

Both Transbase® and Transbase® CD provide mechanisms for distributing
changes made to a server database to client databases. However, the motiva-
tion and the goals are different.

While Transbase® CD provides several methods to distribute updates,
Transbase® also provides replication support for online databases aiming par-
ticularly to increase database availability. The replication methods could also
be used to distribute updates from a single master database to several slave
databases.

In the following, we describe both approaches and their particular advantages
for the problem of periodic updates.

2. Prerequisites

In order to distribute or replicate updates into client databases, several prere-
quisites must be matched.

First of all, the Transbase® authoring database must be changed as few as pos-
sible; in particular, primary keys that are used to identify rows in the databa-
se must be kept as stable as possible. If the database (including primary keys)
would be generated newly for each distribution, key stability is not given. A
single delete of a record may change all keys requiring the whole database to
be updated. Thus, updates would become so large that they cannot be published
online.

Instead, the Transbase® authoring database should be kept online and any
updates should be applied to this database as they occur. E.g. to change a
price for a part, the corresponding row should be updated (not deleted and
inserted), and no other rows should be touched. To insert a new part, a new
primary key should be selected without changing keys of existing parts. To
delete a part, the primary key of this part should not be reused.

Page 1 of 9

WHITE PAPER

If this approach is followed, Transbase® keeps track of the changes and, at any
appropriate point in time, will be capable to publish all updates in a single
operation so that they can be transferred and applied to client databases. The
volume of such updates obviously depends on the number and amount of
changes. The more frequently updates are published, the smaller the volume
typically will be.

3. Update Distribution using Transbase® CD

Transbase® CD is used to run databases on compressed read-only files (so-cal-
led ROMfiles). In addition, it provides a mechanism to update those databases
virtually by relocating pages from read-only files to read-write files.

Updates can be replicated from server to client side in a compressed form, too.
Various techniques are available here and are described below.

The replication goals are:

Highly compressed volume of updates in order to distribute them online

Fast application of updates at client sites

Robust processes (updates may be skipped, …)

Database stability

3.1 Updates in Transbase® CD

Transbase® CD can update databases even if they are on read/only media or
in compressed files (so called ROMfiles). This is achieved by adding a
read/write file (so called diskfile) to the database where all updates go to and
a data structure that records which page has been updated and where it has
been relocated. This data structure is called IBT (indirection B-tree) and keeps
track of updated pages. It contains one record for each updated page (app. 12
bytes).

Initially, IBT is empty. Once a page is updated for the first time, a new entry is
generated that maps the pair (original page number, original segment num-
ber) to a new page number on diskfile. For each page access IBT is searched
first to see whether the page is relocated or not. If it is not relocated (i.e. if
the IBT contains no entry for this page) the original page is fetched from
read/only media; otherwise the relocated page is fetched from read/write
disk. If the same page is updated several times, no further changes to IBT are
required. The following picture shows the structure at retrieval site:

WHITE PAPER

Page 2 of 9

Picture1: Transbase® CD

All changes in IBT are executed under transaction control, i.e. IBT is locked
eventually thereby limiting concurrent update operation on Transbase® CD
databases. In particular, changes to IBT are committed with the requesting
transaction. Therefore the information in IBT is persistent like any transactio-
nal update.

As the relocated pages may be updated multiple times they must be stored in
an uncompressed way. By using this mechanism heavily, database size may
increase significantly compared to the originally compressed size. The amount
of local storage may limit the updates that can be received by a database.

In many cases, however, Transbase® CD is used to distribute updates periodi-
cally. Updates can be prepared at server site and shipped as a set of files to the
retrieval sites where they are simply „included“ into the database.

Those updates can be and typically are compressed. A further data structure
is provided that, for each compressed file, records which page is located at
what offset. This data structure is called compfile.

On top of that, on-site updates can be performed as before by adding a disk-
file along with an IBT. The structure is sketched by following picture:

WHITE PAPER

Page 3 of 9

Picture 2: Transbase® CD Delta updates

When this procedure is iterated, it becomes clear that the first delta contains
only necessary pages, while later deltas contain many pages that have alrea-
dy been contained in previous deltas. This is obviously not optimal in terms of
transfer volume and therefore has been the reason to develop so-called tran-
sitional deltas.

3.2 Transitional deltas

In the following we will denote by Δ1, Δ2, … the set of pages that have
changed, compared to the originally distributed romfile. If we further define
δ12 as the set of pages contained in Δ2 but not in Δ1, we can write Δ2 = Δ1 + δ12 ,
Δ3 = Δ2 + δ23 = Δ1 + δ12 + δ23, and so on.

The principal improvement of transitional deltas is that only δn-1,n is transfer-
red to the client, so the transfer volume is minimized. However, the client has
to generate Δn by merging romfile, Δn-1 , and δn-1,n. This operation may take
some CPU and IO resources. After Δn is produced, Δn-1 may be deleted (by
default, it is kept, however). But for the interim both files are needed. The
process is sketched by the following picture:

WHITE PAPER

Page 4 of 9

Picture 3: Transition from k to k+1
After the transition, the gray files may be deleted

It is obvious that a client that has skipped some deltas may directly upgrade
from �Δn-k to �Δn for some k>1 when this specific delta �δn-k,n can be provided.

Transbase® CD provides tools to merge a sequence of �δk-1,k ◦� �δk,k+1 into a
single delta �δk-1,k+1. Thus, it is easy to provide the newest deltas for each
possible client state, namely: δ1n , δ2n , δ3n , …, δn-1,n

When a new delta δn,n+1 is generated, this delta is applied to the sequence
and produces δ1,n ◦ δn,n+1, δ2,n ◦ δn,n+1, δ3,n ◦ δn,n+1, …, δn-1,n ◦ δn,n+1

yielding δ1,n+1 , δ2,n+1 , δ3,n+1 , …, δn-1,n+1.

Together with the delta δn,n+1 the new sequence is complete and can bring
any client from any state to the newest state n+1.

The main disadvantage of this transitional delta technique is the need of CPU
and IO resources after reception of a new delta file. This leads to the develop-
ment of so-called generation deltas.

3.3 Generation deltas

The main disadvantage of transitional deltas can be avoided by omitting the
construction of a single deltafile containing all deltas because this takes local
CPU and IO resources. Instead, the compfile is modified that it knows for each
page where to locate it: either in ROMfile or in one of the δk, k+1 files for some
k. This behavior is shown by the picture below. As before, a diskfile can be
added along with an IBT to accept local changes to the database:

WHITE PAPER

Page 5 of 9

Picture 4: Transbase CD® generation deltas

Note that all δk, k+1 files must be kept. Technically, those files are stored in a
directory together with the corresponding compfile. However, only the
compfile of the newest δ file is being used.

Also note that a database can be reset from a state k to any previous state j<k
by simply deleting the directories for state >j and using the compfile of state j.
This technique minimizes both the transport volume and the time and local
resources to update a database from state k to k+1.

The performance overhead caused by the n-way branch of compfiles is not
significant.

4. Replication using Transbase®

A completely different mechanism is available for Transbase® but may be
applicable for periodic updates as well. The original motivation, however, was
to provide improved backup features for Transbase®. This mechanism has
been extended to support replication on a physical (i.e. page) level. In parti-
cular, one master database is able to replicate its updates to one or many slave
databases. The goals of this kind of replication are:

Keep a database mirror as much as close to the original database to allow
an extremely fast hand-over in case of failures

Try to minimize any data loss in such cases

For deployment databases this mechanism could be used to distribute updates
regularly into slave (retrieval) databases. However, there are subtle diffe-
rences that have to be considered.

WHITE PAPER

Page 6 of 9

In the following we use the terms master database and slave database rather
than editorial and retrieval database as used with Transbase® CD.

4.1 Prerequisites

There are three essential prerequisites to be observed:

The slave database must be strictly read-only.

Master and slave databases must be operated with „delta logging“ (rather
than „before image logging“ which is the default for Transbase® CD).

Master and slave databases must run on the same CPU architecture, e.g.
both on little-endian or both on big-endian architecture.

The latter could be released, if needed, by changing the physical page struc-
ture of Transbase® databases into a platform-independent shape (as in
Transbase® CD). Currently, the database format is platform-dependent.

4.2 Description

When the master database is updated a so-called delta log records the
changes in a page-oriented manner. In particular, the log contains the follo-
wing information:

start of a transaction

end of a transaction (commit/rollback)

allocation of a new page

deletion of a page

update of a page

The most frequent records are the update records. To keep them as compact
as possible not the whole (new) page is recorded but a bitwise delta between
the new version and the old version of the page. For the xor operation, the
following equations hold:

delta = old xor new
new = old xor delta
old = new xor delta

Therefore, the log can be used as a redo log as well as an undo log. For repli-
cation purposes, the log almost always is used as redo log. Only when abor-
ted transactions are part of the log, it is also used for undo.

WHITE PAPER

Page 7 of 9

The master database continuously produces log records as update transactions
are being processed. The log has to be written persistently to disk on two
occasions:

when a transaction ends (commits or aborts)

when a page is written to disk before it is committed (typically because the
database cache is too small to hold the update).

The replication component of Transbase®, called tbrepl, is an additional pro-
cess on the master database. It can be started at any point in time (usually at
startup of the database) and it can stop at any point in time, either delibera-
tely or occasionally.

When the process is up, it can be connected by slave databases in order to pass
the log from a given point in the log. When the end of the log is reached, the
process waits and provides the next portion upon end of each transaction
finished at master.

At slave databases, the same process tbrepl can be started (again at any time).
Once it connects to the master tbrepl process, it receives logs and immediate-
ly processes them on the slave database by applying the page deltas.
Whenever it receives a commit record it commits the changes. Therefore the
slave database is only a little behind the master database.

While updates are applied, the slave database may be operational without
restriction. Updates will become visible once they are committed. If the log
contains several transactions, also several intermediate states become visible.
If the log contains only one large transaction, no intermediate states will be
visible: before the transaction ends, the original database state will be visible,
after it commits, the new database state will be visible. Note here, that active
read only transactions may hold locks on the database that might prevent the
update transaction from committing its changes.

The slave tbrepl process can be stopped intentionally or not at any time; after
restart it will continue from where it stopped. Transbase® guarantees that
updates will be processed once and only once. The proper sequencing of logs
is also checked by Transbase®.

4.3 Performance

Applying a log is a comparably fast operation. In particular, the log is being
processed already, while it is received. Usually the log is processed much faster
than the original transaction as no SQL statement processing is involved, and
only the changes have to be processed.

WHITE PAPER

Page 8 of 9

The volume of the log to be transferred from master to slave is reduced by
compression. However, pages that are frequently changed (so called hot spot
pages) will contribute much to the size of the log. Those multiple changes
could be summarized at master side before the log is being transferred, but
those logical compression currently is not available.

WHITE PAPER

Page 9 of 9

Contact

Transaction Software GmbH
Willy-Brandt-Allee 2
81829 München

Tel.: +49 89 / 627 09 - 0
Fax: +49 89 / 627 09 - 11

info@transaction.de
www.transaction.de
www.transbase.de

