
How to Convert Existing Transbase®

Databases into NLS Databases

1. General Remarks

For historical reasons, character data was stored in arrays of bytes with byte
values ranging from 0 to 0x7f (note that we use hexadecimal representation
throughout this paper to denote byte values). The so-called 0-byte frequently
was used to define the end of a character string and was not permitted to be
part of a string. On PCs and UNIX-based systems, the 7-bit ASCII code was typi-
cally used to define the interpretation of bytes. E.g. the letter "capital X" was
denoted by the byte with value 0x58, while the letter "3" was denoted by
0x33. Byte values higher than 0x7f did not appear, originally the high-order
bit was used to denote a so-called parity bit in order to detect eventual trans-
mission errors.

ASCII did not cope with non-US letters such as a German ä or a Spanish ç. First
some coding systems used ASCII characters like '[' to redefine them as 'Ä' in
Germany. Later, various coding systems were defined who used the full 8-bit-
range, i.e. all values from 0 to 0xff (making the use of parity bits obsolete).
Unfortunately, no standards were available so that at least the following
coding systems have gained some importance:

The codepage 437 was defined by IBM-PC and still is being used in MSDOS
windows. In this codepage the German 'Ä' is denoted by 0x8E.

ISO 8859 defined several variants for single-byte codes: 8859-1 (sometime
called Latin-1) covers all characters used in Western European languages
(mapping the German 'Ä' to 0xC4), while 8859-2 covers Eastern European
languages, 8859-7 covers Greek characters (e.g. mapping the Greek capital
D ('D') to 0xC4, 8859-8 covers Hebrew characters in the upper half. Note
that the lower half (bytes from 0x00 to 0x7f) always is identical to ASCII.

A byte value of 0xC4 thus could be interpreted either as German 'Ä' in ISO-
8859-1 or as Greek 'D' in ISO-8859-7. In particular, there was no way to store
both characters in the same database. 
Even worse, a database server could be connected to a German client and a
Greek client; data inserted from the German client could not be interpreted
by the Greek client and vice versa.

Page 1 of 6

WHITE PAPER



The definition of UNICODE (ISO 10646) finally solved this problem by assi-
gning each character in the world a unique code (namely its UNICODE). Since
more than 256 different characters had to be coded, UNICODE uses 2 (UCS-2)
or 4 (UCS-4) bytes for each character. We use the notation U+C4. A German 'Ä'
e.g. is assigned the unicode U+C4 while the Greek 'D' is assigned the unicode
U+394. UNICODE in particular covers East-Asian characters like Chinese Kanji
as well as Indian and Arabic characters, too.

Spending four bytes per character, however, seems to be fairly inefficient for
Western languages. Furthermore, character processing is usually done byte by
byte in computer programs which would require a complete redesign to
adapt them for UNICODE strings. Fortunately, together with UNICODE also a
"Unicode transformation format" (UTF) was introduced which maps Unicode
characters into byte (UTF-8) or word sequences (UTF-16). UTF-8 therefore is
the most suitable format to store and process UNICODE strings in computer
programs today. In particular, ASCII characters (from U+0 to U+7F) are mapped
one-to-one into UTF-8, characters between U+80 and U+7FF are mapped into
2-byte sequences, characters between U+800 and U+FFFF are mapped into 3-
byte sequences and so on. The longest possible sequence takes six bytes. ASCII
characters do not take more space than before; programs that deal only with
ASCII characters need not be modified at all.

Prior to version 5.3 of Transbase®, character data was stored simply as arrays
of bytes. Transbase® left the interpretion of bytes to application programs.
Although it would have been possible to store multi-byte-strings, there would
have been misbehaviour e.g. when a LIKE predicate would have to match one
character (that actually took two or more bytes). 

Since version 5.3, Transbase® supports an explicit database coding. The availa-
ble codings are:

ASCII: Only characters in the range 0x0 to 0x7f are valid.

Single Byte: Characters in the range 0x0 to 0xff are permitted; the mapping
into UNICODE is defined by a "locale" setting. Character strings are proces-
sed byte by byte (which is character by character).

UTF-8: Only valid UTF-8 strings are permitted. Character strings are proces-
sed character by character (with respect to UTF-8 properties).

EUC and S/JIS: Like UTF-8, strings are processed with respect to their coding
as byte sequences.

Propriet: This coding is provided for migration from and compatibility to
former versions of Transbase®.

After this lengthy introduction, the following paragraphs describe how exi-
sting databases can be migrated to newer versions of Transbase®. 

We have to distinguish the following cases:

WHITE PAPER

Page 2 of 6



Interpretation of characters is not essential: Simply continue to use
"Propriet" as coding.

Database contents are in one of the codings supported; just enter this
coding into the database's configuration file and use the database as befo-
re.

Database contents shall be converted into a true NLS format, in particular:
UTF-8.

By nature, the migration support of Transbase® is limited; actually, old data-
bases did not know about codepages and therefore do not provide any sup-
port upon creating archives. They can simply put their data "as is". 

However, Transbase® versions newer than 5.3 know about codepages and
they can particularily read spool files from old databases with an extended
spool statement:

SPOOL <table> FROM <file> CODEPAGE <codepage>

Where <codepage> is one of UTF8, UCS, UCS2, UCS4, UCS2LE, UCS2BE,
UCS4LE, UCS4BE. When no CODEPAGE clause is specified, the database default
is assumed (e.g. Single-Byte). 

In addition, Transbase® versions newer than 6.2 support more codepage spe-
cifications, namely: PROPRIET, SJIS, EUC, and single-byte codepages denoted
by a string (enclosed in single quotes) that is a valid server codepage setting,
e.g. 'german' or 'greek' on Windows and UNIX platforms. On UNIX platforms,
a wide variety of strings is supported including e.g.: 'de_DE', 'de_DE@euro',
'de_DE.utf8' or even 'de_LU.iso885915@euro'. The latter denotes a codepage
for Luxemburg in german language with ISO-8859-15 codepage (supporting
the Euro sign). The UNIX command locale -a usually lists all valid strings.

Furthermore, Transbase® versions newer than 6.2 also provide a tbmode state-
ments like tbmode codepage <codepagespec> which sets the default spe-
cification for SPOOL statements for this session. It can be set before a sequen-
ce of (unchanged) SPOOL statements:

tbmode codepage <codepagespec> ;
spool <table> from <file> ;
spool <table> from <file> ;
…

Finally, the tools tbarc and tbtar have been extended to accept parameters
that describe the input interpretation if the archives have been generated
from older Transbase® versions. See the release notes for versions 5.3 and 6.2
resp.

WHITE PAPER

Page 3 of 6



2. Converting into UTF-8 databases

2.1. Using tbtar (after-6.2 versions)

This means, the extended codepage specifications of SPOOL statements and
Transbase® tools can be used.

Assuming that the original database was of codepage "propriet" just follow
these steps:

Create an archive of your existing database using tbtar:

tbtar -w <db> f=<tbtar_filename> …

Create a new database appropriately; specify "utf8" as codepage and spe-
cify an appropriate "Locale Setting", e.g. german, either interactively or by
the command line options cp=utf8 and loc=german.

Load the database by tbtar, e.g.:

tbtar -r <db> f=<tbtar_filename> …
locale=propriet

tbtar -r <db> f=<tbtar_filename> …
locale=greek

tbtar -r <db> f=<tbtar_filename> … 
locale=euc

tbtar uses a tbmode statement and sets the default codepage for SPOOL
statements to the value specified by the locale parameter. Thereby all input
data is interpreted to be in locale and is converted first into UNICODE (by
means of the mbstowcs system call) and then into UTF-8.

Please note that the specified locale= clause must be valid at database server
side. Otherwise an error is reported. Under UNIX, the command locale -a
lists all valid values.

Also note that locale=propriet maps characters one to one into UNICODE, i.e.
a character 0xC4 is mapped to U+C4; this is the same as if locale=iso-8859-1
would have been specified.

2.2. Using tbarc (after 6.2 versions)

Using tbarc some more flexibility is available since the database contents are
saved by spooling tables into files and generating a SQL script that rebuilds
the database from the spooled files. Between saving the database and rebuil-
ding it, the script could be modified manually, e.g. in order to adapt some
data types. In particular, the spool file contents could be converted manually
into the designated new codepage before the database is being rebuilt.

WHITE PAPER

Page 4 of 6



A specific option cp= is available both on saving the database and on resto-
ring the database. In the further case, spool files are generated in the speci-
fied codepage (which should be the designated codepage). In the latter case,
spool files are expected to be of the specified codepage and eventually con-
verted into the destination codepage. Unless this option is specified, the spool
files are generated in the codepage of the source database and are expected
to be in the codepage of the destination database.

In either case, when a cp= option is specified, a tbmode codepage statement
is issued before spooling any data. Upon -w option, the tbmode statement can
be found at the beginning of make.db, upon -r option, the tbmode state-
ment is issued before make.db is executed.

Create the archive (in a new directory):

tbarc -w <dir> <db> [cp=german]

Eventually modify spool files or database script (make.db)

Rebuild the database from the archive:

tbarc -r <dir> <db> [cp=german]

2.3. Using tbtar (pre-6.2 versions)

If your database version is even older than 6.2 you should take one interme-
diate step:

Apply tbtar -w
Create a new database in codepage "propriet" with the new Transbase®

version (at least of version 6.2)

Apply tbtar -r
Follow the steps listed under 2.1.

2.4. Using tbarc (pre-6.2 versions)

An analogous procedure is necessary when you are planning to use tbarc; take
the following intermediate step:

Apply tbarc -w
Create a new database in codepage "propriet" with the new Transbase®

version (at least of version 6.2)

Apply tbarc -r
Follow the steps listed under 2.2.

WHITE PAPER

Page 5 of 6



3. Problems

3.1. System Tables

System tables hold information about the database, such as field names, field
types, but also view definitions and integrity constraints.

Since identifiers may be arbitrary UTF8 strings, all conversions described for
normal tables also refer to system tables. In particular, view definitions also
are converted from the input codepage into UTF8.

Special attention must be paid to externally prepared modules (in table sysex-
ternal) which may be Java class files or Java source files or DLLs. These are sto-
red as BLOBs and are not converted at all. Obviously, for class files as well as
DLLs this is correct. For source files, however, it depends on their contents and
must be performed manually, as in the case of fulltext data stored in BLOBs.

3.2. SQL Script

The SQL script generated by tbarc contains SQL statements necessary to
rebuild the database. In particular, it contains table, view or domain definiti-
ons as well as integrity constraints etc. All these SQL statements may contain
strings or (double quoted) identifiers which may contain non-ASCII characters.

Therefore, the script itself must be converted into UTF-8 before it can be exe-
cuted in the re-built database. For several reasons, the conversion of this file
make.db must be done manually as noted above under 2.2. Note that this is
necessary only when the database contains identifiers or default values or
constraints whose codepages extend standard ASCII.

Depending on your operating system, the following tools can be used to con-
vert a file into UTF-8: Under Windows, the notepad editor is able to convert
files into UTF-8 using the "SaveAs" button and selecting "UTF-8" as coding;
under Linux, the command iconv [-f input_coding] -t utf8 can be
used to convert the standard input (assumed in the specified coding or in cur-
rent coding) into UTF-8 standard output.

3.3. BLOBs

BLOBs (binary large objects) are defined to contain binary non-textual data.
Therefore BLOBs are never interpreted by Transbase® and do not be conver-
ted by any of the above mentioned procedures. Unfortunately, BLOBs can be
used as source for fulltext indexes. In that case, the contents of BLOBs are
assumed to be textual data and handeled like character strings. Those BLOBs
obviously should be converted like other textual data, too. Transbase® cannot
know whether a given BLOBs contains textual or binary data and leaves BLOBs
always as they are. In other words, BLOBs that are used to hold textual data
must be converted manually, as described under 3.2 above. In particular, this
must happen before fulltext indexes are created on these BLOBs.

Contact

Transaction Software GmbH 
Willy-Brandt-Allee 2 
81829 Muenchen, Germany

Tel.: +49 89 / 627 09 - 0 
Fax: +49 89 / 627 09 - 11

info@transaction.de
www.transaction.de 
www.transbase.de

WHITE PAPER

Page 6 of 6


